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Abstract

Background: Intravoxel incoherent motion (IVIM) MR imaging has been applied in researches of various diseases,
however its potential in cervical cancer patients has not been fully explored. The purpose of this study was to
investigate the feasibility of IVIM MR imaging to monitor early treatment response in patients receiving concurrent
chemo-radiotherapy (CCRT) for advanced cervical cancers.

Methods: Twenty-one patients receiving CCRT for advanced cervical cancer were prospectively enrolled. MR
examinations including IVIM imaging (with 14 b values, 0 ~ 1000 s/mm2) were performed at 4 time points: 1-week prior
to, 2-week and 4-week during, as well as immediately post CCRT (within 1 week). The apparent diffusion coefficient
(ADC) maps were derived from the mono-exponential model, while the diffusion coefficient (D), perfusion fraction (f)
and pseudo-diffusion coefficient (D*) maps were calculated from the bi-exponential model. Dynamic changes of ADC,
D, f and D* in cervical cancers were investigated as early surrogate markers for treatment response.

Results: ADC and D values increased throughout the CCRT course. Both f and D* increased in the first 2 to 3 weeks of
CCRT and started to decrease around 4 weeks of CCRT. Significant increase of f value was observed from prior to CCRT
(f1 = 0.12 ± 0.52) to two-week during CCRT (f2 = 0.20 ± 0.90, p = 0.002).

Conclusions: IVIM MR imaging has the potential in monitoring early tumor response induced by CCRT in patients with
cervical cancers.

Keywords: Intravoxel incoherent motion MR imaging, Tumor response, Magnetic resonance imaging, Cervical cancer,
Concurrent chemo-radiotherapy

Background
Cervical cancer is the third most common malignancy in
women worldwide, accounting for 9 % of the total new fe-
male cancer cases [1]. Primary treatment selection is guided
by tumor stage [2]. For those who are diagnosed at the
locally advanced stage, concurrent chemo-radiotherapy
(CCRT) is currently the standard care [3, 4]. Because
ineffective treatment is associated with increased toxicity
and morbidity, accelerated tumor growth, a delay in com-
mencing alternative, potentially effective treatment, and

unnecessary expense [5], the ability to rapidly and accur-
ately predict the response of a tumor to therapy would have
immense value in clinical practice. Therefore, studies of re-
liable early surrogate markers of tumor response to these
cancer therapies are warranted.
The past decade has witnessed rapid developments in

magnetic resonance imaging (MRI). A number of stud-
ies have established MRI as the most effective imaging
modality for the diagnosis of the cervical cancers as well
as the assessment of tumor response to therapy [6, 7].
Conventional T1-weighted and T2-weighted MRIs offer
anatomical information such as tumor size, while newer
sequences such as perfusion-weighted (PW), diffusion-
weighted (DW) MRIs and MR spectroscopy (MRS) have
demonstrated potential as early predictors by offering a
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combination of morphological, physiological and meta-
bolic information. DW-MRI allows creation of image
contrast based on thermally driven motion of water
molecules. It is well-established that apparent diffusion
coefficient (ADC) values of malignant tumors are com-
monly lower than those of normal tissues or benign le-
sions. In addition, effective anti-cancer treatment can be
reflected by increased ADC values due to alterations of
tumor cellularity and integrity of cell membrane caused
by necrosis and apoptosis [7–10]. A prospective study
on cervical cancer showed that the post treatment ADC
values of the complete response (CR) increased rapidly
compared with the partial response (PR) and stable dis-
ease (SD) groups [11]. This study further demonstrated
that tumor with low pretreatment ADC values tended
to respond better to CCRT than those with high base-
line ADC values. A similar finding was reported in a
rectal cancer study by Hein et al. [12]. These studies
have indicated DWI’s potential for predicting and moni-
toring treatment response. However, in vivo micro-
scopic motion of water molecules is influenced by not
only diffusion of water molecules, but also microcircula-
tion of blood in the capillary network [13]. As a result,
ADC values represent a combined signal of microscopic
perfusion and diffusion instead of the pure diffusion.
PW-MRI provides information regarding the perfusion

and permeability of tumors with time-dependent intra-
venous delivery of exogenous contrast agent. Dynamic
contrast-enhanced MRI (DCE-MRI) has been shown
useful in tumor detection as cervical tumors typically
enhance intensely and early (30s) after gadolinium injec-
tion [14]. Using DCE-MRI to assess tumor response has
also been reported in numerous studies [15–18], and tu-
mors with high perfusion before therapy or increased
signal intensity within the first 2 weeks after treatment
appeared to indicate favorable prognosis [19]. However,
the performance of DCE-MRI is more complex than
other imaging techniques because the dependence of
intravascular contrast media use. The unavoidable meas-
urement error, the complicated analysis and presentation
of imaging data, and potential development of nephro-
genic systemic fibrosis associated with gadolinium-
containing contrast material use also limited the clinical
use of DCE-MRI [20].
Intravoxel incoherent motion (IVIM), initially described

by Le Bihan et al. [21], was proposed as an extension of
DW-MRI by using an increased number of b values [22].
At low b values, data obtained are dominated by perfusion
effects, while signal delay captured at high b values is
mainly attributed to diffusion [23]. All these features make
separate analysis of pure diffusion coefficient (D) and
perfusion-related incoherent microcirculation (D*) pos-
sible. In recent years, with the development in MR hard-
ware, a renewed interest in IVIM has been shown on

various organs such as head and neck [24], prostate [25],
breast [26], and kidney [27]. In these studies, IVIM offered
information on both tissue characterization and tumor
response.
Tumor differentiation based on the IVIM model has

also been demonstrated in cervical cancer with low perfu-
sion and diffusion characteristics [28], and IVIM parame-
ters could discriminate cervical cancer from benign tissue.
However, applications of IVIM on monitoring tumor re-
sponse of cervical cancer have not been reported yet. The
main purpose of this study is to evaluate the feasibility of
IVIM for predicting the therapeutic efficacy of treatments
in cervical cancer and to investigate IVIM as an early im-
aging biomarker for treatment response.

Methods
Patient and treatment characteristics
This prospective study was approved by the Committee on
Medical Ethics of Nanjing Drum Tower Hospital, and all
patients enrolled signed the informed consent forms. The
study inclusion criteria were: 1) women with advanced cer-
vical cancers (i.e., clinically staged IIB to IVA based on the
International Federation of Gynecology and Obstetrics
(FIGO) classification) diagnosed with biopsies, 2) age older
than 18 years, and 3) no prior history of cervical cancer
treatment. The study exclusion criteria were: 1) pa-
tients ineligible for CCRT, such as those with preg-
nancy, renal or liver failure, current infection and
certain drug allergies and 2) patients with MRI contra-
indication such as pacemaker, metal implantation and
claustrophobia disorder.
All patients underwent CCRT with external beam

radiotherapy (EBRT) at 1.8 ~ 2.0 Gy daily to a dose of
45 ~ 50 Gy. The volume of the EBRT depended on the
nodal status as determined by radiography before the
therapy. Brachytherapy was used to boost with an add-
itional 30 ~ 40 Gy to point A (corresponding to the
paracervical triangle in the medial edge of the broad
ligament where the uterine vessels cross the ureter).
Chemotherapy consisting of weekly nedaplatin or bi-
weekly nedaplatin plus paclitaxel/docetaxel was given con-
comitantly with EBRT. The therapy would be stopped if
the leukocytes count dropped below 3000/mm3, or the
platelet count dropped below 80,000/mm3, and it was
resumed once the counts rose above the levels. The dur-
ation of the chemotherapy was no more than 6 weeks,
and the selection of therapeutic regimen was decided indi-
vidually according to baseline health condition, tumor ex-
tent, lymph node or adjacent organ involvement.

Magnetic resonance imaging
MR examinations were performed at 4 time points: one
week prior to CCRT, at the end of the 2nd week, at the
end of the 4th week during CCRT, and immediately post
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CCRT (within 1 week). All MR examinations were per-
formed with a 3.0-T MRI scanner (Achieva 3.0 T, Philips
Healthcare, Best, the Netherlands) with a 16-channel
torso phased-array body coil. A MRI scanning protocol
was developed and used for all scans in this study. Pa-
tients were asked to take clyster 2 ~ 3 h before the MRI
in order to reduce artifact induced by gas and feces in
the rectum. The standard sequences included axial T2-
weighted turbo spin-echo (TR = 4500 ms, TE = 90 ms,
matrix size = 308 × 402, field of view = 30 cm × 40 cm,
slice thickness = 5 mm, intersection gap = 0.5 mm, num-
ber of signal averages (NSA) = 1), sagittal T2-weighted
turbo spin-echo (TR = 4500 ms, TE = 90 ms, matrix
size = 212 × 209, field of view = 30 cm× 40 cm, slice
thickness = 5 mm, intersection gap = 0.5 mm, NSA =1),
axialT2-weighted spectral presaturation attenuated in-
version recovery (SPAIR) (TR = 4700 ms, TE = 70 ms,
matrix size = 376 × 389, field of view = 20 × 20 cm, slice
thickness = 5 mm, intersection gap = 0.5 mm, NSA = 1),
sagittal T2-weighted SPAIR(TR = 4700 ms, TE = 70 ms,
matrix size = 256 × 179, field of view = 20 × 20 cm, slice
thickness = 5 mm, intersection gap = 0.5 mm, NSA = 1),
3D T1-weighted turbo-field-echo contrast-enhanced
acquisition (TR = 3.0 ms, TE = 1.42 ms, field of view =
256 × 194 mm, matrix size = 30 cm × 40 cm, slice thick-
ness = 1.5 mm, intersection gap = 0 mm, NSA = 1).
Intravenous bolus injection of 0.1 ~ 0.2 mmol/kg body
weight gadodiamide was performed at a rate of 3.0 ml/s,
followed by a 15 ml saline flush with high pressure in-
jector after contraindications such as severe renal failure
and liver transplantation had been excluded. The scan-
ning time of IVIM was approximately 10 min and the
total scanning time was about 30 min.
All the examinations were acquired with free breathing.

Fourteen b values (0, 10, 20, 30, 40, 50, 100, 150, 200, 350,
500, 650, 800, 1000 s /mm2) were used in the axial single
shot diffusion weighted echo planar imaging (SS-EPI)
(TR = 2834 ms,TE = 105 ms, matrix size = 152 × 120,
field of view = 30 × 40 cm, slice thickness = 6 mm,
intersection gap = 0.5 mm, NSA = 1).

Image and data analysis
All MR images were independently analyzed by 2 experi-
enced radiologists (Jian He, Zhengyang Zhou) with 6 and
8 years’ experience in gynecology. The radiologists were
blinded to each other’s reading. The dataset was analyzed
based on the bi-exponential IVIM model introduced by
Le Bihan [29] with the following function: Sb/S0 = (1 – f) *
exp(-b * D) + f * exp(-b * (D* + D)), in which Sb represents
the mean signal intensity with diffusion gradient b, S0 rep-
resents the mean signal intensity when b = 0 s/mm2. The
IVIM data was evaluated using DWI-Tool developed by
Philips with IDL 6.3 (ITT Visual Information Solutions,
Boulder, CO) for D, f and D* maps. The tumor on MRI

was defined as a mass with higher signal intensity than the
adjacent cervical stroma yet lower signal intensity than
the fluid signal in the urinary bladder on a T2-weighted
image [30]. The specific slice of DWI with the biggest
tumor section was selected referring to the corresponding
axial T2-weighted images, and then, a region of interest
(ROI) was manually drawn as large as possible along the
inside of the tumor margin. The macroscopic necrotic
areas, large vessels and areas with artifacts induced by air-
water interface were excluded during the tumor contour.
The longest diameter of the tumor was subsequently mea-
sured. If no residual tumor was observed after treatment,
five equal-sized ROIs (each 5 mm2) were placed within
the solid components of the tumor region prior to treat-
ment, and the diameter of the lesion would be recorded as
0 cm. The ADC values were derived from the mono-
exponential model, while the D, f and D* values were cal-
culated with bi-exponential model. The mean values of
the two radiologists’ measurement were calculated as the
final results. The ROIs were transferred to the corre-
sponding IVIM parametric maps with the Image J (NIH,
Bethesda, MD, USA).

Treatment outcome analysis
According to the evaluation criteria in solid tumors
(RECSIT) [31], response to treatment was decided by
the shrinkage of tumor size. Tumor response was classi-
fied into four groups: (1) complete response (CR) was
concluded if no residual tumor can been seen on the
MRI images; (2) partial response (PR) was concluded if
an over 30 % size reduction of the tumor was observed
as compared with the original size; (3) progress disease
(PD) was concluded if there was at least 20 % increase in
the longest diameter of tumor in comparison with the
pre-treatment size; (4) stable disease (SD) was concluded
if there was neither sufficient decrease to qualify for PR
nor sufficient increase to qualify for PD.

Statistical analysis
All the statistical analysis was performed using SPSS 16.0
(SPSS Inc., Chicago, IL). Significant changes of IVIM pa-
rameters with time were tested using paired t test. In
order to evaluate the correlations between IVIM parame-
ters, the Pearson’s correlation coefficient was calculated
with 95 % confidence interval. Two-tailed p values were
used and p values less than 0.05 were considered as statis-
tically significant. An intraclass correlation coefficient
(ICC) was calculated to evaluate inter-observer reliability.

Results
From December 2013 to January 2015, 21 patients with
locally advanced cervical cancers were enrolled in this
prospective study, and all of them were confirmed histo-
logically as squamous cell carcinoma. The patient and
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treatment characteristics are summarized in Table 1.
Eighteen of those patients were classified as CR and
three as PR after the treatment. Clinical information at
four time points was collected from all patients.
The mean values of diameter, D, f, D*, and ADC ob-

tained for all patients over time are shown in Table 2.
The initial mean tumor size was 4.17 ± 1.23 cm, and the
diameter decreased significantly after treatment. All 21
patients enrolled achieved efficient local control at the
end of therapy, with no one classified as PD or SD. Tem-
poral reduction of lesions is shown on the IVIM param-
eter maps (Fig. 1).
All IVIM parameters showed big increases at week 2

during CCRT, values of D and ADC kept increasing dur-
ing CCRT, while values of f and D* went down after
week 4 during CCRT (Fig. 2). A positive correlation be-
tween D and ADC values was demonstrated at each time
point (p1 < 0.001, p2 = 0.003, p3 = 0.032, p4 < 0.001 re-
spectively), but no significant correlations between other
parameters were found in this study. While comparing
the values at different time points, no significant differ-
ence was found between the ADC values at time points
3 and 4 (p = 0.879), f values at time points 2 and 3, as
well as 2 and 4 (p23 = 0.408, p24 = 0.337), and among D*

values of all time points (p12 = 0.557, p13 = 0.461, p14 =
0.480, p23 = 0.875, p24 = 0.913, p34 = 0.954). But all the
parameters showed remarkable statistical differences be-
tween the rest time points (all p < 0.05) indicating detect-
able changes in IVIM parameters during CCRT. The
detailed results were shown in Table 3.
The ICC between two observers was 0.964 (95 % CI,

0.887 ~ 0.988; p < 0.001), and the ROI area was 895.82 ±
596.51 mm2 (range: 160.20 ~ 2037.45 mm2)

Discussion
In this study, we demonstrated the potential of IVIM
MR imaging in monitoring early CCRT response of cer-
vical cancer. To the best of our knowledge, this is the
first report on such an application in cervical cancer.
In cervical cancer, DWI was first reported as a diag-

nostic tool to distinguish the malignancy from normal
uterine cervix [32]. In our study, the initial ADC and D
values of cervical cancer (ADC = 1.00 ± 0.11 × 10−3mm2/s,
D = 0.85 ± 0.12 × 10−3mm2/s) were in line with the
published results (ADC = 0.99 ± 0.18 × 10−3mm2/s, D =
0.86 ± 0.16 × 10−3mm2/s) [28] which were significantly
different from normal cervical tissues (ADC = 1.57 ±
0.17 × 10−3mm2/s, D = 1.32 ± 0.12 × 10−3mm2/s). The low
ADC and D values of cervical cancer were due to the
increased cellularity, which was an important factor that
influences the extracellular space and microscopic water
diffusion in tumor tissue. In tumor tissues, the ADC
values were higher than D values, which suggested that a
mono-exponential model could overestimate the water
diffusion in the cancerous tissue, because of the “contam-
ination” of ADC as a combined signal measurement of the
microscopic perfusion and diffusion.
Previous studies [8, 33] have demonstrated that effect-

ive anticancer treatment would result in an increased
water diffusion. Findings in this study supported the as-
sociation between the ADC change and post-therapy re-
sponse. Similarly, we demonstrated that the mean ADC
of responders increased after treatment. D value chan-
ged with ADC value and both increased over the course
of treatment. Significant differences in ADC values were
demonstrated at various time points except for the last
stage of therapy (p = 0.879). Less restricted motion of

Table 1 Patient and treatment characteristics

Clinical features Values

No of patients 21

Age (years) 49.6 (24–76)

FIGO stage:

II 11 (52.4 %)

III 6 (28.6 %)

IV 4 (19.0 %)

Metastasis (n = 4)

Bladder 1 (4.8 %)

Rectum 3 (14.3 %)

Treatment outcome

Complete response 18 (85.7 %)

Partial response 3 (14.3 %)

Data are N (%) or mean (range)
FIGO the International Federation of Gynecology and Obstetrics

Table 2 Changes of IVIM parameters and tumor size during the concurrent chemo- radiotherapy course

Variables Time point 1 Time point 2 Time point 3 Time point 4

Diameter (cm) 4.17 ± 1.23 2.56 ± 1.26 1.14 ± 1.12 0.20 ± 0.53

f 0.12 ± 0.52 0.20 ± 0.90 0.22 ± 0.79 0.18 ± 0.58

D* (×10−3 mm2/s) 29.23 ± 26.49 33.73 ± 21.76 34.80 ± 21.00 34.44 ± 17.30

ADC (×10−3 mm2/s) 1.00 ± 0.11 1.39 ± 0.26 1.66 ± 0.17 1.67 ± 0.16

D (×10−3 mm2/s) 0.85 ± 0.12 1.09 ± 0.14 1.31 ± 0.11 1.41 ± 0.13

ADC apparent diffusion coefficient, D diffusion coefficient, f perfusion fraction, D* pseudo-diffusion coefficient
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water molecules induced by damages in tumor tissue
(e.g., loss of cell membrane integrity and a subsequent
reduction in tumor cell density) after successful treat-
ment may explain these changes [34]. These changes ap-
peared as early as 2 weeks during CCRT, indicating the
sensitivity of ADC and D as surrogate markers of early
tumor response.
In this study, the pre-treatment perfusion fraction f

(0.12 ± 0.52) of cervical cancer was close to 0.149 ± 0.26
as reported by Lee EY et al. [28]. Significant higher ini-
tial f values were displayed in head-and-neck cancer pa-
tients with poor clinical outcome [24]. As no patients

were classified as SD or PD in this study, a further re-
search with a larger sample size is warranted. At
follow-ups, f significantly increased after two-week of
CCRT (p = 0.002) making it a potential early indicator
for post-therapy response. As an imaging biomarker
for the vascular compartment, the f value most likely
reflects the vascular volume fraction of the tumor in-
stead of the accurate blood volume/plasma volume, it
is mainly related to the regional blood flow in DCE-
MRI. Also by decreasing cell density and modulating
the tumor microenvironment, CCRT is considered to
improve the blood supply and oxygenation status of

Fig. 1 MR images of a patient receiving concurrent chemo-radiotherapy (CCRT) for advanced cervical cancer (FIGO stage IIIA). a Axial T2-weighted
image before CCRT shows a hyperintense mass lesion (arrows) at the cervix, with a maximal diameter of 6.0 cm. b ADC map corresponding to (a)
shows a low ADC value (0.933 × 10−3 mm2/s) of the lesion compared with the adjacent normal cervical tissues (1.54 × 10−3 mm2/s). c The f map
corresponding to (a) shows a low f value (0.097) of the lesion compared with the adjacent normal cervical tissues (0.198); d Two weeks after initiation
of CCRT, the diameter of cervical cancer decreased to 4.2 cm. e The ADC value of the lesion corresponding to (d) increased to 1.038 × 10−3 mm2/s
compared with (b). f The f value of the lesion corresponding to (d) increased to 0.116 compared with (c). g One month after initiation of CCRT, the
lesion continues to decrease with a diameter of 1.7 cm. h The ADC value of the lesion corresponding to (g) continues to increase to 1.563 × 10−3 mm2/s
compared to (e). i The f value of cervical cancer corresponding to (g) continues to increase to 0.239 compared to (f). j Post CCRT, no residual lesion is
observed in the axial T2-weighted image. k The ADC value of the lesion corresponding to (j) continues to increase to 1.737 × 10−3 mm2/s compared to (h).
l The f value of cervical cancer corresponding to (g) continues to increase to 0.165 compared to (i)
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tumor cells, resulting in a substantial reduction of
radiation-resistant hypoxic tumor cells [35]. Therefore
the tumor perfusion is associated with the effect of
CCRT. Although Shibuya K et al [36] have shown
that blood flow increased after 20 Gy of radiation
therapy in cervical cancer, Ganten M K et al [37] and
Gaeta M et al [38] found no significant changes of f
over time in rectal cancers. This contradiction may
be explained by different histopathological features
and capillary network distribution in different types of
tumors. Moreover, such discrepancy could also be
caused by different imaging techniques and treatment
regimes in the clinical studies.

During CCRT, the f initially increased and later de-
creased around 4 weeks into therapy. This decline may
be explained by the hypothesis that: local fibrosis and
angiolysis (vessel occlusion, reduction, or disappearance)
consequent on the large cumulative radiation dose al-
tered the microcirculation in various ways, and replaced
the leading role of cell lysis in the early period, and the
perfusion changes comprise a greater percentage as a re-
sult. Previous study in lung has shown the role of various
early inflammatory proteins in stimulating proliferation
and migration myofibroblasts during later fibrosis [39]. As
most patients finished their EBRT at the 5th week, trans-
formation of therapy regimen may be answerable to the

Fig. 2 Dynamic changes of various MR parameters of cervical cancers during concurrent chemo-radiotherapy (CCRT). a D and apparent diffusion
coefficient (ADC) values of cervical cancers increase during the course of CCRT and the D values are lower than the ADC values. b f values of
cervical cancers increases initially and decreases after 4 weeks of therapy. c D* values of cervical cancers share the same tendency as f. d Tumor
sizes shrink over the course of CCRT. Time point 1, before CCRT within one week; time point 2, at the end of the second week of CCRT; time
point 3, at the end of the first month of CCRT; time point 4, immediately after CCRT within one week

Table 3 Differences of IVIM parameters between different time points in locally advanced cervical cancer patients under concurrent
chemo- radiotherapy (CCRT)

Variables Time point 1 versus 2 Time point 1 versus 3 Time point 1 versus 4 Time point 2 versus 3 Time point 2 versus 4 Time point 3 versus 4

Diameter <0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

D < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.016

ADC < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.879

f 0.002 < 0.001 0.005 0.408 0.337 0.047

D* 0.557 0.461 0.480 0.875 0.913 0.954

Data are shown as p value from each comparison. Time point 1, before CCRT within one week; time point 2, at the end of the second week of CCRT; time point 3,
at the end of the first month of CCRT; time point 4, immediately after CCRT within one week
ADC apparent diffusion coefficient, D diffusion coefficient, f perfusion fraction, D* pseudo-diffusion coefficient
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alteration between time point 3 and 4, whereas further
histopathological examinations are needed for verification.
In tumors, D* reflects the rate of microcapillary blood

flow and is positively related to f according to the double
exponential model theory. Our study supported this ob-
servation by showing a changing D* in agreement with f.
As D* value is well known for its huge standard devi-
ation, data instability and its dependence on signal-to-
noise ratio (SNR), wider clinical application is limited in
this situation. A recent IVIM imaging study of hepato-
cellular carcinoma has shown poor reproducibility of D*
with a mean coefficient of variation equal to 60.6 % [40].
Once further improvement is achieved to the robustness
and reproducibility of D*, it might be suitable to bring it
into estimating the tumor response.
There are several limitations in this study. First is the

relatively small sample size of patients, only 21 patients
were involved in this prospective study. What’s more, all
patients enrolled were histologically confirmed as squa-
mous cell carcinoma without adenocarcinoma or other
types of carcinoma. Most participants in our study were
staged as II (52.4 %), patients clinically classified as III or
IV is relatively few. All these factors made our sample
lack of representative, a source where bias may occur.
Nevertheless, the preliminary results were promising
and further studies with a larger and more diverse co-
hort are warranted. A second limitation of this study
was that the appropriate number of b values suitable for
cervix is still unknown. Various numbers were used in
the previous studies and we used 14 b values in this
study. So searching for the best selection of b values in
cervix imaging would be another optimization strategy
in further studies. Thirdly, without histological confirm-
ation MRI could be inaccurate at times. For instance, a
residual tumor and post-treatment fibrosis may be diffi-
cult to differentiate. Since multiple biopsies are impracti-
cal, future animal experiments could help us better
understand early tumor response.

Conclusions
IVIM MR imaging has shown dynamic changes of cer-
vical cancers during treatment, which makes IVIM pa-
rameters as potential biomarkers for tumor response
following cervical cancer CCRT. Clinical studies with a
large cohort to confirm these promising results are war-
ranted. With technological advances, IVIM will become
a valuable imaging tool in the clinic as well as in cancer
research.
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