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Abstract: The majority of handwritten word recognition strategies are constructed on learning-based
generative frameworks from letter or word training samples. Theoretically, constructing recognition
models through discriminative learning should be the more effective alternative. The primary goal of
this research is to compare the performances of discriminative and generative recognition strategies,
which are described by generatively-trained hidden Markov modeling (HMM), discriminatively-trained
conditional random fields (CRF) and discriminatively-trained hidden-state CRF (HCRF). With learning
samples obtained from two dissimilar databases, we initially trained and applied an HMM classification
scheme. To enable HMM classifiers to effectively reject incorrect and out-of-vocabulary segmentation,
we enhance the models with adaptive threshold schemes. Aside from proposing such schemes for
HMM classifiers, this research introduces CRF and HCRF classifiers in the recognition of offline Arabic
handwritten words. Furthermore, the efficiencies of all three strategies are fully assessed using two
dissimilar databases. Recognition outcomes for both words and letters are presented, with the pros and
cons of each strategy emphasized.
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1. Introduction

Even though deep-learning neural network (DNN) approaches perform excellently in various
machine-learning domains such as computer vision, statistically-based strategies continue to draw
interest. This is particularly the case in the field of optical character recognition. Initial training of
high-performing DNNs typically requires large amounts of grounded data, in contrast to statistical
strategies. The collection and annotation of enough examples of offline handwriting for DNN
training is both labor-intensive and slow. Furthermore, training is very costly for tasks that require
appreciable resources such as powerful GPUs and comparatively long periods of time (weeks or
more) [1]. The situation compelled us to resolve the problem regarding offline Arabic handwritten
word recognition in terms of a probabilistic sequence labeling approach. This research therefore
aims to assess the performances of probabilistic classification strategies that are useful for labeling
sequences of feature sets extracted from offline Arabic handwriting. First of all, we presented a
generatively-trained Hidden Markov Model (HMM) method constructed directly over explicit Arabic
handwriting segmentation components, as described in [2]. So as to lower the numbers of class
labels, a primitive features-based taxonomization method as initially recommended in [3] was further
implemented. The strategy uses elements including segment numbers and the presence of loops in
images for taxonomizing letter forms accordingly, thus reducing label numbers from 104 down to a
maximum of 42 within four different categories. The suggested paradigm employs dual sequential
feature sets to define the shapes of segmented units along two differing directions, i.e., anticlockwise
and clockwise. Unlike prior HMM methods that accord with offline handwritten word recognition
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strategies, the key innovations of our HMM recognition strategy are as follows: (i) instead of
depending on implicit segmentations as by-products of HMM decoding processes, we incorporated
explicit segmentation phases into our recognition strategies for segmenting words into their letter
representatives; (ii) rather than utilizing conventional sliding, windows-based feature sets subsequent
to properly-sized normalization and thinning, we extracted dual sequential, shape-representative
feature sets from segmented images; (iii) for detection, we implemented left-to-right banded topologies
in the construction of HMM classifiers and further equipped these with adaptive threshold models
that derive from the merging of every trained model comprised of all letters. The primary function
of adaptive thresholds is to enhance efficiencies by enabling reasonable rejections of meaningless
areas-of-pixel that can occur noisily in either or both image-acquisition and segmentation phases.
Second, we presented alternatives to generative paradigms in the form of dual probabilistic
discriminative-based classifiers, i.e., linear-chain CRF and HCRF extensions. These methods have
been suggested and were successfully implemented recently in numerous sequence labeling problems,
such as computer vision, natural-language processing and bioinformatics [4]. This is due to the fact
that either strategy assumes no dependencies among inputs and allows representations of the complex
relationships among observations and to-be-predicted labels. As with our HMM-based strategy,
the recommended CRF and HCRF classifiers incorporate the same explicit segmentation component
and execute taxonomization procedures before detection.

2. Previous Works

This section presents a survey of related research, with a focus on strategies that embrace
discriminative and generative paradigms via probabilistic modeling. Based on the literature,
generatively-trained HMM-based strategies are generally in widespread usage in the area of offline
handwritten word recognitions [5–7]. The first section will therefore briefly present suggested HMM-based
strategies. By incorporating right-to-left discrete HMM, as well as Kohonen self-organizing maps
for feature quantization, Dehghan et al. [8] pioneered demonstrations of the viability of applying
HMM methods for holistic identification of offline Farsi and Arabic handwritten words. Experiments
were carried out using a dataset that was comprised of the names of cities in Iran, while sliding
window-derived feature vectors were arranged from histograms of chain-coded contour directions.
Observed accuracy rates using the method reached 65%. Pechwitz and Maergner [9] employed the 1D
semi-continuous-HMM-based strategy for the detection of handwriting, wherein sliding window-derived
feature vectors were obtained from normalized grey images of words. Before feature sets were passed
to HMM, Loeve-Karhunen transforms were applied to decrease dimensionality. In addition, IFN/ENIT
information was utilized for testing and training, and maximum recognition rates of 89% were observed.
For the detection of offline Arabic handwriting, Al-Hajj et al. [10] suggested an arrangement of three
right-to-left HMM classifiers. All classifiers were built upon specific sliding window orientations
in order to surmount the significant difficulties of offline handwritten words, including overlaps,
inclinations and the shifted positions of diacritics. Testing and training was carried out using IFN/ENIT
information, with recognition decisions generally attained via experiments with combinations of
various methods, such as majority vote and sum rules combined with neural network learning, on all
three classifier results. The highest recognition rates attained reached 90%, wherever neural-network
combinations were chosen. Dreuw et al. [11] suggested discriminatively-trained HMM for the detection
of Arabic and Latin offline handwriting. In place of common expectation maximization (EM) training
methods, the researchers proposed minimum phone error (MPE) and maximum mutual information
(MMI) methods for training holistic modeling paradigms. The Arabic IFN/ENIT and the English
IAMdatabases were deployed for assessing the approach, and the error-rates are lowered by 33% and
25%, respectively, in comparison to the EM. To recognize Arabic handwriting obtained from IFN/ENIT
databases, Ahmad and Fink [12] suggested a dual-stage, HMM-based strategy. Given the advantage
that numerous Arabic letters share the same main bodies and are differentiated only through diacritics,
it was decided that diacritics and primary strokes would be modeled discretely. Accordingly, the variety
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of schemes was considerably decreased, and the researchers were able to achieve results comparable to
those obtained in related studies. Seeing the successful implementation of these methods in numerous
fields, i.e., bioinformatics, natural-language processing and computer vision, many researchers recently
proposed CRF for use in the identification of offline Chinese and Latin handwriting. As far as we
know, our prior research [13] remains the first published study that examined the utility of CRF
and HCRF in the identification of offline Arabic handwriting. This research therefore extends the
original research paper that was conveyed during the conference. Due to the absence of published
research on the proposed CRF and HCRF for the identification of offline Arabic handwritten words,
we briefly summarize similar strategies for Chinese and also Latin manuscripts. In earlier related
research, Feng et al. [14] examined and compared the efficiencies of CRF and HMM methods in
word recognition tasks that focused on handwritten historical manuscripts. A discrete feature set was
obtained from 20 pages of documents written by George Washington and utilized for training and
evaluating CRF-based and also HMM-based classifiers. The researchers carried out many experiments
with various beam search techniques so as to hasten training courses of CRF classifiers, and the
findings showed that the CRF method outperforms HMM. Nonetheless, it was discovered that to boost
efficiency, it was necessary to decrease state spaces through the application of the CRF method at the
character level, which was implemented in our recommended approach. Hamdani et al. [15] examined
the performances of segmental CRF (SCRF) in tasks involving large-vocabulary English handwritten
word recognition, wherein multi-layer perceptron networks and LSTM-RNNs were utilized to produce
observations. The efficiency of the recommended method attained a 13.7% reduction of writing errors
in comparison to a baseline model built with the RWTH-HWRmodule. In an integrated scheme for the
detection of Latin handwriting, Chen et al. [16] suggested that Boltzmann machine-trained deep neural
networks be combined with linear CRF. With this strategy, deep networks were utilized to produce
non-linear latent feature sets, which were then passed on to the CRF for recognition. The recommended
method was tested on dual handwriting datasets and reportedly outperformed methods that adopt
shallow CRF. Zhou et al. [17] proposed a method for detecting Japanese and Chinese text that accorded
with semi-Markov CRF. The researchers began with descriptions of semi-CRF on lattices comprised of
every possible segmentation-recognition hypothesis of strings, in order to directly approximate the a
posteriori probabilities for each. CRF features were functionally defined over linguistic and geometric
information from character recognition, with the negative log-likelihood utilized to optimize modeling
of the parameters. At the character level, the corresponding recognition rates attained for Chinese and
Japanese handwriting were 95.20% and 95.44%.

3. Shape Descriptions Features for Arabic Handwriting Recognition

Features might be chosen to represent either the stroke external characteristics, i.e., the boundary,
or to represent the internal characteristics that are the pixels contained within the stroke’s image.
External representation is usually more appropriate when focusing on the shape characteristics,
whereas internal representation is the better choice when the focus is on characteristics relevant
to color or texture [18]. Related literature contains many different types of features that might be
geometric (e.g., geometric moments, directional histograms, etc.), structural features (e.g., topological
features, Fourier’s descriptors, etc.) or space transformation features (e.g., principal component
analysis, linear discriminant analysis, etc.) [19]. Due to the fact that HMM, CRF and HCRF
are especially powerful for the task of sequential feature classification, features extracted from
a letter or a word image should be sequential or can be easily converted into a sequence that
eventually is passed to the appropriate classifier for recognition. The most widely-adopted sequential
features for offline handwriting recognition are those extracted using the principle of the so-called
sliding window [6,10,14,17]. Typically, these types of features are sequences of observations extracted
by shifting a window along the image of the word from right to left or vice versa.

In the case of Arabic handwriting, the sliding window is shifted a small distance from the right to the
left, and for each position. a feature vector is extracted [20]. When using sliding window-based features,
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typically, a large number of features are primarily extracted. Then, to get rid of redundant and irrelevant
features, feature selection or reduction algorithms are usually needed to allow the recognition process
to be computationally tractable. Furthermore, sliding window-based features are particularly adequate
to represent the image local patches (local details), rather than capturing shape global characteristics
(e.g., contour curvature), which prove to be very important for handwriting recognition.

Additionally, being computed based on the pixel’s connectivity to local image neighborhoods,
sliding window features are sensitive to the stroke width and relatively more prone to multiple
handwriting distortions (e.g., slant, skew, etc.). Inspired by the works of [21–23], we propose a robust,
yet simple approach for extracting two sets of shape descriptor features, which are proper to be used
as an input for a sequence labeling-based recognition system. Besides avoiding the above-mentioned
drawbacks of sliding window features, the proposed features have a number of desirable characteristics
such as:

• Less expensive to extract and to process.
• Capturing the letter’s distinctive shape characteristics.
• Invariant to stroke width and less sensitive to handwriting distortions.
• Easily converted to vectors of observations suitable for sequence classifiers.

3.1. Extraction of Feature Descriptors

Since our main objective is to build an unconstrained recognition system, our feature extraction
module is built on top of an explicit segmentation method detailed in [2]. Provided that writing styles
differ greatly with respect to height, width, skew and slant, feature extraction begins by normalizing the
handwritten word against handwriting deformations, i.e., skew and slant. Then, to further minimize
the within-class variations, segmented images are size-normalized while preserving the aspect ratio.

For size normalization, a backward linear normalization method is employed to map the pixel
coordinates of all segment images (usually of different sizes) into a standard plane of fixed N × N
dimension where N = 64 is found to be optimal [24]. Figure 1 depicts the core idea of our approach,
where feature extraction starts by uniformly distributing a set P = {p1, p2, . . . , pm}, pi ∈ R2, of m
reference points along a rectangle that tightly contains the thinned image (see Figure 1a). Typically,
m can be any natural number less than or equal to n, where n is the total number of pixels constituting
the thinned image. Moreover, in practice, m should be proportional to the size of the normalized
images; therefore, m = 64 is chosen. Since the main focus of this work is on Arabic handwriting,
the first reference point p1 is positioned on the rectangle’s upper-right corner.

Additionally, Let Q = {q1, q2, . . . , qn}, qi ∈ R2 be the set of pixels coordinates of the thinned
image. Starting at the reference point p1 and in both clockwise and anticlockwise directions, for every
pj ∈ P, we search for the nearest qj ∈ Q. Upon identifying qj and by using pi as the pole, we estimate
the radial distance rij and the angle ϕij according to Equation (1), and eventually, we exclude the pixel
coordinate qj from the pixel set Q.

rij =
√
(x́j − xi)2 + (ýj − yi)2, ϕij = tan−1

(
ýj − yi

x́j − xi

)
, where pi = (xi, yi), qj = (x́j, ýj) (1)

Algorithm 1 outlines the feature extraction process, where each pi ∈ P is assigned one and
only one qj ∈ Q, and as a result, two different feature descriptor vectors χaχaχa = (χ1, χ2, ..., χ64),
χcχcχc = (χ1, χ2, ..., χ64), where χi = (ri, ϕi), are constructed from every (pi, qj) pair in anticlockwise,
as well as in clockwise directions, respectively. In this context, it is also important to state that
computation is performed with the assumption that n ≥ m, i.e., the number of pixels n in the segment
skeleton image is greater than or equal to the number of reference points m.
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Figure 1. Extraction of features descriptors: (a) extracted features computation; (b) segmented
handwritten word; (c) clockwise features; and (d) anticlockwise features.

Algorithm 1: Extraction of feature descriptors.
Data: P the set of reference points, Q the set of segment skeleton pixels.
Result: χχχ

begin
p1 ←− Start Point
for ∀pi ∈ P do

for ∀qj ∈ Q do
q∗j = arg minqj

‖qj − pi‖ rij = ‖q∗j − pi‖
ϕij = arctan (q∗j , pi)

χij = (rij, ϕij)

χχχ += χij
q∗j /∈ Q

Figure 1 illustrates further the proposed feature extraction step, where Figure 1a shows how
features are calculated using reference points, as well as image pixels. Figure 1b presents a segmented
handwritten word image using the method presented in [2]. To improve the robustness of the
recognition system against various writing distortions, we computed the features in two different
directions; Figure 1c,d, depicts the results along the two directions for letter ¼ “KAF” (enclosed in the
red rectangle) in Figure 1b. To demonstrate the feature descriptors discriminatively, Figure 2 shows
the feature profiles for letter “¼” in the two mentioned directions.
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Figure 2. Shape descriptor profiles for letter ¼ : (a) the profile in the clockwise direction; (b) the profile
in the anticlockwise direction.

3.2. Vector Quantization for Feature Sequences

Basically, quantization is the process of mapping a large number of different input values into a far
smaller set of discrete values [25]. In the case of vectors of data points, most quantization algorithms
work by clustering nearby vectors into groups (clusters). A widely-used quantization technique is the
k-means clustering algorithm, thanks to its relatively fast convergence property [26]. Its drawback,
however, is the sensitivity to the initialization step, meaning that the algorithm’s performance is
fully determined by the initial values. Thus, a reasonable solution can only be achieved through
initialization values that lie close to a good clustering solution. To overcome this problem, we adopted
a k-means initialization method proposed in [25]. In this method, the authors suggested to use the
affinity propagation algorithm (AP) to initialize the k-means clustering. AP works initially by assuming
that all data points are potential exemplars that iteratively exchange messages until a satisfactory
clustering solution is reached. Without any assumptions about the feature data distributions and in
order to estimate the number of clusters for a given letter, the AP algorithm starts by constructing a
similarity matrix. Where elements of the matrix are pairwise similarity values between each data point
s(χi, χk), χ ∈ χχχ, typically similarity values quantify how well χk is suited to be the exemplar of χi.

Like in [25], we simply define the similarity function s as the negative squared Euclidean distance
between data points. Then, for each letter, the AP is applied twice, once for χaχaχa and once for χcχcχc,
and the average of the estimated number of clusters is computed. This process is performed for
every letter in every form, and the number of clusters (i.e., the number of quantization levels) or k
of k-means is calculated as the overall average of all clusters of all letters, where k = 16 is found
to be the optimal number of quantization levels. Eventually, a k-means clustering algorithm with
k = 16 is used to quantize the feature descriptors χaχaχa and χcχcχc. As a result, we obtained two vectors of
observation sequences fa and fc of length 64, containing values of observed quantization level indices,
where fa = ( fa1 , fa2 , . . . , fa64), with fai ∈ {1, 2, . . . , 16} representing the anticlockwise observed feature
sequence and fc = ( fc1 , fc2 , . . . , fc64), with fci ∈ {1, 2, . . . , 16} representing the clockwise observed
feature sequence.

4. Shape-Based Letters’ Taxonomization

The recognition of handwritten Arabic words is, firstly, reduced (through the explicit
segmentation) into the problem of recognizing a segment that may represent a letter in a word.
However, the Arabic alphabet contains basically 30 letters, and a letter may appear in two to four
distinct shapes according to its position in a word, resulting in 104 substantially different shapes.
A straightforward approach to alleviate this problem is to taxonomize letter shapes according to very
primitive properties. Figure 3 illustrates the adopted taxonomy, which classifies letters according to
the number of segment and whether they contain a loop(s) or not. Thereby, for example, letters such as
X, P, @, �, h will be grouped under the first group from the left in Figure 3 (i.e., one segment and no
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loop group Tax.1), letters such as ð, Ó, h, ë under the second group (i.e., Tax.2) and letters such as H. ,
�H, �H, ¼ in the third group (Tax.3), and the fourth group (Tax.4) will contain letters such as 	�, ��, �è, 	̈

.

Segmented Shape

One Segment

Contains no loop
(26 shapes)

Contains Loop
(24 shapes)

Multiple Segments

Contains no Loop
(42 shapes)

Contains Loop
(30 shappes)

Tax.1 Tax.2 Tax.3 Tax.4

Figure 3. Letters’ taxonomy, according to the number of segments and the existent of loop(s).

By following such a simple pre-classification step, we reduce the space of labels from 122 to 42 at
most. Furthermore, notice that the total number of labels is 122 (not 104), because some letters appear
twice in two different taxonomies, since they may be either written with or without a loop (e.g., Ð and

Ó) or in one or two strokes (e.g., º and ¼). depending on the personal writing style.

5. HMM-Based Recognition of Arabic Handwriting

This section describes in detail the proposed HMM-based recognition approach. Firstly, we show
how the letter models are constructed and how the HMM parameters are initialized. Then, we explain
the process of building the threshold model, and eventually, we present how recognition is performed.
Basically, the system is built up of two sub-classifiers corresponding to the different types of features.
Each sub-classifier contains an HMM model for each letter in each form, thereby each sub-classifier
consists of 122 different HMM models. To cope with the errors of segmentation that negatively affect the
system performance, a big model for each sub-classifier is constructed by ergodically connecting all other
models. This model is called the threshold model and is dedicated to reject out-of-vocabulary segments.

5.1. Topology and Hidden States’ Optimization

The first step in building an HMM model is to specify the model topology and the number of
model states and to keep them unchanged throughout the training phase. There are multiple different
types of HMM topologies; however, there is no theoretical framework that can be used to determine the
optimum topology. Nevertheless, when topologies produce similar results, then the simple one is the
best, since it involves the fewest number of parameters that need to be optimized. According to [27],
the most commonly-used topologies in the field of optical character recognition in general are the
banded left-to-right and the left-to-right (Bakis) topologies. To assess and compare the performance
of the two topologies, while the number of states is assumed to be globally fixed (i.e., eight states),
dedicated HMM models are built for three randomly-chosen letters from each leaf node within the
taxonomy. Since there are no boosts in performance justifying the use of Bakis’ topology (see Figure 4a),
consequently, the simpler left-to-right banded topology is adopted.

In addition to choosing the proper topology, the number of states (the model’s size) for each
HMM model should be carefully determined. Typically, there are two different paradigms that might
be followed to select the number of states for the HMM model [28]. According to the first, the number
of states should be proportional to the number of strokes within a handwritten word or a letter;
whereas, in the second, the number of the model states is estimated as the average of the length of the
observation sequence of the corresponding word or letter.
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Figure 4. HMM topology and model size optimization: (a) left-to-right (Bakis) topology vs. left-to-right
banded topology performance; (b) effect of HMM model size on performance.

Due to the fact that we are converting feature data into equal-length vectors of observation
sequences, estimating the number of states based on the length of the observation sequence will be
equal to assigning the same number of states to all models, which can be an excessive or insufficient
number for the respective letter model. Furthermore, for robust and efficient modeling, typically,
letters consisting of multiple segments and complex shape characteristics require models with a bigger
number of states, compared to one segment and simply-shaped letters. Hence, and in contrast to
most related works, in which a global fixed number of states is optimized and used to model all
letters, we optimized the model size for each node within the taxonomy separately. To estimate the
optimal model size for a leaf node of letters (e.g., multiple segments with a loop), for every letter
within the node, eleven different HMM models are created and trained, starting with a two-state
model up to a twelve-state model. Moreover, a smaller portion of data (i.e., 30%) is used for testing,
and the average recognition rates for all letters for every number of states are calculated. Ultimately,
the number of states corresponding to the maximum recognition rate (the average) is selected as the
optimal model size for all letters belonging to the considered node. Accordingly, Figure 4b shows the
achieved recognition rates with respect to the different numbers of states in each node. Letters under
Tax.1 (i.e., one segment and no loop), for example, reach the optimal performance with models of a
size of five states, and this is justifiable given their simple shape characteristics; whereas the relatively
complex shape characteristics of Tax.3 (multiple segments and no loop) and Tax.4 required models of
10 states in size to achieve the best results.

5.2. HMM Parameters Initialization

In addition to optimizing the model topology and the model size, several related works [3,29,30]
confirm the fact that proper initialization of HMM parameters (i.e., the matrix of state transitions
probabilities A, the matrix of observations probabilities B, and the vector of initial state probability
distribution πππ) is positively affecting the overall system performance. Given that we adopted
the banded left-to-right topology, matrix A is initialized according to Equation (2), which shows
the corresponding mathematical general structure. In A, the diagonal probabilities represent the
self-transitions and, those directly above the diagonal are used for the transition probabilities to the
subsequent states.

A =


a11 1− a11 0 · · · 0
0 a22 1− a22 · · · 0
...

...
. . .

...
0 0 0 · · · 1

 , where aii = 1− 1/ L
N

, (2)
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with L and N the length of the observation sequence and the model size, respectively. In Equation (2),
instead of initializing the transition probabilities with an arbitrary initial guess and subsequently
applying the Baum–Welch (BW) optimization algorithm [31], we choose to initialize the self-transitions
probabilities, so they will better represent the state duration, which, in turn, will improve the model
response for letters with a relatively big number of self-transitions, such as @, H. , �H, �H and È. Then,
the next state transition probability is defined in terms of the self-transition probability.

The second HMM parameter that should be initialized is the emission matrix B, indicating the
probability of emission of a symbol (a quantization level) when the model is in a given state. Since we
adopted discrete HMM to build the letter models and inspired by the work of [32], we assume that
every quantization level has an equal chance of being emitted by any state; hence, bij ∈ B are assigned
an equal probability value, and consequently, the entire emission matrix is constructed according to
the following equation:

B =


b11 b12 · · · b1M
b21 b22 · · · b2M

...
...

. . .
...

bN1 bN2 · · · bNM

 , where bij =
1/M, (3)

where M is the total number of quantization levels and N is the length of the observation sequence.
Finally, the vector of initial state probability πππ = {πi} that holds the probabilities of initial states is
initialized as follows:

πππ =
(

π1 π2 · · · πN

)T
, where π1 = 1, and ∀πi = 0, (4)

which implies that the process of the training will start for every model from the first state.

5.3. HMM Models’ Construction

After optimization and initialization of the HMM model parameters (λ = (πππ, A, B)),
a Baum–Welch algorithm (BW)-based approach is used to train two different kind of models [3].
The first is what we called reference models λR built using the fa feature sequence, and the second is
the so-called confirmation models λC constructed using fc feature sequences. Basically, for each letter,
in every shape, a set of training data consists of sequences of observed features O = (o1, o2, ..., oT)

used to iteratively calculate a better estimation of the model parameters. The training procedure is
iterated until convergence is reached or a pre-set maximum number of iteration is exceeded. In our
system, the training process is regarded as converged, if the inequality (Equation (5)) is satisfied,
where (ε = 0.001) is a designated tolerance value, which indicates minimum changes in the model
parameter values. Alternatively, training is considered as converged, if a maximum number of
iterations (i.e., 500) is exceeded.

N

∑
i=1

N

∑
j=1
|âij − aij| +

N

∑
j=1

M

∑
m=1
|b̂jm − bjm| < ε, (5)

where N is the model size, M the number of the quantization levels and â and b̂ are the previous
estimation of transition and observation probabilities, respectively. As a result of the training process,
a total number of 122 reference models and 122 confirmation models are built and saved to be used in
the recognition process.

5.4. Threshold Models’ Construction

The high variability of handwriting prevents a perfect segmentation of handwritten words.
Consequently, segments with almost infinite shape variations may be passed for recognition; where the
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HMM approach will calculate scores indicating how well a given segment matches the different models.
Due to the fact that HMM works by maximizing the segment likelihood over all models, there is no
way to reject an out-of-vocabulary or a meaningless segment, which in turn increase the probability of
insertion errors. As a result of weak matching between a meaningful segment and a model, a segment
might be wrongly assigned to a model, causing the so-called substitution errors. Therefore, the selection
of proper threshold values is very critical for the recognition system performance. If a very low value
is used as a threshold, we risk accepting a large number of out-of-vocabulary segments (i.e., increase
in false-positive errors), and if the threshold is set to a very high value, valid segments may be rejected
(i.e., increase in false-negative errors).

Inspired by the idea of the garbage model in speech recognition [33] and a similar idea for
gesture recognition [34], we propose an adaptive HMM-based solution for offline handwriting
recognition called the threshold model, upon which we calculate likelihood threshold values.
According to the left-to-right banded topology, each model has two types of transition probabilities,
namely self-transition and forward transition. Typically, the former represents an integral pattern
within the modeled letter shape, and the latter represents a shared transitional pattern.

Due to this trait, we built our threshold model by copying all states of all models and ergodically
connecting them all in one big model (Figure 5), so each state can be reach by all other states. In the
new model, the self-transition probabilities and emission probabilities will retain the same values as in
the original models, whereas the outgoing transition probabilities will be updated according to the
following equation:

aij =
1− aij

M− 1
, ∀j, i, and i 6= j, (6)

where aij is the transition probability from state si to sj and M is the sum of states number over all
letters. Adopting the states along with their emission probabilities and self-transition probabilities
makes them capable of representing any pattern of the modeled segments. Moreover, the ergodic
connectivity allows the model to capture any random combination of sub-patterns that may result
from the segmentation process.

@
HMMs

s1 s2 s3 sn1

H. HMMs
s1 s2 s3 sn2

H. HMMs
s1 s2 s3 sn3

ø
 HMMs
s1 s2 s3 snk

Figure 5. A plain structure of the HMM threshold model.

Interestingly, however, the likelihood of a modeled segment over the threshold model will be
always less than that calculated against its dedicated model, since the outgoing transition probabilities
are significantly reduced according to Equation (6). Therefore, we use the likelihood calculated upon
the threshold model as an adaptive threshold, i.e., a segment is assigned a model label, if and only if
its likelihood upon any model is greater than that generated from the threshold model.
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In general, two different types of threshold models (λRt and λCt ) have been constructed, the first
to be used with reference models and the second with conformation models in the recognition process,
which we will present in the next subsection.

5.5. HMM-Based Recognition

The proposed HMM-based recognition system is constructed by combining the aforementioned
HMM models at the decision level. The classifier consists of two sub-classifiers, the reference-based
classifier (λR), which is in turn composed of the dedicated models and the corresponding threshold
model (λRt ), and the confirmation-based classifier (λC), which is similarly built from the dedicated
conformation models and their threshold model (λCt ).

After the shape-based taxonomization and as an input, the classifier receives simultaneously two
different sequences of observations, OFa (anticlockwise features) and OFc (clockwise features), that are
passed to the respective classifier (reference or confirmation). Assigning a label to an observation
sequence is usually regarded as an HMM evaluation problem. Instead of using the common forward
algorithm to solve this problem, we adopt a more efficient and less-expensive alternative, i.e., the Viterbi
algorithm [31,35], which is often used to solve the HMM decoding problem. Typically, the forward
algorithm computes the probability of an observation sequence, given a model over all possible state
sequences, whereas using the Viterbi algorithm, the same probability will be estimated only using the
single most likely path of states within the model. Using the Viterbi algorithm, we first estimate the
most likely sequence of states P , then for each model, we calculate the probability P(O,P|λ), whereO
and λ are an observation sequence and an HMM model, respectively. For reference and confirmation
models, the recognition problem is regarded as a scoring problem, where dedicated letter models are
competing, and the label with the maximum probability will be picked as an intermediate recognition
result. Before reaching a definitive recognition decision, combinations of intermediate results are
performed on two levels. Firstly, an intermediate result is computed from the dedicated models and
the corresponding threshold model. Then, the final result is estimated by combining the intermediate
results of anticlockwise- and clockwise-based models. Strictly speaking, a segmented handwritten
stroke can be successfully classified, given the following: Firstly, we use the Viterbi algorithm to
compute the following intermediate logarithmic probabilities (computed values can become very
small; hence, logarithmic calculation is used to avoid arithmetic underflow errors).

• LR = log
(

max
1≤i≤NT

[P(OFa,PRi |λRi )]
)
, and LRt = log

(
P(OFa,PRt|λRt)

)
. LR is the highest

probability over all reference models, where λRi and PRi are the involved model and its associated
most likely path. LRt is the probability of the same observation sequence computed against the
reference threshold mode and NT is the number of models of considered taxonomy.

• LC = log
(

max
1≤j≤NT

[P(OFc,PCj |λCj)]
)
, and LCt = log

(
P(OFc,PCt|λCt)

)
. Similarly LC and LCt

are estimated as above except that confirmation models and confirmation threshold model are
used instead of their reference counterparts.

Secondly, and because of the fact that the confidence measure of the results typically makes the
recognition systems more useful in real-time applications [33,36], the definitive recognition results are
returned along with confidence values.

Given the above estimated probabilities for a handwritten stroke, four different outcomes are
expected depending on the following inequalities:

• if LR > LRt and LC > LCt, where both LR,LC refer to the same label (i.e letter) in reference
as well as in confirmation models, the label will be assigned to the stroke assuming complete
confidence.

• if LR > LRt and LC > LCt, yet LR,LC point out to different labels, then the label of higher
probability is assigned to the stroke, and a substitution error is reported (i.e., Serror = Serror + 1).
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• if LR ≤ LRt or LC ≤ LCt, then the label corresponding to the one with probability higher than
that of its own threshold model, will be picked as a recognition result, and an insertion error will
be reported (i.e., Ierror = Ierror + 1).

• if LR ≤ LRt and LC ≤ LCt, then the stroke will be rejected and a deletion error will be reported
(i.e., Derror = Derror + 1).

As we previously mentioned, the inputs of the recognition system are observation sequences
representing the various segmented strokes that constitute a given handwritten word; consequently,
the individual recognition outputs will be combined altogether to form the recognized word.
The overall recognition confidence will be calculated as follows:

con f = 1− 0.5Serror + 0.5Ierror + Derror

N , (7)

where Serror, Ierror are weighted at 0.5 andN is total number of segmented strokes of the word. Typically,
the recognition results of the proposed system are a sequence of UNICODE letters with an overall
confidence value; however, if a segment is regarded as out-of-vocabulary, an # will be returned instead.

6. Linear Chain CRF-Based Recognition of Arabic Handwriting

As mentioned in the Introduction, to predict a sequence of letter class labels y for a given vector
of feature observations x, most of the previous related works focused on the generatively-trained
HMM. To reduce the model complexity, HMM is based on the assumption of conditional independence
among input data, which might reduce the model accuracy [6]. CRF and its extension HCRF were
both introduced to address this shortcoming, where dependencies are assumed among labels without
presuming any kind of dependency between observation sequences [13,37,38]. In our approach,
we assume that letter class labels y are fully observed, where each yi ∈ y represents a class label of a
basic shape in which a letter may appear. By using the anticlockwise features fa and the clockwise
features fc, two different exponential linear-chain CRF models are respectively created for each node,
where every letter’s “basic” shape under the concerned node has a corresponding state within the
model. Furthermore, the proposed models are typically built using two different types of feature
functions, the transition feature functions t(yi−1, yi, x, i) and the emission feature functions s(yi, x, i).
These functions take as input an entire sequence of observations x, the current position within the
sequence i, the current class label yi and the previous class label yi−1 and output a real-valued number.

Transition functions are typically dedicated to estimating the dependency of neighboring class
labels given the value of the current position in x. The emission functions are employed to estimate real
values to represent the possibility that the current label emits the current value in x. In our approach,
to calculate the sequence overall likelihood, firstly, the transition and emission functions are assigned
the weights γγγ and µµµ, respectively, which are learned from the training data. Then, they are combined
together to form a potential function as follows:

Fθ(yi−1, yi, x, i) = ∑
f

γ f t f (yi−1, yi, x, i) + ∑
g

µgsg(yi, x, i), (8)

where θ = (γ1, γ2, ..., γN f ; µ1, µ2, ..., µNg), γi ∈ γγγ, µi ∈ µµµ and N f and Ng are the total number of
feature functions and emission functions, respectively. Finally, to convert the outputs of Fθ into proper
probabilities, Fθ is summed over all xi ∈ x, and the result is exponentiated and normalized as follows:

pθ(y|x) =
exp

(
∑n

i=1 Fθ(yi−1, yi, x, i)
)

Zθ(x)
, (9)
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where the normalization factor Zθ(x) is given by:

Zθ(x) = ∑
y

exp
( n

∑
i=1

Fθ(yi−1, yi, x, i)
)

. (10)

Additionally, to investigate the effect of the dependency range on the performance of the proposed
system and in addition to the θ parameter, the potential function Fθ is also parametrized by an ω

window size parameter. The additional parameter is defined to capture the number of previous and
subsequent observations used when predicting a class label at the current position i, (e.g., for a window
size of ω, the observation from i−ω to i + ω will be used to calculate the outputs of Fθ). To optimize
the ω size for each node, we trained and experimented with seven CRF models corresponding to seven
different window sizes (ω = 0, ω = 1, ..., ω = 6).

6.1. CRF Parameter Learning

To learn the CRF feature functions weights θ, we applied the popular gradient ascent algorithm
on fully-labeled training sequences D = {(xt, yt)}T

t=1, where xt is a sequence of observed features,
yt is the corresponding sequence of labels and T is the total number of training samples. The learning
process starts by randomly initializing θ, then for each training sample and for each potential function,
the gradient of the log probability with respect to θ is calculated as follows:

∂L(θ)
∂θ

=
T

∑
t=1

( n

∑
i=1

∂Fθ(yt
i−1, yt

i , xt, i)
∂θ

−∑
x

pθ(y|xt)
n

∑
i=1

∂Fθ(yi−1, yi, xt, i)
∂θ

)
, (11)

where L(θ) = ∑T
t=1 log pθ(yt|xt), and the first term in the gradient is the contribution of Fθ under

the true label, whereas the second term is the expected contribution of Fθ under the current model.
The well-known L-BFGSalgorithm [38,39] is used for the gradient calculation, and the convergence is
assumed to be reached within 300 iterations.

6.2. Class Label Prediction

According to the proposed CRF approach, a sequence of inputs is recognized, first by labeling
each element in the sequence through calculating the corresponding optimal Viterbi path under
the considered CRF model. Then, the most frequently-occurring class label along the sequence of
predicted labels is chosen as an intermediate prediction. As discussed at the beginning of this section,
the proposed CRF classifier consists of two sub-classifiers: the first is dedicated to predict labels for fa

features; and the other is to predict labels for fc features. Therefore, we proposed that the ultimate
recognition decision be jointly decided by the respective results of the two sub-classifiers. Moreover,
and since the number of the labels to be predicted is relatively high, simply picking the most frequent
label as the prediction is not enough for a reliable recognition. Thus, we propose a threshold of
minimum-occurrence (ε L̄) of a label L̄, to be chosen as the unique global label of the entire sequence.
Empirically, the best recognition result is achieved at an average of ε L̄ ≈ 40%; hence, ε L̄ = 40% is
chosen as the minimum-occurrence threshold.

Given a class label L̄a that occurs ka times along a sequence of to be predicted fa and a class label
L̄c that occurs kc times a long a sequence of to be predicted fc, the proposed CRF system recognizes a
segment by combining the intermediate results of the two subsystems as follows: Similar to the HMM
approach, recognition of a handwritten word is considered equivalent to the process of recognizing
each of its segments, and the attached values indicating the error possibilities are combined to form a
word-based confidence score, as in Equation (7).
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7. HCRF for Arabic Handwriting Recognition

It is commonly agreed that models with a hidden-state structure usually outperform
fully-observed ones, since they are more capable of capturing the relevant hidden structure in the
given domain [31,40]. To investigate the performance of the probabilistic discriminative models with
hidden states for offline Arabic handwriting recognition, we introduce the relatively recently-proposed
HCRF [41]. HCRF is simply an extension of the fully-observed CRF model, where the HCRF model is
equipped with an intermediate set of hidden variables h = {h1, h2, .., hn} (between the observations
and labels), globally conditioned on the observation vector x. The hidden variables or the hidden
states in our case are devoted to capturing assumed hidden patterns of observation values within the
observation sequences, which may represent specific shape peculiarities along the segment.

To optimize the number of hidden states for each HCRF model, an approach similar to that
employed for the HMM is adopted, where the number of hidden states is chosen to be proportional to
the letter shape complexity. Accordingly, the numbers of the optimized hidden states were found to be
5, 8, 10, and 10 for Node 1 to 4, respectively. Analogous to the formulation of CRF, HCRF estimates the
conditional probability of a class label y given a sequence of observations x, as follows:

pθ(y, h|x) =
∑h exp

(
∑n

i=1 Fθ(yi−1, yi, h, x, i)
)

∑y,h exp
(

∑n
i=1 Fθ(yi−1, yi, h, x, i)

) , (12)

where the denominator is a normalization factor similar to Zθ(x) in Equation 9 and the potential
function Fθ(yi−1, yi, h, x, i) computes the similarity between a class label, a sequence of observations
and a configuration of hidden states. As previously stated, HCRF is a slightly modified version of
CRF; hence, parameter learning performed similar to that of CRF, where the optimal set of weights
θ for each node is calculated upon the set of training samples D = {(xt, yt)}T

t=1 using the L-BFGS
algorithm [39]. Furthermore, convergence is also assumed to be reached within 300 iterations. As a
result of the training, seven different HCRF models are built for each node, each with different window
sizes (i.e., ω = 0, ω = 1, ..., ω = 6). Finally, label prediction, overall recognition results and the attached
confidence scores are all computed just like in the CRF approach.

8. Experimental Results

Since handwritten words samples of the IESK-arDBdatabase [2] are all annotated with
segmentation information, we used this database to train the HMM, CRF and HCRF classifiers.
A total of 800 handwritten words containing about 3500 letters were used to build letter models
and taxonomy models (in the case of CRF and HCRF). In the evaluation experiments, we used not
only 400 words images containing more than 1700 letters from the IESK-arDB database, but also
200 (manually segmentation and ground-truthed) word images with about 1000 letters from the
IFN-ENIT database [42]. The proposed systems were implemented in MATLAB and C++, where the
MATLAB HMM toolbox and the HCRF library (include CRF) were used [41]. All experiments were
performed on a Windows 7 professional and MATLAB R2013a installed on an Intel(R) Xenon(R) CPU
server machine with 2.67 GHz and 64.0 GB of memory. The recognition performance of the proposed
systems was sufficiently evaluated with respect to both letters and words.

8.1. Evaluation of HMM Recognition Performance

According to our HMM recognition approach, a segment image was first assigned to one of
four shape-based taxonomies. Then, features were extracted and tested against the corresponding
set of HMM models and the respective threshold model. As a result, a letter might have been either
recognized with a complete confidence value, recognized with a 50% possibility of a substitution error
(Serror), recognized with a 50% possibility of insertion error (Ierror) or completely rejected, and hence,
a deletion error would have been reported.
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Because of their relative distinct shapes and the absence of additional dots and diacritics,
letters such as ( è ð P X @) achieved high recognition rates, compared to letters consisting of multiple

strokes (e.g., 	P 	X �H �H).
This was mainly caused by shifting and/or fusion of dots and diacritics, which significantly

increase shape similarity and weaken the features’ discriminative power. Further, it was observed
that the letter position (i.e., the written form) inside a word affected the recognition performance,
where, for example, letters in isolation form achieved the highest recognition rate (i.e., 85.39%),
while letters written in the middle form achieved the lowest rate (i.e., 79%). Figure 6a presents the
overall letter-based performance of the proposed HMM recognition approach on the IESK-arDB and
IFN-ENIT evolution sets and further explains the amount and the type of errors occurring during the
classification process. Basically, three different types of errors have been observed. The first was the
deletion error, which occurred when a letter was not recognized, because its maximum likelihood was
less than that of the threshold model. The second type of errors was the so-called substitution error,
which was generated when a letter was confused with another one. The last error was the insertion
error, which was the result of recognizing a non-letter segment (resulting from inaccurate segmentation)
as a letter. On the IESK-arDB letter evaluation set (as depicted in Figure 6a, an average recognition rate
of 82.28% was reached, whereas 9.24%, 5.18% and 3.30% were reported as deletion, substitution and
insertion error rates, respectively. In comparison to the results achieved using IESK-arDB, the average
results obtained on the IFN-ENIT evaluation set were relatively weaker (i.e., 72.22%, 14.92%, 7.20% and
5.70%, for recognition rates, deletion errors, substitution errors and insertion errors, respectively),
which can be attributed to the fact that letter models were built using only samples from the IESK-arDB.

Instead of rejecting or recognizing a handwritten word as whole, in the proposed approach,
the word recognition problem was reformulated into tractable sub-problems of rejection or recognition
of the letters constituting the considered word. Furthermore, a confidence value (con f ∈ [0, . . . , 1])
was attached to the recognition results to describe how reliable the result was, where con f = 0 meant
a non-recognizable word, while con f = 1 implied a complete confidence in the recognition result.
Besides being helpful in the assessment of the reliability of the recognition results, attached confidence
values can also be used to initiate post-processing procedures (e.g., as spelling and grammar correction),
which may further improve the obtained recognition results.
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Figure 6. Recognition rates obtained on letters and words: (a) recognition achieved on letter samples
from two different databases along with observed classification errors; (b) percentage of recognized
words with the respective recognition reliability values.

Table 1 gives some examples of handwritten word images along with the Unicode letters and
the corresponding recognition confidence values. Figure 6b shows the achieved results when the
proposed HMM approach was tested on the evaluation sets of the IESK-arDB and IFN-ENIT databases.
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For simplicity purposes, results were projected into an axis of five different pins of confidence values,
and each result was sorted by rounding its confidence value to the nearest pin value. On the words’
level, recognition associated with confidence values higher than 0.5 was 79% and 67% for samples of
the IESK-arDB and IFN-ENIT databases, respectively. On the other hand, a low confidence of less than
0.3 was reported for 11% of samples of the IESK-arDB samples and for 20% of the IFN-ENIT samples.
We believe that such results can be improved by both further optimizing the HMM model parameters
and integrating a spelling checker as a post-processing stage.

Table 1. Examples of the inputs and the results of the HMM-based recognition approach. Notice in
the third row the third segment (from the right) is rejected; hence it is replaced with #. Furthermore,
the first segment (from the right) in the fourth row is recognized as “P” with a 50% possibility of
substitution error.

Inputs Results

Recognized Letter Confidence Value (Con f .)

	à �K
 �Ë ��K �Ó 1 − (0.5 × 0 + 0.5 × 0 + 0)/5 = 1.00

�è �Ë �K
 �Ë �Ë @ 1 − (0.5 × 0 + 0.5 × 0 + 0)/6 = 1.00

  Y� # �K. ��̄ 1 − (0.5 × 1 + 0.5 × 1 + 1)/5 = 0.60

ø P A� �k ��K � 	K P 1 − (0.5 × 1 + 0.5 × 0 + 0)/7 = 0.93

Finally, it is also important to mention that the relatively poor performance on IFN-ENIT samples
is related to several facts, such as: (i) the models were only constructed from the samples drawn from
the IESK-arDB database; (ii) IFN-ENIT samples consist very often of multiple words with excessive
elongation, which complicated the segmentation process; and (iii) the variability of IFN/ENIT was
higher than that of IESK-arDB, as more writers were involved, and diacritics such as SHADA, which is
not popular in handwriting, were added to the letter main body.

8.2. Performance Evaluation of CRF and HCRF

Instead of building a model for each class as in HMM, CRF and HCRF work by building a single
model for all to be predicted classes, where each class was represented by a single state within the
model. Accordingly and in order to keep the number of states manageable, we created CRF and HCRF
models separately for each node. Moreover, models ’training and testing were performed using the
same datasets used for the HMM approach.

Experiments were conducted to fulfil two purposes, firstly to optimize the parameters of the
respective recognition system and secondly to test the system efficiency. To optimize the window-size
parameter for each taxonomy, we trained seven CRF and seven HCRF models for each taxonomy,
where every model was trained using different window sizes (ω = 0, ω = 1, .., ω = 6). Generally,
28 CRF and 28 HCRF models were built, and by individually evaluating the performance of each
model, only the best performing CRF (one) and the best performing HCRF models were selected
for each taxonomy. Figure 7 compares the performance of CRF and HCRF and shows the effect of
modeling the dependency range by using different window sizes (ω) on Tax.2 and Tax.3 as examples.
The experimental results indicate that in the case of CRF, only incorporating the direct neighbors
(i.e., ω = 1) will positively affect performance, whereas completely ignoring neighboring elements
in the computation (i.e., ω = 0) or considering faraway elements (i.e., ω > 1) drastically decreased
the system performance. When assessing the performance of the CRF models using the letter-based
IESK-arDB test set, the best recognition rates were achieved through classifiers built with ω = 1; hence,
only models built with ω = 1 were selected as CRF representatives for the rest of the experiments.
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Figure 7. CRF and HCRF performance with different window sizes (ω): (a) performance on Tax.2;
(b) performance on Tax.3.

As for HCRF, by using the same test set, the performance improved as ω increased, reaching its
peak over all taxonomies at ω = 3, then beginning to decay beyond ω = 4. Such a tendency implies
that incorporating dependencies positively influences performance, especially when the hidden pattern
is also reasonably considered.

Table 2 summarizes the average letter-based results achieved using the best-performing CRF
(i.e., with ω = 1) and the best-performing HCRF (i.e., with ω = 3). In general, the achieved results
confirm the fact that recognition performance is inversely proportional to the number of the classes.
Therefore, the lowest recognition rates were reported when testing CRF and HCRF of node Tax.3,
with average rates of 82.10% and 83.64%, respectively. Such a modest performance can be explained
by the relatively large number and the complex shape characteristics of letters falling under Tax.3.
Contrary to results achieved on Tax.3, CRF and HCRF reached their best results of 84.88% and 87.00%,
respectively, on the test samples of node Tax.2, which had the fewest number of class labels.

Table 2. Letter-based performance of CRF and HCRs across the IESK-arDB and IFN-ENIT databases
for the four-letter taxonomies.

Dataset CRF’ Rec. Rates % HCRF’ Rec. Rates %

Tax.1 Tax.2 Tax.3 Tax.4 Tax.1 Tax.2 Tax.3 Tax.4

IESK-arDB 85.83 85.77 83.37 85.24 86.87 87.45 84.73 86.65

IFN-ENIT 83.51 83.99 80.82 82.88 84.93 86.54 82.54 84.76

Avg.% 83.95 85.56

For more insight and as an example, Figure 8 details the average recognition rates achieved on
letters falling under node Tax.2 (i.e., letters of one stroke with a loop), for both the IESK-arDB and
IFN-ENIT databases. As expected, letter forms with distinctive shapes such as isolated “ è” and “h”
were recognized efficiently, since they are less likely to be confused with other class labels and also very
often perfectly segmented (notice that “h” is classified under Tax.2, since it is often handwritten with
an upper loop). Figure 8a, shows that the CRF and HCRF approaches reached their best recognition
results (i.e., 92.13% and 93.58%, respectively) on the simple shape of letter “ è”.

On the other hand, CRF and HCRF demonstrated the weakest performance on the middle
form of letter “¨”, where 79.51% and 80.48% are respectively registered for CRF and HCRF on
samples of IESK-arDB (see Figure 8a) and 77.41% and 79.05% for samples of the IFN-ENIT database
(Figure 8b). Such a tendency can be attributed to the fact that “�ª�” is usually written with a middle
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loop, which makes it vulnerable to being confused with other letters forms, such as “�Ò�”, “���” and

“�j�”. It is also important to point out that, on average, performance varies according to the considered
letter form, where the highest recognition rates of 86.42% and 87.93% were reached on the isolated
form for CRF and HCRF, respectively. The lowest rates of 80.79% and 82.48% were obtained on the
middle form for both classifiers, respectively. This is due to the fact that letters in the isolated form are
typically separated by a white-space from the neighboring letters. This led to a perfect segmentation,
hence increasing the discrimination of the extracted features. Figure 9 summarizes the obtained results
according to the four different handwritten forms, where the HMM, CRF and HCRF classifiers all
reach their best performance on letters in the isolated form.
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Figure 8. CRF and HCRF performance on letter shapes under node Tax.2: (a) performance on
samples drawn from the IESK-arDB database; and (b) performance on samples drawn from the
IFN-ENIT database.
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Figure 9. CRF and HCRF training cost in terms of time: (a) training cost of CRF and HCRF for Tax.1
and Tax.2; (b) training cost of CRF and HCRF for Tax.3 and Tax.4.

Similar to the HMM approach, word recognition using CRF and HCRF was also performed as the
result of recognizing each stroke in the considered word. To indicate how reliable the recognition result
was, an overall confidence values was calculated and attached to the recognition results. Figure 10a,b,
details the results achieved using CRF and HCRF, respectively. For simplicity, the obtained results are
rounded and projected into five different levels of confidence. When tested, the CRF system recognized
79% of word images of IESK-arDB and 72% of word images of FIN-ENIT, with confidence values higher
than 0.5. On the other hand, 82% and 80% of samples from IESK-arDB and IFN-ENIT were recognized
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respectively with confidence values higher than 0.5 using the HCRF system. Results with confidence
values less than 0.5 were considered to be a low recognition rate (which registered 21% of IESK-arDB
samples and 28% of IFN-ENIT samples using the CRF approach and, similarly, on 18% and 20% using
HCRF). Considering the obtained recognition results, we can conclude that the HCRF recognition
approach clearly outperforms the CRF one, specially on IFN-ENIT samples, as the HCRF hidden
layer allows the model to be potentially adapted to any unseen handwriting pattern, and hence,
a performance boost of about 8% was observed.
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Figure 10. CRF and HCRF word-based performance on evaluation sets of the IESK-arDB and IFN-ENIT
databases: (a) CRF performance; (b) HCRF performance.

However, the HCRF was very expensive in terms of training costs. Figure 9b summarizes the
cost in terms of time for the two approaches on all taxonomies and further indicates that the cost
is proportional to the window size ω, the size of the considered node (i.e., the number of different
class labels) and to the number of hidden states in the case of HCRF. As an example, the process of
training HCRF model for Tax.3 with window size ω = 5 and 10 hidden states, required 10 h on average,
while the same process needed about 9 h for Tax.1.

8.3. HMM vs. CRF vs. HCRF

In order to ensure a fair comparison between the HMM, CRF and HCRF approaches, all three
approaches were trained and tested using the same training and evaluation datasets. Further,
the recognition results of the three approaches were presented on the letter, as well as on the word
level, where the same metric was used in the evaluation process. In this subsection, we compare
the performance of each approach to the rest, highlighting the strengths and weaknesses, and give
recommendations for a possible future application of each approach.

The first part of Figure 11a summarizes the average recognition rates of the three approaches
on letters. Due to the discriminative-based training and the modeling of the hidden pattern
through the hidden sates, HCRF achieved the best performance rates of 85.60%, followed by the
discriminatively-trained CRF, which achieved 84.0%, and the generative HMM, with a performance
of 77.30%. The obtained recognition rates, firstly, confirm the efficiency of the discriminative models
compared to the generative HMM and, secondly, indicate the slight improvement in performance
when the hidden states layer was introduced to CRF (i.e., HCRF). Compared to the results achieved by
several approaches in [43], who participated in the competition of the International Conference on
Document Analysis and Recognition (ICDAR 2009), our results are quite satisfactory and encouraging
for two reasons: (i) the competing recognition systems considered only the isolated form of letters;
hence, only 30 class labels (at maximum) were dealt with, compared to processing 122 class labels
in our approaches, where each letter form was modeled; (ii) our letter models were built using letter
shapes segmented directly from handwritten words rather than from isolated well-written letters,
which makes our approaches more applicable in realistic situations.
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Figure 11. Overall recognition performance and training costs in terms of time: (a) the average
performance of the three approaches for the recognition of segmented letters and for recognized words
with confidence values greater than 0.5; (b) the average time needed to model letters of one node.

The second part of Figure 11a illustrates the percentage of handwritten words that were partially
or completely recognized with confidence values higher than 0.5. The three approaches show similar
behavior as in the letter recognition case. The HCRF classifier attained the best performance of
81%, while CRF and HMM achieved a performance of 75.5% and 73%, respectively. Even though
the word-based recognition results were still unsatisfactory, especially the results with confidence
values less than 0.8, we believe the state-of-the-art spell correction solutions such as MS spell checker,
Google spell checker or Hunspell for Arabic can be used to improve performance significantly [44].

On average, CRF and HCRF showed a strong performance compared to HMM; however,
both were very expensive in terms of time and computation costs. Figure 11b shows the average
time needed for each approach to model a set of letters under one node. It is obvious that the HMM
approach was significantly time efficient compared to CRF and HCRF. Furthermore, the high time
costs of HCRF compared to CRF should also be considered and justified by important performance
improvements. We believe that training costs are an important factor that should be considered
especially in the case of the CRF and HCRF approaches. This is because of the fact that CRF and HCRF,
basically, model a classification problem by creating one model in which an individual class or label is
represented through a state. Consequently, any update such as adding or removing a class or label
would require re-training the model. This is especially true for holistic-based OCR systems, where the
OCR problem is constrained to a limited and fixed lexicon.

Finally, we should emphasize the following points: (i) Despite the fact that in our experiments,
both the HCRF and CRF approaches outperformed the HMM, we expect, however, in application-specific
small lexicon-based solutions, such as in banking and postal sectors, that the gain in performance
might not justify the choice of the expensive HCRF or CRF. Thus, in such cases, we recommend
to begin by investigating the performance of an HMM solution. (ii) For unconstrained solutions
with large or unlimited lexicons, and rather than directly deciding on an HCRF-based solution,
we strongly recommend firstly assessing the performance of the reasonably performing and less
expensive CRF-based approach.

9. Summary and Conclusions

The paper’s main objective is to compare the performance of generative and discriminative
probabilistic classification models on offline Arabic handwriting. Instead of using the well-known
sliding window-based features, the paper begins by introducing new shape description features,
which is cost-effective, yet capable of capturing discriminative shape characteristics. Moreover, due to
the fact that performance is inversely proportional to the number of classes, letters are shape-based
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grouped into four categories, which significantly reduced the class-space. As the generative recognition
approach, we trained an HMM equipped with adaptive threshold models. The threshold models
were built to allow HMM to reasonably reject out-of-vocabulary segments and meaningless patterns.
Alternatively, we introduced the relatively recently proposed discriminative classifiers, namely the CRF
and its extension, HCRF. For a fair comparison, all classifiers (i.e., HMM, CRF, and HCRF) were trained
and tested on the same datasets drawn from two different databases. Besides the achieved results on
both letter, as well as on word levels, deletion, substitution and insertion errors were reported and
discussed. Finally, the performance comparisons and discussion of the pros and cons of each approach
were also given.

Offline handwriting recognition in general and Arabic handwriting in particular is still an active
field of research, where many challenges still wait for novel ideas and much continuous effort is to be
overcome. In this context, we believe that the label-space can be further reduced, since several letters
sharing the same basic shape and are only distinguishable through diacritics. On the feature extraction and
classification levels, experimenting with different types of features, a better optimization of the involved
models’ parameters and integrating spell correction algorithms are all possible future enhancements.

Recently, deep learning has emerged as a powerful learning technique, with outstanding success
in many complex pattern recognition fields. The main obstacle that hinders efficient application
of deep learning in the field of offline handwriting recognition is the lack of comprehensive and
adequate databases needed for training. In a previous work [45], we proposed a handwriting synthesis
approach to overcome this problem. Hence and as future work, we are excited to experiment with
deep learning methods such as the Multi-Dimensional Long Short-Term Memory Recurrent Neural
Networks (MDLSTM-RNNs) [46,47], which recently became the state-of-the-art approach for sequence
labeling-based problems like handwriting recognition.
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