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EEG-based automatic emotion recognition can help brain-inspired robots in improving

their interactions with humans. This paper presents a novel framework for emotion

recognition using multi-channel electroencephalogram (EEG). The framework consists

of a linear EEG mixing model and an emotion timing model. Our proposed framework

considerably decomposes the EEG source signals from the collected EEG signals and

improves classification accuracy by using the context correlations of the EEG feature

sequences. Specially, Stack AutoEncoder (SAE) is used to build and solve the linear EEG

mixing model and the emotion timing model is based on the Long Short-Term Memory

Recurrent Neural Network (LSTM-RNN). The framework was implemented on the DEAP

dataset for an emotion recognition experiment, where the mean accuracy of emotion

recognition achieved 81.10% in valence and 74.38% in arousal, and the effectiveness of

our framework was verified. Our framework exhibited a better performance in emotion

recognition using multi-channel EEG than the compared conventional approaches in

the experiments.

Keywords: EEG, emotion recognition, neural network, Stack AutoEncoder, LSTM

1. INTRODUCTION

Emotion has a great influence on human cognition (Yoo et al., 2014), behavior and communication.
Since emotion can reflect information of hobbies, personality, interests and even health, recognition
of human emotions can help machines and robots in improving the reliability of human-machine
interaction (Yin et al., 2017) and also help them in action processing and social cognition (Urgen
et al., 2013). Therefore, research on EEG-based automatic emotion recognition is very important
and significance for brain-inspired robots and machines, as it enables them to read people’s
interactive intentions and states through the wirelessly acquired EEG.

As a subjective feeling, emotion is difficult to be represented by a quantitativemodel. Researchers
often use a two-dimensional space to model emotions (Lang, 1995), where different emotion points
can be plotted on a 2D plane consisting of a Valence axis and Arousal axis. Compared with
facial expression (Zhang et al., 2016) and speech (Mao et al., 2014), emotion recognition based
on physiological signals such as EEG, ECG (electrocardiogram), and EMG (electromyography)
(Alzoubi et al., 2012; Chen et al., 2015a; Shu et al., 2018) are more objective and reliable. The main
component of the EEG signals are brain rhythm signals from different brain regions, which reflect
the activity of the region (Niedermeyer and da Silva, 2005).
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The electrical activities of the cortex were propagated
through the anatomical structures to the scalp. Therefore,
the acquired EEG was a mixture of the source signals from
different brain regions, which carried a great deal of redundant
information with a low SNR (signal to noise ratio) (Korats
et al., 2012). Additionally, the asymmetry features regarding
brain regions, such as DASM (differential asymmetry), RASM
(rational asymmetry) and DCAU (differential causality) have
been explored in the literature on emotion recognition (Zheng
et al., 2016; Li et al., 2018), indicating that the spatial information
of EEG signals is useful. Decomposing the source signals from
different brain regions in the collected EEG could extract useful
spatial information while reducing the redundant information in
EEG signals, which was considered as one of the key issues in
this paper.

On the other hand, the extraction of temporal correlations
of spontaneous EEG signals in the context of emotion
recognition referred to another key issue. Emotions were affective
phenomena varying with time that are caused by a result
of stimuli. The context correlation of EEG time sequence
reflected the emotion variation. However, most of the commonly
used classifiers could only conduct emotion recognition using
independent EEG segments, like SVM (support vector machine)
or kNN (k-Nearest Neighbor) (Mohammadi et al., 2017).
Although there is substantial literature on scalp ERPs, which
were highly correlated temporally in the research area of
motor control, only a few studies have considered the temporal
correlations of spontaneous EEG signals in emotion recognition
(Soleymani et al., 2016), and their recognition rate was not
adequate. Considering the context correlation of EEG time
sequence, making use of the temporal correlation features might
provide more effective means in automatic emotion recognition.

In this paper, we present a novel framework for EEG emotion
recognition, where SAE is used (Hinton and Salakhutdinov,
2006) to build the linear EEG mixing model and decompose
the EEG source signals from the collected EEG signals. Then,
followed by the feature extraction, feature sequences of the EEG
source signals are obtained. Finally, to explore the temporal
correlations in EEG source signal feature sequences, LSTM-RNN
(Bengio et al., 2002) is elected as the emotion classifier.

2. RELATED WORK

Some recent studies have been working on emotion recognition
using EEG signals.

Khosrowabadi et al. presented a biologically inspired
feedforward neural network named ERNN to recognize human
emotions from EEG. To simulate the short term memory of
emotion, a serial-in/parallel-out shift register memory was used
in ERNN to accumulate the EEG signals. Compared with other
feature extraction methods and feedforward learning algorithms,
ERNN achieved the highest accuracy when using the radial basis
function (Khosrowabadi et al., 2014).

Soleymani et al. studied how to explore the emotional
traces of videos and presented an approach in instantaneously
detecting the emotions of video viewers from EEG signals and

facial expressions. They utilized LSTM-RNN and continuous
conditional random fields (CCRF) to detect emotions
automatically and continuously. The results showed that
EEG signals and facial expressions carried adequate information
for detecting emotions (Soleymani et al., 2016).

Li et al. explored the influence of different frequency bands
and number of channels of the EEG signals on emotion
recognition. The emotional states were classified into the
dimensions of valence and arousal using different combinations
of EEG channels. The results showed that the gamma frequency
band was preferred and increasing the number of channels could
increase the recognition rate (Li et al., 2018).

Independent Component Analysis (ICA) approaches for
multi-channel EEG processing are popular, especially for artifact
removal and source extraction.

You et al. presented a method of blind signal separation
(BSS) for multi-channel EEG, which combined the Wavelet
Transform and ICA together. The high-frequency noises
were removed from the collected EEG by using the noise
filtering function of wavelet transform, so that the ICA could
extract the EEG source signals without regard to the problem
of noise separation. The experimental results approved the
effectiveness of this method in the BBS of multi-channel
EEG (You et al., 2004).

Brunner et al. compared three ICA methods (Informax,
FastICA and SOBI) with other preprocessing methods (CSP) find
out whether and to what extent spatial filtering of EEG data can
improve single trial classification accuracy. The results showed
that Informax outperformed the other two ICA algorithms
(Brunner et al., 2007).

Korats et al. compared the source separation performance
of four major ICA algorithms (namely FastICA, AMICA,
Extended InfoMax, and JADER) and defined a low bound
of data length for robust separation results. AMICA
showed an impressive performance with very short data
length but required a lot of running time. FastICA took
very little time but required twice the data length of
AMICA (Korats et al., 2012).

In recent years, autoencoder has drawn more and more
attention in biological signal processing, especially in signal
reconstruction and feature extraction.

Liu et al. presented a multimodal deep learning approach to
construct affective models with the DEAP and SEED datasets
to enhance the performance of affective models and reduce the
cost of acquiring physiological signals for real-world applications.
Using EEG and eye features, the approach achieved mean
accuracies of 91.01 and 83.25% on the SEED and DEAP
datasets. The experiment results demonstrated that high-level
representation features extracted by the BDAE (Bimodal Deep
AutoEncoder) network were effective for emotion recognition
(Liu et al., 2016).

Majumdar et al. proposed an autoencoder-based framework
that simultaneously reconstructed and classified biomedical
signals. Using an autoencoder, a new paradigm for signal
reconstruction was proposed. It has the advantage of not
requiring any assumption regarding the signal as long as there
was a sufficient amount of training data. The experiment results

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2019 | Volume 13 | Article 37

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xing et al. SAE+LSTM EEG Emotion Recognition

showed that the method was better in reconstruction and
more than an order of magnitude faster than CS (Compressed
Sensing)-based methods. It was capable of providing real-time
operations. The method also achieved a satisfactory classification
performance (Majumdar et al., 2016).

In these reviewed studies, EEG-based emotional classification
has been studied extensively, and corresponding achievements
have been realized in the aspects of EEG signal preprocessing,
feature extractions, and classifiers. However, decomposition of
EEG signals is still a challenge. The current mainly used ICA
method assumes the source signals that constitute the mixed EEG
signals are independent of each other and do not conform to
the normal distribution. But the physiological structure of the
brain does not support this hypothesis, as the interconnected
cerebral cortex makes the EEG signals have a natural correlation
among each other. On the other hand, feature extractions in
this area have seldom considered the association and contextual
relationships between frames of different EEG signals, which
leads to an inadequate utilization of multi-domain information
of EEG signals in space-time and the frequency domain. In this
work, we tried to explore the method in decomposing EEG
signals to source signals and adopt the context correlation of EEG
feature sequences to improve emotion recognition.

3. METHODOLOGY

3.1. Framework Design
As shown in 1Figure 1, our new framework is made up of three
sequential parts, including source signal decomposition, feature
extraction and emotion classifier. The details of each part are
given below.

In the proposed framework, SAE was used in a linear EEG
mixing model to decompose the source signals from the collected
EEG signals. LSTM+FC was the main component that was used
in the emotion timing model to recognize emotion using the
correlation of the EEG feature sequence based on the EEG source
signals decomposed by SAE.

3.2. Source Signal Decomposition
3.2.1. Linear EEG Mixing Model
The EEG signal reflects the electrophysiological activity of the
cerebral cortex. However, under existing hardware conditions,
EEG signals are collected at the scalp instead of the cortex, and
there is a skull barrier between the cerebral cortex and the scalp.
In fact, the collected EEG signals are the mixture of the EEG
source signals. Researchers proposed a linear mixing model to
simulate the mixing process, which is widely acknowledged in
medical areas (Sanei and Chambers, 2013). In this work, we
presented a new method to solve the EEG linear mixing model.
The linear EEG mixing model is presented in Figure 2.

1x1 ∼ xn represent the nth-channel EEG signals, s1 ∼ sm represent the mth-

channel EEG source signals, FBPθ
i , FBP

α
i , FBP

2
β and FBP

γ
i represent the frequency

band power of theta, alpha, beta and gamma band in the ith frame, respectively,

PCCsi represent the Pearson correlation coefficient of each channel in the ith

frame, I1 ∼ It represent each frame of the feature sequence, L1 ∼ Lt represent each

step of the unrolled LSTM layer, F1 ∼ Ft represent each unit of the Full-Connect

layer, O represents the output layer of the classifier.

The mixture of EEG signals can be written as 2(1):

X = AS (1)

3.2.2. AutoEncoder
Autoencoder is an unsupervised neural network consisting of
two components, an encoder and a decoder, whose completely
symmetrical structure is given in Figure 3. If the reconstructed
data is equal to the input data, the output of the “encoder”
should be the “code,” which contains all the information about
the input data.

When using the linear activation function, the mathematical
expression of the encoder is given in 3(2) (Ignore the bias).

H = WI (2)

From (2), we observe that autoencoder network and linear
EEG mixing model have similar expressions. Therefore, we
have tried to build and solve the linear EEG mixing model
using autoencoder.

3.2.3. Linear EEG Mixing Model Based on Stack

AutoEncoder
The purpose of this work is to determine an encoder that allows
us to decompose the source signals from the collected EEG
signals. To achieve a better performance, an autoencoder is used
that consists of multiple layers, called a stacked autoencoder
(SAE). The formula of SAE has the same form as the formula of
standard autoencoder. The structure and the hyper parameters
for the SAE we designed are shown in 4Figure 4.

We assumed that the source signals came from 12 different
functional brain regions based on previous research (Keil et al.,
2002). The 12 regions were formed by crossing hemispheres (left,
right) with a horizontal plane (anterior, lateral, posterior) and a
vertical plane (inferior, superior) based on recording sites of the
international 10–20 system. We made some investigations on the
effect of a different number of source channels, such as 6 and
7 source channels. However, the results were not as good as 12
source channels, which was one of the reasons why 12 source
channels was selected in our study.

Specifically, X is a 32-dimensional vector as a 32-channel EEG
signal is used as the input and S is a 12-dimensional vector as we
discussed before.

3.2.4. Decomposition Results
To conduct the training of our linear EEG mixing model, mini-
batch gradient descent was used as the optimizer algorithm,
which was an upgraded version of traditional stochastic gradient
descent (SGD) and was generally used as the optimizer of
the neural network. Mini-batch gradient descent randomly
selected a mini batch of data to calculate gradient of the loss

2X refers to the collected EEG signals, A refers to the mixing matrix and S denotes

the EEG source signals.
3I is the input data, H is the output of the hidden layer, W is the transformation

matrix of the encoder.
4X refers to the collected EEG signals, H refers to the output signals of the first

hidden layer, S refers to the EEG source signals, X̂ and Ĥ refers to the reconstructed

data of X and H.
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FIGURE 1 | Diagram of our framework.

FIGURE 2 | Linear EEG mixing model.

function at every step, leading to a fast convergence speed
and computational efficiency. As for other optimizers, batch
gradient descent needed all data samples to calculate the gradient,
which was time-consuming and complicated. Stochastic gradient
descent used one sample at each step to reduce the computational
complexity and improve the speed, but the drawback was related
to its instability and possibility in causing fluctuations. Adam
optimizer was faster than SGD and exhibited the advantage of
adaptive learning rate, although it might have a convergence
problem due to the unstable learning rate (Reddi et al., 2018).
In this work, we applied learning rate attenuation in mini-batch
gradient descent method to make the model more stable, which
turned out to be better than Adam optimizer and other gradient
descent methods.

FIGURE 3 | Structure of AutoEncoder.

Mean square error (MSE) was used as the loss function.
Then, the training data is fed into the model, where the adjusted
R-squared between the test data and its reconstructed data is
calculated to validate the model. The expression of the adjusted
R-square is shown in (3).

R2adjusted = 1−
(1− R2)(N − 1)

N − p− 1
(3)
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Where R2 is the sample R-square and p is the number of
predictors. The value of P was set to 32 in this work since the
channel number of EEG signals is 32 in the database of DEAP. N
is the total sample size. The expression of R2 is given in (4).

R2 = 1−

∑

(X − X̂)2
∑

(X − X̄)2
(4)

When the training data (the 32 channel EEG signals) were fed
into the model, the adjusted R-square between the test data
and the reconstructed data was calculated to validate the model.
Once the adjusted R-square exceeded 0.9, it meant the “code”
output by the encoder of our model almost retained all the

FIGURE 4 | Structure of Stack AutoEncoder.

information of the source EEG signals. In other words, the “code”
could represent the EEG source signals successfully and the
decomposition was done successfully. The process of EEG source
signal extraction is shown in Figure 5.

3.3. Feature Extraction
3.3.1. Signal Framing
As a central nervous physiological signal, EEG signal is non-
stationary and chaotic. To facilitate signal processing, the EEG
signals are always divided into short time frames and it is
assumed that the signal within the frame is stationary (Soleymani
et al., 2014). Therefore, some signal processing methods for
stationary signals are applicable for EEG signal processing. The
EEG signal processing steps are shown in Figure 6, where a 1 s
window with 50% overlap is applied to the EEG source signals
to divide the signals into 125 frames of data. In this work, we
also tried sliding data by a 2 s window, 5 s window and so
on, while the results turned out no better than the 1s window.
The reason might be that the neural network required a larger
amount of data, and the 1 s window with 50% overlap could
obtain more data than the 2 s window and others. If different
experiment settings ormodels were configured, the choicesmight
be changed flexibly.

After signal framing, the EEG features are extracted from each
frame and arranged into a feature sequence. Finally, the feature
sequences with 125-frame EEG features are obtained.

3.3.2. Frequency Band Power Feature
Biologically speaking, EEG signals are composed of brain rhythm
signals, event related potentials (ERP) and spontaneous electrical
activity signals. Many studies (Niedermeyer and da Silva, 2005;
Whitten et al., 2011) have proved that changes in brain states
are often characterized by rhythmic signals from different brain
regions. According to the frequency range from low to high, the
EEG signals are divided into five frequency bands of delta waves
(δ: 0.5–3.5 Hz), theta waves (θ : 4–7 Hz), alpha waves (α: 8–13
Hz), beta waves (β : 14–30 Hz) and gamma waves (γ : 31–50 Hz).
As seen in Figure 7, we applied the Hanning window to each EEG

FIGURE 5 | The process of EEG source signal extraction.
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FIGURE 6 | Diagram of Signal Processing.

FIGURE 7 | Diagram of the FBP extraction.

channel and the power spectral density (PSD) was calculated by
Welch’s method. Then, four frequency band powers (FBP) of the
EEG signals were chosen in our experiment.

The Hanning window is most often used in random signals
to avoid spectrum leakage. Since EEG signals are typical random
signals, the Hanning window was used in this work for data
segmentation and band power feature extraction. As the reviewer
commented, we plotted the amplitude responses of a rectangular
window and a Hanning window for a comparison. In Figure 8,
the narrower main window of the rectangular window is more
conducive to identifying the specified frequency, however the
sidelobe gain is higher and the spectrum leakage is severe,
resulting in amplitude information misalignment. The major
advantage of the Hanning window is that the spectrum leakage is
small, and themain features extracted in this paper are relevant to
frequency band energy, so it is appropriate to choose theHanning
window. Of course, other window functions with small spectrum
leakage can be also considered.

3.3.3. Channels’ Pearson Correlation Coefficient
After receiving stimuli, the brain needs to integrate information
to understand correctly the emotional significance of the stimuli.
According to the ‘binding problem hypothesis’ (Singer and Gray,

FIGURE 8 | The amplitude response of rectangular window and

hanning window.

1995), neurons with similar feature properties will synchronize
their discharges under certain specific circumstances, and the
functional connectivity of the brain can be estimated using the
measure of the synchrony (Gupta et al., 2016). The Pearson
correlation coefficient is a measurement on linear correlation
between two signals and can be used tomeasure the inter-channel
EEG correlations (Bonita et al., 2014; Chen M. et al., 2015).
As seen in Figure 9, one of the frame signals is selected as the
reference signal and the Pearson correlation coefficients (PCC)
between signals can be calculated by (5).

PCC =

∑N
i=1 (xi − x̄)(yi − ȳ)

√

∑N
i=1 (xi − x̄)2

√

∑N
i=1 (yi − ȳ)2

(5)

3.4. Classifier
3.4.1. Emotion Timing Model
In emotional situations, the hippocampal complex and
amygdala interact in subtle but important ways. Specifically, the
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hippocampal complex can influence the amygdala’s response
when emotional stimuli are encountered (Phelps, 2004).
Therefore, we assume that the present emotional status is
influenced by the previous emotional status, and EEG under
previous emotion status might have correlations with those
under present emotion state as EEG could reflect the emotion
status while EEG context information could also be adopted

FIGURE 9 | Diagram of the PCCs extraction.

in emotion recognition (Li et al., 2017b), so the EEG feature
sequence was viewed as containing information on emotion
changes in this paper. Based on this assumption, we then
propose an emotion timing model. To simulate our emotion
timing model, a classifier is needed which can take full advantage
of the context correlations in EEG feature sequences.

3.4.2. Long Short-Term Memory Network
The Long Short-Term Memory network (LSTM) is applied to
do the emotion classification, which is an improvement on the
Recurrent Neural Network (RNN). RNN has the problem of
long-term dependencies (Bengio et al., 2002) so it is not suitable
for time series analysis, while LSTM can solve the problem due
to the design of its repeating module. LSTM is thus adopted in
our work to calculate the context correlations of EEG feature
sequence. The structure of a regular RNN and our LSTM model
in this study is shown in Figure 10.

3.4.3. Emotion Classifier Based on LSTM
To recognize emotion using the correlation of the EEG feature
sequence, a deep neural network for emotion recognition based

FIGURE 10 | The structure of regular RNN and LSTM. Reproduced with permission (Li et al., 2018) Copyright 2018, Springer.

FIGURE 11 | Emotion Classifier based on LSTM.
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FIGURE 12 | The feature clustering during training: (A) Starting training; (B) at around 500 epochs; (C) almost completing the training.

on LSTM is proposed. The first layer of the deep neural network
is the LSTM layer, which is used to mine the context correlation
in the input EEG feature sequence. The second layer is the full-
connect layer, which is used to integrate information and act as
the major role of the classifier.

The detailed hyper parameter settings for our neural network
model are illustrated in Figure 11. In the LSTM layer, 125 LSTM
cells are set to correspond to 125 frame features in each sequence.
In the full-connect layer, connection units are set with the same
number. Finally, the sigmoid activation function is used in the
output layer. For classifier training, the mini-batch gradient
descent optimizer and theMSE loss function have been also used.

“Dropout” was added in the LSTM and full-connect layers to
avoid over-fitting. The training epochs of LSTM were set to a few
thousand. In the first few hundred epochs, a high learning rate
was set to speed up the training procedure, and then it was slowly
changed to a lower rate to achieve more robust results. When the
training AUC met the set goal, the training was completed.

3.5. Model Training
3.5.1. Hyper-Parameter Tuning
The SAE and LSTM models were trained separately, and the
parameters were set or tuned according to certain rules or bases
to ensure their optimization.

1) The SAE model was an unsupervised model trained via the
back propagation of the reconstruction error. The hyper-
parameter setting is described below: the input layer contained
32 units determined by the number of EEG data channels in

FIGURE 13 | Diagram of the experimental dataset selection.

the DEAP dataset. There were 64 units in the first hidden layer
which were tuned by the reconstruction error. The second
hidden layer had 12 units, which was consistent with the 12
functional brain zones. To conduct the training of our linear
EEG mixing model, the mini-batch gradient descent was used
as the optimizer algorithm and the mean square error (MSE)
was applied as the loss function.

2) The LSTM model was a supervised model. Its time step was
set to 125, as 125 data segments were achieved under the
conditions whereby each EEG data in DEAP had a length of
63 s, and a 1 s time window with 0.5 s step size was adopted.
The hidden layer of LSTM had 125 units, which was tuned by
the reconstruction error.
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FIGURE 14 | The results comparison among relevant methods.

3.5.2. Over-Fitting Handling
The proposed framework could effectively solve the over-fitting
issue. The SAE model was trained using the reconstruction error,
and the sparse and penalty constraints were added to avoid the
over-fitting problem. In the training of the LSTM+FC model,
three aspects of work had been conducted to handle the over-
fitting/over-training issues: (1) A 1 s window with 50% overlap
was applied to the EEG data segmentation, which augmented the
size of data samples and guaranteed the amount of data used
in model training. (2) “Dropout” operations were added in the
training of the LSTM and full-connect layers to avoid overfitting,
which can be seen in Figure 11. (3) Regularization items of the
parameters had been added. (4) 10-fold cross validation was
used to verify our approach, and the result of cross validation
could be considered that these results were highly probable
without over-fitting.

3.5.3. Training Visualization
To show how our proposed method handled the data during
network training, the training procedure was visualized by
plotting the feature clustering in different epochs. In Figure 12,
the features in connections with positive and negative emotions
have been clustered into two categories which are represented by
two colors. It can be observed that after a few thousand epochs,
the features were clearly classified by our model.

4. EXPERIMENTAL AND RESULTS

The effectiveness of our framework was evaluated on the
DEAP dataset. At first, we compared our framework with other
methods on a trial-oriented emotion recognition task. Then
three experiment settings were designed to verify the validity of
LSTM and SAE in an emotion recognition task using different
EEG features.

4.1. Experimental Dataset
We used the EEG data from the DEAP dataset to validate
our framework (Koelstra et al., 2012). DEAP is a database
using different kinds of physiological signals for human affective
state analysis. It contains 32-channel electroencephalogram
(EEG) and 8-channel peripheral physiological signals of 32
subjects. Each subject was required to watch 40 one-minute
excerpts of music videos during which their signals were
recorded. Subjects rated each video in terms of valence, arousal,
dominance, liking with the rating distributed from 1 to 9 in
each dimension.

The EEG signals in the DEAP database were downsampled
to 128 Hz, and a 4.0–45 Hz band-pass filter was applied.
The data were then segmented into several 63 s trials,
where the 3 s pre-trials were removed and the following
60 s trials were kept for further processing. Since EEG
signals might be contaminated by other signals such as
EOG (Li et al., 2017a; Samuel et al., 2017), the EOG
noise was eliminated by ICA in the DEAP dataset to
ensure that EEG data can better represent the emotions of
the subjects.

As shown in Figure 13, the experimental datasets were
selected from DEAP, where we divided the trials into two
classes based on the value of valence (or arousal) and labeled
“High” if the valence (or arousal) value was higher than
5.5 and “Low” if it was lower than 4.5. Then, the down-
sampling method was used to balance the number of samples
of both “High" and “Low” and we obtained the valence
(or arousal) dataset.

4.2. Emotion Recognition Results
We selected some relevant studies which had similar
experimental settings for a comparison. We used the 10-fold
cross validation method to validate results in our classification.
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FIGURE 15 | First experiment: settings and results.

TABLE 1 | First experiment: significance test results.

The 10-fold cross-validation method applied in our work was the
regular cross-validation method which was normally adopted
in relevant studies (Li et al., 2017b, 2018). Specifically, the data
samples contained with all subjects’ information were randomly
split by 10-fold cross-validation method into 10 folds, where 9
folds were for training and 1 for testing. The validation process
was repeated ten times to achieve an average result. The results
were calculated by 5(6).

AUCmean =
1

10

10
∑

k=1

Nk
correct

Ntest
(6)

The average accuracy results of our new framework with
a comparison of other conventional methods are shown in
Figure 14. The results show that our framework exhibits an
effective performance.

Compared with relevant methods, our framework achieves
the best performance in emotion recognition using both valence
(81.10%) and arousal (74.38%). The reason might be as follows.

5AUCmean represents the average recognition accuracy, Ntest represents the

number of the testing samples, Nk
correct is the number of samples that have been

classified correctly.

Chen et al. used HMM to build the relationship between
the present and previous emotion states (Chen et al., 2015b).
However, each step output of HMM was only related to some
of the previous states, thus the classifier could not automatically
learn like LSTM. Li et al. proposed a CRNN framework for
emotion recognition (Li et al., 2017b), but CNN required a
large quantity of training data to extract features and the
DEAP dataset cannot satisfy that. P Arnau-Gonzlez (2017)
studied the method of EEG feature fusion and achieved the
best accuracy using SVM (Arnau-Gonzlez et al., 2017), but the
SVM classifier was not able to explore the context correlations
of the EEG feature sequence, therefore its performance
was limited.

The main purpose of setting up this framework was for
valence classification. Theoretically, the effect of EEG spatial
information on valence classification was more obvious. The
results in Figure 14 showed that our classification accuracy in
valence (81.10%) was better than relevant studies. Meanwhile,
the framework did not affect and even slightly improved the
arousal classification performance. The innovative point was
that this framework effectively utilized the time domain and
space domain information of EEG signals by a linear EEG
mixing model based on SAE and an emotion timing model
based on LSTM, which significantly improved the valence
classification and did not affect, or even slightly improved, the
arousal classification.

4.3. Verification Experiment
In order to further verify the effectiveness of our framework,
we designed three sets of experiments and made a comparison
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FIGURE 16 | Second experiment: settings and results.

TABLE 2 | Second experiment: significance test results.

of the performance on different emotional dimensions by
statistical analysis.

4.3.1. First Experiment - SVM and LSTM Classifier
The first experiment was designed to demonstrate the validity
of our LSTM classifier. The experiment settings and results are
shown in Figure 15 and the significance test results are shown
in Table 1.

The values in Table 1 are p-values. The p-value in different
experiment setups was the probability of paired sample t-tests for
different experiment setups, whichwas calculated by results of the
average and standard deviation of the 10-fold cross validation.
The main idea of the t-test was to state recognition results
under two conditions to get the approximate distribution of each
condition and to calculate the probability that two distributions
have significant difference. When p < 0.01 (or 0.05), it can
generally be concluded the emotion recognition rate of our
method was significantly higher than other methods by using
different EEG features in both valence and arousal.

Compared with SVM, the emotion recognition accuracy of
LSTM was significantly (p < 0.01) higher in both valence and
arousal, which proves that exploring the correlations in the EEG
feature sequence was more effective than merely integrating the
recognition result of each EEG feature frame.

Using LSTM can model emotion in the time dimension and
extract the emotion feature of each time step, so that our classifier
can integrate the entire feature sequence information. This result
agrees with our previous assumption that the change of emotion
is continuous.

4.3.2. Second Experiment - ICA and SAE
The second experiment was designed to evaluate the performance
of our SAE based model for EEG source signal decomposition,
which contained two parts.

In the first part, we compared the classification performances
among methods with EEG decomposition via SAE or ICA or
without EEG decomposition. The results in Figure 16 showed
that the SAE based EEG source signal decomposition method
achieved better performance than the ICA methods or non-
decomposing methods, especially in the case of using FBP
features. The statistically significance test results in Table 2

further verified the results (p < 0.01).
Using SAE for EEG source signal decomposition, in fact, was

to encode the EEG channel. The spatial characteristics of the
EEG signal, in other words, EEG channel correlations, were also
extracted at this time, which was the reason why using EEG
source signals could improve the emotion recognition accuracy.

EEG source signal decomposition was an important step in
our framework, which took extra time cost. Luckily, using SAE
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FIGURE 17 | Second experiment: Computation Time.

for EEG source signal decomposition would reduce the number
of channels of EEG signals that need to be processed, and saved
time for feature extraction.

In the second part, we counted the total computation time
of EEG source signal decomposition and feature extractions,
as can be seen in Figure 17, where it was observed that
although the decomposition process costs extra time, it reduces
the time spent in feature extraction, especially for complex
features. The operation speed of SAE is two orders of
magnitude faster than that of ICA. The result is explained as
follows:6

According to the experimental results, using SAE for
EEG source signal decomposition could improve the emotion
recognition accuracy while ensuring fast recognition speed.

The number of parameters in both the SAE and LSTM
models were recorded, where the values were 2040376 and
5804 for LSTM and SAE, respectively. We tried to estimate
the parameter number of other models in the relevant
literature. However, many of them did not provide the
whole parameter settings, especially the parameters regarding
hidden layers, so the numbers could not be calculated, and
hence a comprehensive comparison on the computational
complexity using the number of parameters has not
been achieved.

4.3.3. Third Experiment - FBP and PCC
The third experiment was designed to compare the performance
of FBP and PCC in our new framework. The experiment settings

6FBP_32 represents the FBP feature extraction of 32-channel collect EEG

signals, PCC_12 represents the PCC feature extraction of 12-channel EEG source

signals, SAE represents the EEG source signal decomposition using SAE based

approach and ICA represents the EEG source signal decomposition using an

ICA-based approach.

When using ICA to decompose EEG source signals, the EEG data needed to be

whitened. Since there existed significant variations in EEG amplitudes among

different subjects or among different trials under the same subject, it was necessary

to resolve the ICAmodel when decomposing different EEG data records. However,

the SAE method required only one solution, therefore its time consumption was

much lower than ICA.

FIGURE 18 | Third experiment: Settings and results.

and results are illustrated in Figure 18 and the significance test
results are shown in Table 3.

We can see that in Figure 16 and Table 3, compared with the
PCC feature, the FBP feature performs better (p < 0.01). The
reasonmay be that FBP is a frequency-domain feature while PCC
is a spatial-domain feature. Combining EEG source signal with
FBP, “SAE+FBP" can reflect the features of EEG in the spatial-
frequency domain, like DASM feature and RASM feature (Lin
et al., 2010).While “SAE+PCC" can only reflect EEG in the spatial
domain. Therefore, we view the frequency-domain features more
suitable for our framework.

5. DISCUSSION

In this work, we obtained EEG-based emotion recognition
rates of 81.10% in valence and 74.38% in arousal. The current
recognition rates of EEG-based emotion recognition methods
are still not adequate for real applications. One of the major
problems is related to individual differences, which can be
minimized via experiment paradigm design or calibrations that
can remove the effects of EEG baseline variations on different
subjects. On the other hand, the emotion classification accuracies
of these methods are difficult to evaluate in an objective way,
since there are no universal standard test datasets in the area,
and the evaluation steps of the related work in the literature
are different. Eliminating individual differences and establishing
standard test sets represent important future work for EEG-based
emotion recognition.

Compared with valence, our framework does not exhibit high
recognition accuracy in arousal. On the one hand, the EEG
features we used might not be enough. Trying more complex
features, such as the EEG spectral asymmetry index (SASI)
(Orgo et al., 2015), the derived features of bispectrum (Kumar
et al., 2016) and the wavelet entropy features (Hosseini and
Naghibi-Sistani, 2011), may be more effective. On the other
hand, our classifier network may be not complex enough. Using
Bidirectional recurrent neural networks (Schuster and Paliwal,
1997), like Bidirectional LSTM (Sak et al., 2014), as classifier may
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TABLE 3 | Third experiment: significance test results.

achieve better recognition performance. All of our experiments
were conducted on the DEAP dataset. In order to evaluate
our framework more systematically and comprehensively, an
additional EEG dataset with emotional tags is needed.

In this work, we focused on valence and arousal based on
the literature (Chen et al., 2015b; Li et al., 2017b; Mohammadi
et al., 2017). Since most relevant studies made the same choice,
it is fairer to compare their results with ours in the valence and
arousal dimensions. Of course, dominance and other dimensions
would be considered in the future work.

6. CONCLUSIONS

In this paper, we present a novel emotion recognition
framework consisting of a linear EEG mixing model and an
emotion timing model. The SAE-based linear EEG mixing
model can be used for decomposition of EEG source signals
and extracting EEG channel correlations, and it can also
improve computation efficiency in feature extraction and
upgrade the emotion recognition performance. The emotion
timing model is simulated by LSTM, which increased the
recognition accuracy by exploring the context correlations

of the EEG feature sequence. The comparison results in

our experiment approved the effectiveness of our framework,
especially in the valence recognition task. This work can
promote the development of brain-inspired robots, especially in
human-robot interaction.
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