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Obesity is associated with the development of metabolic diseases such as type 2

diabetes and non-alcoholic fatty liver disease. The presence of chronic, low-grade

inflammation appears to be an important mechanistic link between excess nutrients and

clinical disease. The onset of these metabolic disorders coincides with changes in the

number and phenotype of macrophages in peripheral organs, particularly in the liver and

adipose tissue. Macrophage accumulation in these tissues has been implicated in tissue

inflammation and fibrosis, contributing to metabolic disease progression. Recently, the

concept has emerged that changes in macrophage metabolism affects their functional

phenotype, possibly triggered by distinct environmental metabolic cues. This may be

of particular importance in the setting of obesity, where both liver and adipose tissue

are faced with a high metabolic burden. In the first part of this review we will discuss

current knowledge regarding macrophage dynamics in both adipose tissue and liver in

obesity. Then in the second part, we will highlight data linking macrophage metabolism to

functional phenotype with an emphasis on macrophage activation in metabolic disease.

The importance of understanding how tissue niche influences macrophage function

in obesity will be highlighted. In addition, we will identify important knowledge gaps

and outstanding questions that are relevant for future research in this area and will

facilitate the identification of novel targets for therapeutic intervention in associated

metabolic diseases.

Keywords: obesity, insulin resistance, non-alcoholic fatty liver disease, macrophages, metabolism, liver, adipose

tissue

INTRODUCTION

Adipose tissue and liver contain tissue resident macrophages that are indispensable for tissue
homeostasis. Tissue macrophages can either be derived from primitive hematopoiesis in the
embryonic yolk-sac or from definitive hematopoiesis from the fetal liver or bone marrow-
derived monocytes (1). Fate-mapping studies have revealed that the majority of tissue-resident
macrophages are initially derived from the embryonic yolk-sac and maintain via self-renewal;
however, this varies amongst tissues (1). Although circulating monocytes contribute to the resident
macrophage pool in some tissues, monocyte-derived macrophages (MdMs) predominantly enter
tissues in states of tissue injury or inflammation. Cellular origin may be one factor that contributes
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to the functionality of tissue macrophages; however, these cells
display a high degree of plasticity and can readily adapt their
functional state in response to environmental cues. Indeed,
the transcriptome of resident macrophages from different
tissues is very distinct (2), despite similar cellular origins.
Thus, tissue niche is arguably the most important driver
of resident macrophage function. However, the cellular and
molecular pathways that program the resident macrophage
identity are just beginning to be understood (3, 4). Although
tissue resident macrophages share common functions, including
tissue remodeling and clearance of cellular debris, they can also
exert specific tissue function. For example, alveolar macrophages
regulate pulmonary surfactant homeostasis (5) and liver Kupffer
cells (KCs) play an important role in iron metabolism (6).
However, it is largely unclear if and how changes in the
tissue microenvironment with obesity affect tissue macrophage
function and what the consequences are for tissue homeostasis
and pathology.

Traditionally, macrophage activation has been described
by the two-dimensional M1 and M2 spectrum, i.e., classical
or alternative activation, respectively. Recently, this paradigm
has been replaced by the concept that there is a continuous
spectrum of macrophage activation that can be shaped by
tissue environment, cell programming, and activating stimuli.
In large part, this notion has arisen from data using fate
mapping and phenotyping techniques combined with systems
biology (7). Therefore, identifying macrophage subsets in
health and disease requires a combined approach based on
surface marker expression, (single cell) RNA sequencing
and functional/metabolic phenotyping. In the setting of
obesity there are extensive shifts in macrophage number
and activation state in the adipose tissue and liver and
these changes contribute to metabolic disease progression.
Macrophage lipotoxicity has been well-described and contributes
to complications of obesity such as atherosclerosis, insulin
resistance, and non-alcoholic fatty liver disease (NAFLD).
Metabolic programming of macrophages themselves can
also influence cell function and is particularly relevant to
inflammation associated with nutrient excess. However,
the interplay between macrophage cellular metabolism
and tissue niche during the development of obesity and its
complications is poorly understood. This review will address
the current knowledge on altered macrophage dynamics
in adipose tissue and liver in obesity. Furthermore, we
will elaborate on the interplay between systemic metabolic
perturbations and cellular metabolism in macrophages in the
setting of excess lipids. The potential of targeting macrophage
metabolic function to modulate obesity complications will also
be discussed.

Abbreviations: ATM, adipose tissue macrophage; CLS, crown-like structures;

DCs, dendritic cells; FAO, fatty acid oxidation; HFD, high fat diet; KCs,

Kupffer cells; LAMs, Lipid-associated macrophages; MdMs, monocyte-derived

macrophages; NAFLD, non-alcoholic fatty liver disease; NAMs, NASH-associated

macrophages; NASH, non-alcoholic steatohepatitis; OXPHOS, oxidative

phosphorylation; PPP, pentose phosphate pathway; scRNA-seq, single cell

RNA sequencing; TCA cycle, tricarboxylic acid cycle.

MACROPHAGE DYNAMICS IN OBESE
ADIPOSE TISSUE

Accumulation of Adipose Tissue
Macrophages in Obesity
Lean adipose tissue contains resident macrophages that reside
between adipocytes and alongside vascular structures. These
resident adipose tissue macrophages (ATMs) have various
roles in adipose tissue homeostasis including efferocytosis (i.e.,
removal of dead adipocytes), lipid buffering, and adipogenesis
(Figure 1) (8). In addition, resident ATMs are important for the
expansion and contraction of adipose tissue that occurs with
changes in fat mass (9). Although the origin and maintenance
of resident ATMs is less well-understood it was recently shown
that resident ATMs in healthy murine adipose tissue are
predominantly derived from embryonic yolk-sac precursors and
can self-renew via proliferation (10, 11). However, bone marrow-
derived macrophages also contribute to the resident ATM pool
(10, 12). Excess ATMs can be eliminated by type 1 innate
lymphoid cells (13), thereby maintaining a homeostatic ATM
number and potentially preventing unwanted inflammation.

In obesity, adipose tissue expands and there is a marked
accumulation of macrophages (14, 15). While in lean adipose
tissue ATMs represent about 5–10% of stromal cells, in obese
adipose tissue this increases up to 40–50% in mice (14). In
humans, a similar increase in adipose macrophage content has
been demonstrated (16–18). The expansion of macrophages with
obesity was initially thought to result from the recruitment
of Ly6Chi monocytes to adipose tissue (14). In line with this,
higher levels of monocyte chemoattractants are present in obese
adipose tissue, most notably monocyte chemoattractant protein-
1 (MCP-1, also known as CCL2) (19). In addition, labeling
studies have shown that circulating monocytes can enter obese
adipose tissue via mechanism that is largely dependent on CCR2,
the receptor for CCL2 (20). However, subsequent data has also
shown that in addition to recruitment, local proliferation of
ATMs also contributes to the increase in macrophage numbers
observed in obese adipose tissue (21, 22). Importantly, these
models are not mutually exclusive and likely both contribute
as recruited monocyte-derived cells can also proliferate. Other
local mechanisms may also contribute to increased macrophage
numbers, including increased tissue retention. This is possibly
mediated by Netrin-1 (23), which has been implicated in the
regulation of cellular migration of various cell types.

In addition to increases in number, the localization and
organization of ATMs within the tissue changes with obesity.
Whereas, in lean adipose tissue ATMs are interstitially spaced, in
the obese setting ATMs form clusters. These sites of macrophage
accumulation are known as crown-like structures (CLS), in which
macrophages appear to surround apoptotic adipocytes (24, 25).
Interestingly, local proliferation of ATMs occurs predominantly
in CLS (21). The role of thesemacrophages will be discussedmore
in the next section.

ATM Phenotype in Obesity
Macrophage phenotype also changes in obese adipose tissue.
Macrophages in murine lean adipose tissue have been
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FIGURE 1 | Overview of macrophages subsets in lean and obese adipose tissue and liver. Single-cell RNA sequencing has identified macrophage subpopulations

that accumulate in liver and adipose tissue in the setting of obesity. These obese adipose tissue macrophages (ATMs) and NASH-associated macrophages (NAMs)

are derived from infiltrating monocytes and display distinct surface markers (Trem2, CD9) and functions compared to resident tissue macrophages. In the liver, loss of

resident KCs in NASH induces the appearance of monocyte-derived KCs (mo-KCs), which likely fill the empty KC niche and may exert similar functions to resident

KCs.

characterized as F4/80+, CD11b+, CD206+, CD301+ cells.
In obese adipose tissue, CCR2+/Ly6Chi monocytes enter the
tissue where they can differentiate to ATMs and/or proliferate
(26). Early studies demonstrated that increased expression of
CD11c is a common feature of ATMs present in obese adipose
tissue, particularly in monocyte-derived cells (27, 28). Although
CD11c can be help identify recruited ATMs, this receptor is
also expressed by adipose tissue dendritic cells (DCs). Thus,
additional markers, such as the macrophage marker CD64, are
necessary to distinguish CD11c+ ATMs from DCs.

As mentioned above, the activation of state of macrophages in
obesity has often been described based upon the two-dimensional
M1 and M2 activation states (29). In this respect, a switch
from an anti-inflammatory M2 phenotype to proinflammatory
M1 phenotype was thought to occur in obese adipose tissue
(30). In support of this model, lean adipose tissue macrophages
have an “M2-like” phenotype characterized by gene expression
of anti-inflammatory genes, such as Ym1, arginase 1, and IL-
10 (30, 31), whereas F4/80+, CD11c+ ATMs express genes
ascribed to classically activated M1 macrophages, including
iNOS and TNFα (31). However, this concept was initially
challenged by data obtained from flow-sorted macrophages
revealing that upregulation of lysosomal genes was the strongest
transcriptional signal in ATMs from obese mice. Thus providing
evidence that tissue remodeling and phagocytosis may be
more relevant functions of ATMs than the release of pro-
inflammatory cytokines (32). This concept has subsequently been
confirmed by two recent studies from independent labs that
used single cell RNA sequencing (scRNA-seq) to demonstrate
substantial differences between murine and human ATMs in
obesity compared to M1 or M2 phenotypes (33, 34). In one
of these studies, the tetraspanin CD9 together with Ly6C
were identified as markers to define three distinct subsets
of ATMs; Ly6C+, Ly6C−CD9−, and Ly6C−CD9+ (33). The

Ly6C+ population of cells likely represents monocytes, whereas
the Ly6C− populations are true ATMs. Interestingly, CD11c
expression was variable within the three subpopulations but
was highest in the CD9+ macrophages. Importantly, these three
ATM/monocyte subsets displayed distinct tissue localization and
gene expression patterns. Ly6C+ monocytes had a uniform
tissue distribution outside of CLS and were adipogenic, whereas
CD9+ ATMs specifically resided within CLS, had high amounts
of intracellular lipid and expressed proinflammatory genes
(Figure 1). When CD9+ ATMs were transplanted into lean
mice they induced expression of inflammatory genes in the
adipose tissue. Interestingly, lipid-laden CD9+ ATMs were
also detected in human obese adipose tissue and localized
to CLS (33). Subsequently, Jaitin et al. also used a scRNA-
seq approach and confirmed that CD9+ ATMs accumulate in
obese adipose tissue and localize to adipose tissue CLS (34).
In this study, these macrophages were referred to as Lipid-
Associated Macrophages (LAMs) due to their location around
lipid droplets and their high expression of genes involved in
phagocytosis and lipid metabolism (Figure 1). In addition, LAMs
express high levels of the lipid receptor Trem2 and knock out
of this receptor in bone marrow cells worsened the metabolic
consequences of obesity. This observation suggests that although
these ATMs have some pro-inflammatory characteristics they
actually play a beneficial role in obese adipose tissue. This
duality of macrophage function in obesity is also supported
by data from mice lacking the enzyme NADPH oxidase 2
(NOX2) in macrophages. In these mice, loss of NOX2 diminishes
inflammatory cytokine production, but also impairs the clearance
of dead adipocytes upon high-fat diet (HFD) feeding. As a
result, myeloid-NOX2 KO mice have decreased adipose tissue
inflammation and improved glucose tolerance early in disease,
but develop profound insulin resistance and steatohepatitis upon
prolonged HFD. Thus, although ATMs in obesity have been
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viewed as pathologic, mainly due to their pro-inflammatory
potential, they also perform beneficial functions such as the
clearance of dead adipocytes and buffering of excess fatty acids
(35). This concept is important to consider when designing and
interpreting experimental results as the timepoint of analysis
can yield divergent results. Together this data supports a
model whereby CD9+/Trem2+ ATMs can play either pro-
inflammatory or reparative roles in adipose tissue based on
disease severity.

Human ATMs are characteristically CD14+/CD16− and
express markers CD68, CD163, CD204, and CD206 in lean
adipose tissue. It has been recognized that in humans, ATMs
barely express markers used forM1 andM2 classification, such as
iNOS and arginase-1 (36). Rather human ATMs in obese adipose
tissue express a mixed phenotype illustrated by expression of
both CD11c, an M1 marker, and CD206 and CD163, markers
of M2 activation (37–39). CD11c+, CD206+ macrophages have
been shown to correlate with insulin resistance (38), whereas
the number of CD11c+, CD163+ cells associated with BMI
(39). Furthermore, CD163 was found to be the only marker to
track with HOMA-IR (40). Analogous to the murine system,
human ATMs appear to simultaneously have the potential to
release pro-inflammatory cytokines including TNFα, IL-6, IL-1,
and MCP-1 while also expressing factors associated with tissue
remodeling and homeostasis such as IL-10 and TGFβ (37, 41).
As mentioned above, CD9+ ATMs resembling LAMs have been
described in humans; however, further work will be necessary
to assess whether these immune cells play similar functions in
both species.

In summary, obesity drives ATM accumulation and shifts
in gene expression that are not well-captured by the classical
M1/M2model. More in depth analysis with detailed phenotyping
of obese ATMs in both mice and humans has revealed
an alternative model of ATM activation in adipose tissue
characterized by an upregulation of cell adhesion, lipid
metabolism, and lysosomal genes. The cues that lead to ATM
activation appear to be related to metabolic factors such as free
fatty acids, lipoproteins, glucose and insulin; a state referred
to as metabolically activated macrophages (32, 35, 42). Further
understanding of the metabolic signaling events that shape
adipose tissue macrophage phenotype including their adaptive
and detrimental roles will be critical to unlock the therapeutic
potential of immune modulation during obesity.

MACROPHAGE DYNAMICS IN LIVER

Resident and Infiltrating Macrophages
In contrast to the adipose tissue, the liver contains a robust
population of resident macrophages known as Kupffer cells
(KCs). KCs represent 35% of all liver non-parenchymal cells
and are the largest tissue population of resident macrophages
in the body. They are largely derived from erythromyeloid
progenitors of the embryonic yolk sac and maintained by self-
renewal (43, 44). These resident macrophages appear critical for
liver (immune) homeostasis (Figure 1). KCs are intravascular
and line the endothelium of the liver sinusoids where they
represent a first line of defense to gut-derived pathogens,

microbes, and toxins. Together with other immune cells, KCs
are important for mediating immune tolerance, at least in part
by the expansion of regulatory T-cells (45). In addition, their
long cytoplasmic extensions can extend into the extravascular
space and allow for contact with liver parenchymal cells. Beyond
immune homeostasis, KCs can regulate the metabolism of
iron, bilirubin, as well as cholesterol (46). In mice, KCs are
traditionally characterized as F4/80hi, CD11bint, CD68+ cells.
Recently, additional surface markers have been described that
specifically identify KCs from other myeloid cells in the liver
including T-cell immunoglobulin, mucin domain containing 4
(Tim4), and C-type lectin domain family 4 member F (Clec4F)
(Figure 1) (47, 48). In addition, KCs lack expression of CCR2
and Cx3-chemokine receptor 1 (Cx3cr1) (12). MdMs are derived
from bone-marrow hematopoietic stem cells and are present
in small numbers in the liver under physiologic conditions.
Murine monocytes infiltrating the liver are characterized as
CD11b+, Cx3cr1+, Ly6c+. In addition, CCR2 is expressed
at high level and regulates monocyte influx into the liver.
Upon entry into the liver, monocytes downregulate Ly6C and
undergo a maturation process to MdMs, which is poorly
understood but appears to be dependent upon the local tissue
environment. Monocytes become a significant contributor to
the liver macrophage pool in circumstances of KC depletion or
tissue injury/inflammation (48). Upon experimental depletion
of KCs, it has been demonstrated that monocytes can give
rise to bona fide KCs which repopulate the empty KC niche
(47, 48). Although these monocyte-derived KCs resemble their
yolk sac brethren, there are some transcriptional programs that
remain distinct (42). However, it is yet clear to what extent
this differentiation process occurs with liver pathology such
as NAFLD.

Human KCs as well as MdMs are less well-characterized
and distinctive markers are lacking. KCs have often been
characterized by their expression of CD68 and CD14. However,
MdMs also express these markers. A recent study using RNA
sequencing revealed two distinct populations of CD68+ liver
macrophages in the healthy human liver, with one population
having an inflammatory gene expression pattern and the second
population was characterized by an immunotolerance phenotype
(49). These populations could be distinguished by unique
expression of MARCO in the immunotolerance population.
More recently scRNA-seq data from humans with cirrhosis
suggests that KCs also express CD163 and Tim4 in addition to
MARCO (50), a phenotype that is analogous to KCs in mice (47).
However, the ontogeny of these liver macrophages and whether
these macrophage subtypes include MdMs in addition to true
KCs is not known. The markers for monocytes and MdMs in the
human liver are less well-understood, but include CCR2, Cx3cr1,
SA100A2, and CD14 (50). Ongoing investigation will continue
to establish the relationship between murine liver macrophage
populations and their human counterparts.

Macrophages in Obesity and NAFLD
Obesity manifests in the liver as non-alcoholic fatty liver
disease (NAFLD). Although it was initially tempting
to speculate that similar inflammatory responses might
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occur in both adipose tissue and liver with obesity, it is
now apparent that these organs respond in very different
ways to lipid stress. NAFLD is characterized by excessive
hepatic lipid accumulation, which can result in hepatocyte
injury and cell death. This can trigger an inflammatory
response and progression to non-alcoholic steatohepatitis
(NASH), advanced fibrosis, cirrhosis, and hepatocellular
carcinoma (51). Macrophages are important mediators of
the inflammatory response which underlies the progression
of NAFLD to NASH. Dietary models of NAFLD in mice
have demonstrated an increase in liver macrophages
number during NAFLD development (52, 53), but this
finding has not been consistent with many studies also
reporting no increase in total macrophage count (54, 55).
Regardless, an important role of liver macrophages in NASH
development has been demonstrated by depletion of liver
macrophages by clodronate or gadolinium chloride, which
have been shown to attenuate hepatic steatosis and decrease
inflammation (53, 56–58).

Numerous studies have suggested macrophages take on a
proinflammatory phenotype in NAFLD, which is likely mediated
by a variety of environmental signals. To this end it has been
shown that excessive accumulation of toxic lipids by KCs in the
steatotic liver led to dysregulated lipid handling and increased
pro-inflammatory gene expression (59). Inflammatory activation
of KCs can also be regulated by danger signals released from
hepatocyte damage and death (46) and by increased bacterial
products from the gut due to gut dysbiosis in obesity (60). In
addition to resident KCs, CCR2+, Cx3cr1+, Ly6Chi monocytes
infiltrate the liver in experimental models of NASH and appear to
give rise to “pro-inflammatory” macrophages (61). However, in
many of these earlier studies KCs could not be distinguished from
MdMs and therefore the specific roles of resident vs. recruited
cells in liver inflammation is not well-defined.

CCR2 is a critical chemokine receptor for monocyte
recruitment into tissue. While genetic or pharmacologic
disruption of CCR2 appears to attenuate liver inflammation
with obesity this has not been consistent across CCR2 loss
of function models (62–64). As such, the role of resident vs.
recruited cells in NASH progression has remained controversial.
In addition to CCR2, the chemokine receptor CXCR3 has also
been described to play a role inmonocyte recruitment (65). CCL2
can be secreted by KCs, hepatocytes, stellate cells and sinusoidal
endothelial cells to facilitate monocyte recruitment. KC depletion
by clodronate suppresses the infiltration of monocytes into
the liver, potentially due to decreased CCL2 release (53, 66);
however, these studies are challenging to interpret as clodrolip
also depletes monocytes directly. Liver sinusoidal endothelial
cells also upregulate VCAM-1 in response to inflammation
thereby facilitating adhesion of monocytes (67). Related to this, it
has been reported that under lipotoxic stress hepatocytes release
extracellular vesicles which are enriched with the integrin ITGβ1,
a VCAM-1 ligand, which subsequently enhances monocyte
adhesion to sinusoidal endothelial cells (68).

Monocyte infiltration is also an important feature of human
NASH and is especially seen in patients with more severe disease
states and advanced liver fibrosis (69, 70). Similar to what has

been described in the adipose tissue, a key feature of both human
andmice NASH is the presence of macrophage aggregates termed
crown-like structures (64, 71). These macrophage aggregates
appear to surround dead or dying hepatocytes with large lipid
droplets and colocalize with areas of fibrosis and activated stellate
cells (64). The number of CLS positively correlates with the
extent of fibrosis, suggesting that these structures may serve as
hot spots for stellate cell activation (71). Thus, it is likely that
the interplay between liver macrophages and hepatic stellate cells
activation contributes to the tissue fibrosis observed in NASH
(72–74). However, it remains unclear what drives the formation
of hepatic CLS, what cells contribute to these aggregates, and
what functions these cells have in the progression of NASH and
fibrosis development.

On the other hand, macrophages with an anti-inflammatory
and restorative phenotype have been demonstrated to reduce
NASH severity (75–77). KCs themselves can promote anti-
inflammatory responses including the secretion of IL-10, which
can trigger apoptosis of inflammatory macrophages (75).
Furthermore, infiltrating macrophages can adopt a restorative
phenotype characterized by high Cx3cr1 expression and
expression of genes involved in matrix remodeling (74). In
human NASH increased expression of markers associated with
alternative activation of macrophages has also been detected (78).
Thus, similarly as described for adipose tissue, it is likely that liver
macrophages perform beneficial roles in an attempt to restore
liver injury.

Although it is clear that both resident and monocyte-derived
macrophages play an important role in the progression of
simple steatosis to NASH, the dynamics and function of these
distinct macrophage subsets in the pathogenesis of NASH is
unclear. The heterogeneity amongst MdMs themselves also
appears to be more complex than appreciated. In part this
may be related to the use of suboptimal macrophage markers
and the assumption that all resident macrophages are F480hi,
CD11bint while MdMs are CD11bhi, F4/80int. In support of
this concept, it was recently reported that resident KCs are
depleted upon MCD-diet feeding even though F4/80hi cells
remain constant due to influx of MdMs. Moreover, this study
also revealed that one potential fate of monocyte-derived
cells is to become monocyte-derived KCs (mo-KCs, Figure 1)
(79). More recently, scRNA-seq analysis in HFD fed mice
(amylin diet) uncovered a unique subset of Trem2+, CD9+,
Gpnmb+ macrophages in the liver referred to as NASH-
associated macrophages (NAMs, Figure 1). Gene expression
analysis points toward a potential role of NAMs in the clearance
of apoptotic and lipid debris as well as tissue remodeling (80).
Interestingly, NAMs display some overlapping surface markers
and transcriptional programs with LAMs. Whether these cells
function in a similar way as LAMs in tissue remodeling is
not known.

Future studies will be required to dissect the dynamic shifts
that occur in macrophage subsets during NASH pathogenesis. In
addition, the specific cues that inducemacrophage polarization in
NAFLD are not completely understood and the interplay between
metabolic cues and macrophage function may be crucial for
NASH progression.
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The Role of Macrophages in the Interaction
Between Liver and Adipose Tissue
Chronic oversupply of nutrients to the adipose tissue can
eventually lead to adipocyte dysfunction and an inability to store
these excess nutrients. This can evoke increased ectopic lipid
deposition in other tissues including liver, skeletal muscle, and
heart (81). ATMs can directly increase adipose tissue lipolysis
through the release of specific cytokines, including TNFα, IFN-
γ, and IL-1β (82, 83) and thereby enhance the lipid flux to
the liver. Further evidence for adipose-liver interactions comes
from a recent study demonstrating that acute adipocyte death
induces rapid CCR2+ macrophage infiltration into the adipose
tissue. These macrophages enhance lipolysis via modulation of
epinephrine and norepinephrine levels. Interestingly, this wave
of adipocyte death also causes acute secondary liver injury which
is dependent upon CCR2+ macrophage infiltration into the
liver (84). Although fatty acids serve as one important mediator
that links adipose tissue and liver, the crosstalk between these
tissues goes beyond lipids. In addition, obese adipose tissue
secretes a range of other nutrients, adipokines, and inflammatory
molecules which can promote pathogenic events in the liver (85).
This is exemplified by leptin, an adipokine that signals via hepatic
macrophages to induce hepatic stellate cell activation and liver
fibrosis (86).

Inflamed adipose tissue has also been associated with the
development of NASH. Moreover, there is increasing evidence
that adipose inflammation is directly linked to liver pathology.
For example, surgical removal of epididymal adipose tissue
in HFD-induced obesity was shown to reduce circulating
inflammatory mediators and attenuate NASH progression (87).
In addition, ATM expansion and expression of inflammatory
mediators precedes hepatic inflammation in HFD-induced
obesity, suggesting that macrophage responses in the adipose
tissue may be upstream of NASH development. In line
with this concept, data from a recent study demonstrated
that transplanting adipose tissue from obese mice increased
liver macrophage content and NASH severity compared to
adipose tissue from lean mice. This response was attenuated
when ATMs were depleted from the adipose tissue prior to
transplantation (88). Although most studies have focused on
how adipose inflammation can modulate the pathogenesis of
NASH, the interaction between liver and adipose inflammation
is likely reciprocal. In fact, it has been demonstrated that
preventive depletion of liver macrophages inhibits adipose tissue
inflammation upon HFD feeding (89). The interplay between
adipose and hepatic inflammation is likely also relevant in
human NASH. This is supported by data showing that the
expression of several inflammatory mediators, including TNFα,
IL-8, and CCL-3, as well as ATM number in the adipose tissue is
associated with NAFLD and NASH severity and liver fibrosis in
patients (90–92).

Future studies investigating the crosstalk between the
macrophages in liver and adipose tissue during obesity are
anticipated to reveal additional mediators linking adipose tissue
inflammation and NASH. In particular, the role of macrophage-
secreted exosomes and their cargo are now recognized as
importantmediators of crosstalk betweenmacrophages in distant

tissues as well as between macrophages and parenchymal cells. In
this respect, ATMs from obese murine adipose tissue have been
shown to secrete exosomes containing miRNA-29a and miRNA-
155 (93, 94). These secreted exosomes are taken up by adipocytes
but also by other tissues, including liver and skeletal muscle. This
was shown to result in impaired glucose tolerance and decreased
insulin sensitivity. Thus, exosome secretion may be an important
paracrine and autocrine signal by which tissue macrophages
can influence local and systemic metabolism. In addition to
macrophage-derived exosomes, these vesicles are also secreted
by adipocytes and hepatocytes. Importantly, adipocyte-derived
exosomes have been shown to affect macrophage activation and
polarization, with predominantly an increase in inflammatory
cytokine production (95, 96). In addition, when exosomes
isolated fromVAT of obese patients were applied to hepatocyte or
hepatic stellate cell lines in vitro, uptake of these vesicles induced
an upregulation of the TGFβ signaling pathway and expression
of genes related to extracellular matrix deposition (97). This
indicates a possible direct role of adipose tissue-derived exosomes
in NASH progression, although future studies will be needed to
determine the extent to which this occurs in vivo. As studies
have shown that obesity is associated with increased circulating
extracellular vesicles, this may be of particular importance in
obesity and the development of its metabolic complications (98).
Dissecting the molecules and pathways involved in inter-organ
crosstalk in the metabolic syndrome has the potential to drive the
discovery of new therapeutic targets.

METABOLIC REPROGRAMMING OF
MACROPHAGE FUNCTION

Glucose Metabolism
Increased glucose uptake and upregulation of glycolysis,
the so-called glycolytic switch, is associated with pro-
inflammatory macrophage activation and is important for
classical inflammatory macrophage effector functions including
phagocytosis, pro-inflammatory cytokine production and
reactive oxygen species (ROS) generation (99, 100). The rapid
increase in glucose uptake in activated macrophages is facilitated
by upregulation of glucose transporter 1 (GLUT1). In some
instances, GLUT1 overexpression has been shown to increase
glucose metabolism and augment the secretion of inflammatory
mediators and ROS production (100). However, these findings
have not been recapitulated in primary macrophages where
GLUT1 overexpression does not augment inflammatory cytokine
release, despite increasing glucose uptake and utilization (101).
Thus, glucose metabolism and macrophage inflammation are
related but dissociable responses, suggesting the interplay
between glycolysis/glycolytic metabolites and inflammatory
signaling pathways ultimately shapes cell function. In the context
of metabolic disease, GLUT1 expression is upregulated in
both adipose tissue and liver of HFD-fed rats and colocalizes
specifically with macrophages present in CLS in both organs
(100). Whether perturbations of GLUT1 impact ATM-mediated
functions and/or insulin resistance is not known.

The NLRP3 inflammasome has recently been recognized as
an important driver of inflammation in many complications
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of obesity including atherosclerosis, insulin resistance, and
NASH (102, 103). In macrophages, NLRP3 complex assembly
and IL-1β transcription are both sensitive to perturbations in
glucose metabolism. As an example, hexokinase-1-dependent
glycolysis promotes NLRP3 inflammasome activation and IL-
1β secretion, a response mediated by mTORC1 (104). In
addition, the transcription factor Hypoxia-inducing factor 1-α
(HIF1α) appears to be another important link between glucose
metabolism and NLRP3 inflammasome regulation. In activated
macrophages HIF1α is stabilized by the tricarboxylic acid cycle
(TCA) cycle intermediate succinate, which accumulates in part
due to increased glycolytic flux (105, 106). Subsequently, HIF-
1α induces the expression of GLUT1 and other glycolytic genes
(107) and may directly upregulate gene expression of IL-1β
via PKM2 (105, 108, 109). The relevance of this pathway
in metabolic disease is supported by data demonstrating that
mice lacking HIF1α are protected against HFD-induced adipose
tissue inflammation (110). Moreover, there is evidence that
HIF-1α is upregulated in macrophages in both mice and
humans with NASH (111). In addition to the inflammasome,
glycolytic flux can also influence the production of other pro-
inflammatory cytokines, such as TNFα. This can occur via the bi-
functional enzyme glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), which negatively regulates TNFα expression by
inhibiting its translation. As such, when the rate of glycolysis
increases GAPDH is recruited for its metabolic function and
the break on TNFα translation is released (112). Together,
these data demonstrate a key role for glycolytic enzymes
and intermediates in the regulation of macrophage-mediated
inflammatory responses.

Upregulation of glucose uptake also feeds substrate into the
pentose phosphate pathway (PPP) which is also upregulated in
inflammatory macrophages (113). The PPP is important for the
generation of amino acids and ribose for protein and nucleotide
synthesis as well as NADPH, which is essential for NADPH
oxidase-mediated ROS production, fatty acid synthesis, and
generation of glutathione. The regulation of the PPP is mediated
by carbohydrate kinase-like protein (CARKL) in primary murine
and human macrophages. CARKL is suppressed in response to
LPS activation, resulting in increased flux through the PPP (114).
To date the inflammatory and metabolic effects of inhibiting
flux through the PPP in ATMs or liver macrophages is less
well-understood.

Although increased glycolytic flux is a hallmark of
inflammatory macrophage activation, glycolysis is also required
for alternatively macrophage activation. Mechanistically, it has
been shown that IL-4 and M-CSF activate mTORC2, which
subsequently upregulates glycolysis via IRF4 (115). However,
unlike inflammatory macrophages where the products of
glycolysis are frequently channeled away from the mitochondria,
in alternative activation glycolysis supports the TCA cycle and
mitochondrial oxidative phosphorylation (OXPHOS). In line
with this notion, the inhibition of glycolysis with 2-deoxyglucose
(2-DG) reduced OXPHOS and attenuated early M2 marker
expression in response to IL-4 (116). However, there is also
evidence that 2-DG can decrease OXPHOS directly which may
also explain some of these findings (117).

In summary, although glucose metabolism is associated
with classical inflammatory macrophage activation, it is also
required for alternative macrophage activation. Thus, selective
modulation of glucose metabolism is a more viable approach
for disrupting macrophage inflammation. Further investigation
will also be necessary to unravel the complex interplay between
macrophage glucose handling and the hyperglycemia that
frequently exists in states of obesity and insulin resistance.

Lipid Metabolism
In contrast to the stimulation of glycolytic metabolism that
occurs in inflammatory macrophages, increased lipid uptake and
oxidation is a hallmark of alternative macrophage activation
induced by IL-4. In this system, IL-4 increases mitochondrial
fatty acid oxidation (FAO) and this metabolic response appears
to be necessary for macrophages to acquire an M2 phenotype
(118). This is supported by data demonstrating that inhibiting
FAO or OXPHOS with compounds like etomoxir, oligomycin,
or the mitochondrial uncoupler FCCP, attenuates the expression
of classic M2 polarization markers (e.g., arginase, YM1, Rentla)
(118, 119). Mechanistically, the metabolic reprogramming
induced by IL-4 is dependent upon the transcriptional effects of
STAT6 and PGC-1β (119). The nuclear receptor transcription
factors PPARγ and PPARβ/δ have also been reported to
contribute to the upregulation of genes involved in lipid uptake,
FAO, and mitochondrial OXPHOS. In general, the source of fatty
acids to fuel this response derives from exogenous triacylglycerol
substrate, which is taken up via scavenger receptor CD36
and broken down by lysosomal acid lipase (LAL)-mediated
lipolysis (118). In line with this, attenuation of lipolysis by
orlistat decreases oxidative respiration and reduces alternative
macrophage polarization. Moreover, orlistat or knockout of LAL
has been shown to decrease oxidative respiration and reduce
alternative macrophage polarization. Although exogenous fatty
acids appear to be the predominant source of lipid, triglyceride
derived from fatty acid synthase can also be used to fuel
OXPHOS in some circumstances. Despite strong evidence that
IL-4 mediated alternative activation of macrophages requires
FAO, whether these lipid metabolic pathways are as important
for reparative macrophage phenotypes in vivo is not known.

Other lipid metabolic regulators that have been shown to
influence macrophage inflammatory function include fatty acid
transporter protein FATP1 and FABP4/5 (120, 121). Deletion
of FATP1 in cultured macrophages induces a metabolic switch
toward glycolysis and primes macrophages for proinflammatory
functions. In vivo, loss of FATP1 in bone marrow derived
cells was associated with increased HFD-induced weight
gain, glucose intolerance, and adipose tissue inflammation.
In contrast, deletion or inhibition of FABP4 or FABP5
attenuates lipid-induced inflammation and improves metabolic
phenotypes in vivo (121). Further mechanistic links between
FAO and macrophage function came from experiments in which
macrophages were engineered to overexpress carnitine palmitoyl
transferase (CPT)-1. In this system, CPT1 overexpression
increased FAO, decreased triglyceride content and dampened
pro-inflammatory cytokine production (122). Together these
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data indicate that modulating lipid handling has potential as a
strategy to shift macrophage function in obesity related diseases.

The regulation of cellular lipid metabolism is also controlled
by several key nuclear receptor transcription factors and their co-
activators. Peroxisome proliferator-activated receptors (PPARs)
act as lipid sensors and modulate both lipid storage and
utilization (123). Both PPARβ/δ and PPARγ have been shown
to influence macrophage polarization, as ablation of either
inhibits IL-4 stimulated alternative macrophage activation (76,
124, 125). With HFD feeding, myeloid-specific PPARγ knock-
out mice have increased weight gain, adiposity, and glucose
intolerance, which was paralleled by decreased expression of
classic alternative macrophage activation markers and increased
adipose tissue inflammation (124). Myeloid-specific deletion of
PPARβ/δ also resulted in increased weight gain, adiposity, and
insulin resistance upon HFD feeding. In both liver and adipose
tissue, proinflammatory gene expression was increased and M2
marker expression reduced (125). In addition, steatosis in the
liver was more severe in the knockout animals. Together this
data supports the idea that targeting lipid metabolic pathways
by enhancing PPAR activity in macrophages could be utilized
as a strategy to modulate obesity complications. It is also worth
noting that disrupting PPAR activity in macrophages may also
accelerate the development of obesity itself.

Macrophages also express other transcription factors that
regulate cholesterol and lipid metabolism including liver X
receptors (LXR), CCAAT enhancer binding proteins (C/EBPs),
and sterol regulatory element binding proteins (SREBPs). Of
interest, KCs express high levels of LXRα, which acts as
cholesterol sensor and regulates intracellular cholesterol levels by
expression of cholesterol efflux transporters ABCA1 and ABCG1
(126, 127) as well as apolipoproteins as ApoE and ApoC (128,
129). Interestingly, LXR is necessary for the maintenance of KCs
in the liver (130). In vitro studies have shown that ligands of LXR
receptors inhibit expression of inflammatory mediators as iNOS,
COX-2, MMP-9, and IL-6 (131) and can upregulate expression
of arginase II which potentiates anti-inflammatory effects (132).
SREBPs are considered master regulators of cholesterol and
lipid synthesis. In general, they coordinate the balance between
lipid uptake and de novo lipogenesis/cholesterol biosynthesis.
Besides their role in lipogenesis, SREBP1a enhances expression
of nlrp1a, a key component of inflammasome activation and IL-
1β release in macrophages in vitro (133). Deletion of SREBP-
1a in cultured macrophages results in increased inflammatory
gene expression following TLR4 stimulation, likely due to a
lack of anti-inflammatory unsaturated fatty acid production
(134). These findings argue that LXRs and SREBPs link lipid
metabolism to macrophage inflammatory function; however,
the role of these pathways in obesity-related inflammation is
less clear.

C/EBPα and C/EBPβ are also widely expressed in
macrophages and have been implicated in regulating glucose and
lipid metabolism (135). C/EBPβ appears to promote alternative
macrophage activation in skeletal muscle macrophages (136).
Germane to this finding, myeloid-specific knock-out of C/EBPα

led to increased adiposity in chow-fed mice, indicating an
important role of macrophage C/EBPα in energy homeostasis

under physiological conditions (137). Upon HFD, C/EBPα

deletion in mice protected against diet-induced insulin resistance
mainly due to preserved skeletal muscle insulin sensitivity.
Macrophage polarization markers revealed both M1 and M2
markers to be downregulated (137). Similarly, HFD-fed mice
transplanted with bone-marrow lacking C/EBPβ had reduced
expression of inflammatory markers and decreased macrophage
content in adipose tissue. This inflammatory phenotype was
associated with improved insulin sensitivity. Of relevance,
C/EBPβ can induce the expression of PPARγ and LXRα in
primary macrophages; however, it is unclear if this is related
to the detrimental metabolic effects observed in C/EBPβ KO
mice (138).

Recently, the requirement of FAO for alternative macrophage
activation has been questioned. Primary macrophages lacking
CPT2 have reduced rates of FAO, but have no defect in IL-
4-induced alternative activation (139). In addition, blocking
FAO oxidation by use of etomoxir does not affect IL-4-induced
differentiation of primary human macrophages. In fact, in some
circumstances FAO can potentiate pro-inflammatory responses
including inflammasome activation. In this respect, FAO via
CPT1 can promote activation of the NLRP3 inflammasome
via effects on by NADPH oxidase 4 (NOX4) (140). This can
be stimulated by fatty acids as palmitate and may require
mitochondrial ROS production (141, 142). In line with this
data, deletion of PPARγ in macrophages leads to a reduction
IL-1β production and release in response to NLRP3 activators,
an effect mediated by IFN-β (143). Thus, FAO and resultant
metabolic byproducts play a complex role in the regulation of
macrophage reparative and inflammatory functions. Together
these data demonstrate a multifaceted relationship between lipid
metabolism and inflammation in metabolic disease. Regardless,
these proof-of-concept studies provide evidence that lipid
metabolic pathways may be viable targets for modulating
macrophage function.

TCA Cycle
In addition to enhanced glycolysis, a disrupted TCA cycle is an
important feature of classically activated macrophages (113).
The “broken” TCA cycle results in decreased production
of α-ketoglutarate and an accumulation of citrate and
succinate. Citrate accumulates as a result of reduced isocitrate
dehydrogenase (Idh1) expression in inflammatory macrophages.
Toll-like receptor stimulation also induces the expression of
the mitochondrial citrate carrier (CIC) in macrophages. CIC
regulates citrate efflux from mitochondria to cytosol where it can
be used for de novo lipogenesis, production of proinflammatory
lipid mediators (prostaglandin E2) and synthesis of NO (144).
Citrate is also converted to acetyl-CoA by ATP-dependent citrate
lyase (ACLY) and this can enhance pro-inflammatory gene
expression via histone acetylation (145).

Pyruvate dehydrogenase kinase (PDK) has been postulated
to be important for M1 polarization as it reduces entry of
carbons from glycolysis into the TCA cycle by inhibiting pyruvate
dehydrogenase (PHD). Indeed, pharmacological inhibition of
PDK2 and−4 blocks inflammatory activation of cultured
macrophages (146). Myeloid-specific ablation of PDK2/4 using
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a bone-marrow transplant approach led to reduced weight
gain, improved glucose tolerance and reduced adiposity and
liver fat when fed a HFD. In addition, HFD-induced ATM
accumulation as well as adipose tissue inflammatory expression
was diminished. On the contrary, recent data has also shown
that glucose-derived pyruvate conversion to mitochondrial
acetyl-CoA by pyruvate dehydrogenase (PHD) is maintained
during LPS stimulation and is important for pro-inflammatory
macrophage activation as it fuels citrate production (147).

Citrate can also serve as a precursor for itaconate, which is
produced by the enzyme immunoresponsive gene 1 (Irg1). This
metabolite subsequently inhibits succinate dehydrogenase (SDH)
and elevates succinate levels (148, 149). Succinate stabilizes HIF-
1α, which as mentioned above upregulates IL-1β production
(105). Moreover, SDH is also a subunit of complex II of
the electron transport chain, where oxidation of succinate is
coupled to reduction of ubiquinone. Increased oxidation of
succinate by SDH results in production of mitochondrial ROS,
also supporting HIF-1α stabilization and inflammatory gene
expression (150). In more recent data it has been shown that
succinate is also a ligand for the succinate receptor SUCNR1.
This is relevant as activated macrophages can secrete succinate,
which influences macrophage polarization in both an autocrine
and paracrine manner via SUCNR1 (151, 152). The importance
of this signaling pathway was demonstrated by creating mice
with a myeloid-specific knock-out of SUCNR1. These animals
were more susceptible to diet-induced obesity and had worsened
glucose tolerance (152). This was paralleled by an increased
inflammatory molecular signature in ATMs of these mice,
suggesting that extracellular succinate might play a role in
dampening inflammatory responses. Analysis of WAT explants
from lean and obese subjects also showed this succinate-
SUCNR1 pathway was disturbed in obese human WAT. In
summary, TCA cycle metabolites are important determinants
of metabolic programming through their allosteric properties
and their ability to directly activate signaling pathways. This

“metabokine” function of TCA intermediates has been proposed
to be an important regulatory mechanism of inflammatory
responses (153). Harnessing the signaling properties of TCA
cycle intermediates holds promise as a tool for modulating
macrophage metabolism in disease.

Amino Acid Metabolism
Glutamine is one the most important amino acids to
fuel macrophage activation. Interestingly, glutamine has
different metabolic fates in M1 and M2-like macrophages.
In inflammatory macrophages, glutamine-derived glutamate
fuels in to the TCA cycle for succinate production via GABA
production (105). Hence it contributes to the effects of succinate
accumulation on pro-inflammatory macrophage polarization.
Furthermore, glutamine has been shown to enhance macrophage
lipotoxicity, as removal of glutamine from the nutrient
microenvironment attenuates macrophage cell death and
inflammasome activation upon exposure to excess saturated fatty
acids (154). M2/IL-4 stimulated macrophages also have increased
glutamine levels, which occurs predominantly via the activity of
glutamine synthetase (GS) (155). Glutamine also contributes to
M2 polarization via glutamine-derived α-ketoglutarate, which
is essential for FAO as well as epigenetic programming during
alternative macrophage activation (156). Thus far, most studies
on the effects of glutamine on the polarization of macrophages
have been limited to cultured murine macrophages. Although
patients with obesity and diabetes have been shown to have
reduced serum glutamine levels, it remains to be further studied
if and to what extent glutamine metabolism affects tissue

macrophage polarization in both mice and humans (157).
The amino acid L-arginine also has divergent roles in

macrophage polarization. L-arginine is an essential precursor

for the production of NO via iNOS, which is induced

during inflammatory macrophage activation. On the other

hand, metabolism of L-arginine by arginase is associated with
alternative macrophage activation and appears important for

FIGURE 2 | Modulation of obesity and metabolic disorders by tissue macrophages. Tissue macrophages can affect obesity and the development of associated

metabolic disorders by affecting energy intake and energy expenditure via brain, brown adipose tissue, and skeletal muscle. Alternatively, tissue macrophages

modulate development of metabolic disorders in obesity by regulating adipose tissue and liver metabolism and tissue remodeling as well as by contributing the

systemic inflammation. Metabolic reprogramming via targeted therapeutics may alter macrophage activation and subsequently improve metabolic disease.
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FIGURE 3 | Metabolic reprogramming of tissue macrophages in obesity. In

obesity, tissue macrophages are exposed to an excessive and altered nutrient

environment and receive a variety of danger signals from damaged

parenchymal cells. This can rewire the metabolic programming of tissue

macrophages, altering the activation state of these cells. Although these

macrophages may exert protective functions as shielding and clearance of

apoptotic cells, they can also release local and systemic mediators that can

further exacerbate metabolic disease.

tissue repair (158). It is likely that other amino acids can
modulate macrophage biology and this is an area that will require
further investigation.

Macrophage Regulation of Obesity and
Insulin Resistance
As reviewed above, targeting important metabolic pathways in
macrophages has the potential to alter not only macrophage
function, but also systemic metabolism. However, the exact
mechanisms by which tissue macrophages regulate whole-body
metabolism are largely unknown and this remains an important
knowledge gap in the field. As discussed above, it is clear that
macrophages can interact with parenchymal cells in the adipose
and liver in ways that modulate systemic glucose homeostasis
(Figure 2) (159). In addition, the release of pro-inflammatory
cytokines from metabolically activated macrophages can also
promote skeletal muscle and hepatic insulin resistance. However,
there is also evidence that whole-body metabolism can be
modulated via inflammatory signaling that occurs locally in the
brain (Figure 2). As an example, it was recently shown that HFD
causes accumulation of pro-inflammatory microglia in the brain
of mice. Moreover, pharmacologic or genetic disruption of NF-
κB-dependent microglial activation decreased hyperphagia and
reduced diet-induced obesity (160). The exact pathways through
which microglia influence energy balance are unclear, but could
be related to changes in appetite, activity level, or sympathetic
nervous output. Of importance, sympathetic output regulates
energy expenditure in part by modulating brown adipose
tissue (BAT) activity. Tissue resident macrophages in BAT also

contribute to themetabolism of catecholamines, which influences
thermogenesis and energy homeostasis (Figure 2) (161).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Obesity exposes tissue macrophages to a microenvironment that
consists of excess nutrients as well as stress signals from damaged
and apoptotic parenchymal cells. These environmental cues
can activate macrophages and rewire their cellular metabolism
in ways that may promote maladaptive inflammation and
macrophage dysfunction. Macrophage activation may initially
be beneficial to facilitate the removal of apoptotic cells,
clear excess lipids, and restore tissue homeostasis. However,
aberrant metabolic reprogramming of macrophages in the
setting of sustained lipid-induced tissue injury likely provokes
pathologic macrophage phenotypes. When this occurs the
macrophage secretome may act locally and/or systemically to
drive metabolic disease development (Figure 3). This concept
is particularly true in tissues that are faced with a high
metabolic burden in obesity, such as adipose tissue and liver.
In order to harness the therapeutic potential of re-programming
macrophage metabolism for human disease, it will be essential to
dissect themechanistic pathways by whichmacrophages improve
or worsen obesity-related complications.

Although it is established that perturbing macrophage cellular

metabolism can improve metabolic disease phenotypes, the

precise cellular and molecular details remain poorly understood.
In part this is due to the fact that much of the data in this
field comes from knockout or overexpression of key metabolic
genes in the context of in vitro models or non-selective myeloid
knock-out systems. Ultimately, elucidating the heterogeneity of
macrophage populations in different organs and their relation to
metabolic disease will allow more specific therapeutic targeting.
However, our understanding of this has been limited by the lack
of tissue-specific macrophagemarkers to identify andmanipulate
resident macrophages in different tissues. As such, most studies
have used generic myeloid knock-out models, such as LysM-Cre
or bone-marrow transplantation. The identification of unique
markers of tissue macrophages through the use of sophisticated
unbiased approaches such as scRNA-seq, has the potential
to open up new avenues to investigate the role of distinct
macrophage subsets in tissue and whole-body metabolism. As
an example, it has recently been shown that liver resident KCs
uniquely express the surface receptors Tim4 and Clec4f. This
discovery facilitated the development of Clec4f-Cre transgenic
mice, which will enable the study KC specific functions in liver
pathology and metabolic disease (130).

Another challenge to advancing this field relates to the

impact of variations in genetic background, microbiota

composition, and research environment on phenotypes in

metabolic disease research (162, 163). As a consequence, it is

commonplace that genetic and pharmacologic disruption of

inflammatory/metabolic pathways in macrophages produce

contradictory results. In order to minimize the influence of

these variables it is critical to utilize littermate controls and to
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co-house wild type and knockout mice in the same cage. The
same principle holds true for pharmacologic intervention where
mice from both treatment groups should be mixed together in
cages. These interventions will reduce the influence of gene-
environment interactions that confound data interpretation. In
addition, the use of human systems to validate mouse model
observations will be vital to improve the identification of relevant
therapeutic targets for modulating macrophage metabolism.

The pathogenesis of obesity-related metabolic disorders, such
as insulin resistance is highly complex and involves metabolic
perturbations in multiple organs. Tissue macrophages secrete a
plethora of factors that may affect macrophage polarization and
subsequently tissue function in distant organs. Evidence already
exists to support the concept that adipose tissue macrophages
can direct relevant pathological events in the liver in the
setting of obesity. Conversely, it is attractive to hypothesize that
signaling from liver macrophages to adipose tissue also occurs.
It will be important to identify the key molecules involved
in inter-organ crosstalk and to evaluate their effects on tissue
macrophage biology.

The objective of this review was to discuss our current
understanding of macrophage diversity in metabolically relevant
tissues and to consider the intersection of these principles with
the regulation of macrophage cellular metabolism. Although
significant progress has been in these areas, further investigation

and integration of these fields will be necessary to harness
the therapeutic potential of re-programming macrophage
metabolism in obesity and diabetes. In addition, defining
the molecular basis of crosstalk between macrophages and
parenchymal cells in adipose tissue, liver, and the brain will also
require more study. Another important issue to resolve in this
area is whether targeting macrophage metabolism can attenuate
pathologic inflammation during obesity without disabling the
fundamental roles of these immune cells in tissue repair and the
maintenance of homeostasis. Eventually, the use of targeted small
molecules or nanoparticles are attractive modalities to modulate
macrophage function. Although there is much yet to be learned,
metabolic targeting of macrophage biology holds promise as
therapeutic strategy to modulate metabolic disease.
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