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Matrix metalloproteinases (MMPs) are involved in the pathogenesis of neuroinflammatory diseases (such as multiple sclerosis)
as well as in the expansion of malignant gliomas because they facilitate penetration of anatomical barriers (such as the glia
limitans) andmigrationwithin the neuropil.This review elucidates pathomechanisms and summarizes the current knowledge of the
involvement ofMMPs in neuroinflammation and glioma, invasion highlightingmicroglia asmajor sources ofMMPs.The induction
of expression, suppression, and multiple pathways of function of MMPs in these scenarios will also be discussed. Understanding
the induction and action ofMMPsmight provide valuable information and reveal attractive targets for future therapeutic strategies.

1. Barriers from Blood to Brain

Influx of inflammatory cells into the neuropil is a hallmark
of neuroinflammation (e.g., in multiple sclerosis (MS) [1],
and respective mechanisms have been studied extensively in
experimental autoimmune encephalomyelitis (EAE), an ani-
mal model for multiple sclerosis. Initially, leukocytes migrate
across vascular walls and accumulate in the perivascular
space. This perivascular “cuffing” [2], however, is only the
first step in neuroinflammation because immune cells need
to pass the glia limitans and its basement membrane to reach
the parenchyma proper in a second, differentially regulated
step [3]. While the endothelium does not provide an insur-
mountable barrier for activated T and B cells under certain
(experimental) conditions [4, 5], the glia limitans and the
parenchymal basal lamina represent more strictly regulated,
secondary barriers [3]. Importantly, clinical symptoms only
occur after the penetration of the parenchymal basal lamina
(BM), which is formed by a variety of organized extracellular
matrix (ECM) components build by astrocytic endfeet of the
glia limitans.

There is strong evidence that inducible proteases, known
as matrix metalloproteinases (MMPs), are involved in the
second step of neuroinflammation [3, 6–10]. The unique
features of different, highly specialized, basal laminae rely

on their major constituents: collagen IV and laminin pre-
dominant are whereas collagen type V, proteoglycans, and
glycoproteins are additional constituents [11]. Collagen types
IV and V are, unlike other collagens, structurally organized
in a nonfibrillar, multilayer network that is resistant to non-
specific proteolytic degradation. Noteworthy is the existence
of different laminin isoforms in the specialized basement
membrane (BM) of the vessel and the BM of the glia limitans.
While the vascular BM exhibits laminin 8 and laminin 10,
the BM of the glia limitans is characterized by laminin
1 and laminin 2 [12]. Dystroglycan is a transmembrane
receptor that anchors astrocyte endfeet to the parenchymal
BM [13–15] via high-affinity interactions with laminin 1 and
2. Dystroglycanwas identified as a specific substrate ofMMP-
2 and MMP-9 [16]. Thus MMPs, secreted by juxtavascular
microglia, might control the ECM composition, and as a
consequenceMMPs are involved in the integrity and function
of the glia limitans.

2. The MMP Family

The MMPs are a family of zinc containing endoproteinases
that share structural domains but differ in substrate speci-
ficity, cellular sources, and inducibility. The major function
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and -14)
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Figure 1: MMP inhibition is possible by targeted natural as well as synthetic inhibitors. References: Visse and Nagase [18]; Oh et al. [201];
Coussens et al. [202]; Overall and López-Ot́ın [203].

is the degradation and remodeling of all components of
the ECM. As a group of more than 20 structurally related
enzymes, they can be divided according to their substrate
affinity profile: gelatinases (MMP-2 and -9), interstitial col-
lagenases (MMP-1, -8, and -13), broad-specific stromelysins
(MMP-7 and -13), and other variants (see Table 1) [17].
Together, the MMP substrate repertoire includes the extra-
cellular matrix components, fibrillar collagens, elastin as well
as matrix proteoglycan core proteins, and furthermore an
expanding range of nonmatrix substrates [18, 19]. MMPs are
synthesized in an inactive proform that is activated extracel-
lularly by proteolytic cleavage under the regulation of several
inflammatory mediators, including cytokines, chemokines,
free radicals and steroids [20, 21]. Moreover certain MMPs
are able to activate others; for example, MMP-12 was shown
to activate MMP-2 and MMP-3, thereby leading to an
exacerbation of proteolytic processes [22].

As proteolytic enzymes, MMPs have important roles in
development and physiology. They are thus linked to physio-
logical activities in theCNS, such asmyelin formation, axonal
growth, angiogenesis, and regeneration [23, 24]. In general, a
deviant expression or overproduction of theseMMPs leads to
tissue destruction, and may contribute to brain pathologies
such as Alzheimer’s disease, ischemia, malignant glioma,
and Parkinson’s disease [25–29], when not counterbalanced
by their physiological inhibitors, the tissue inhibitors of
MMPs, TIMPs [18] (see Figure 1). Usually MMPs are under
strict control at various levels: gene transcription, synthesis,
secretion, activation, inhibition and glycosylation.Therefore,
normal adult CNS contains low levels ofmostMMPmembers
[30], in contrast to various neurological disorders of the CNS
in which several MMPs are significantly upregulated [31].

The upregulated MMPs in the CNS have several poten-
tially detrimental roles, including the promotion of neu-
roinflammation, disruption of the blood brain barrier (BBB)
[20, 32], demyelination, and damage to axons and neurons
(especially MMP-1 and MMP-2) [33]. MMPs also participate
in the inflammatory cascade itself by actions on inflammatory
mediators and their receptors [34, 35]. Thereby, several
MMPs may act in concert in a so called MMP cascade [13].
Moreover, MMPs may contribute indirectly to the expa-
nsion of the inflammatory response and tissue damage by
generating antigens through the breakdown of myelin or
by conversion of inactive membrane bound TNF-𝛼 into

the active myelinotoxic form [36]. Similar molecules (e.g.,
TNF receptors, L-selectin, TGF-𝛽 and FAS ligand) may, due
to the action of MMPs, undergo analogous processes [37].
The definite sources of the activated MMPs are still to be
determined: invading T cells may release proinflammatory
cytokines that activate glia cells, which are in control of the
expression, secretion and balance between MMPs, as well as
the secretion of their natural and specific inhibitors (TIMPS).

3. Microglia in Inflammation

The primary immune effector cells of the brain are microglia,
which are activated in response to brain injury or inflamma-
tory conditions. Most likely, they play a pivotal role during
onset, maintenance, relapse and progression of an inflamma-
tory state. In the course of activation, they do not only release
neurotrophic factors (such as nerve growth factor and brain-
derived neurotrophic factor), but also neurotoxic factors
(e.g., nitric oxide) and proinflammatory cytokines (TNF-𝛼
and IL-1) [38, 39]. Thus microglial activation is necessary
for host defense, but this comes at the prize of additional
“bystander damage” [40]. There is evidence that microglia
play a detrimental role in various neurodegenerative diseases
[41, 42]. However, ample data demonstrate beneficial roles
for microglia, for example, by stimulating myelin repair,
removal of toxic proteins from the CNS, and the prevention
of chronic neurodegeneration [43, 44]. Microglial activation
can be caused by neuronal cell death leading to secretion of
signaling molecules (including 𝛼-synuclein, neuromelanin,
and active forms ofMMP-3) [38, 39, 45, 46].The expression of
MMPs, produced in microglia at sites of inflammation upon
activation (such as LPS and Con A [47, 48], could be shown
in various studies [1, 49, 50]. Particularly the secretedMMP-2
andMMP-9 [16, 51] seem to be the keymodulators (Figure 2).

4. MMP-2 and MMP-9 in Inflammation

MMP-2 and MMP-9 are structurally related and share the
common feature of a zinc-binding domain. MMP-2 (gelati-
nase A a 72 kDa type IV collagenase) andMMP-9 (gelatinase
B a 92 kDa type IV and type V collagenase) degrade collagens
IV and V in their native forms [52]. Besides collagen, MMP-9
targets a variety of other substrates, for example, substance
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Figure 2: The blood brain barrier (BBB) in healthy and inflamed condition. (a) Vessel, endothelium, extracellular matrix (ECM), and glia
limitans are intact. Microglia cells are in a resting state. (b) In the inflammed CNS breakdown of the BBB takes places. The glia limitans is
opened, and astrocytic endfeet are drawn away. Reactive microglia secreteMMPs facilitating the opening of the BBB. Invading T cells migrate
from the vessel via the perivascular space (PVS) into the neuropil.

P [53] and b-amyloid (1–40) [54], and MMP-2 cleaves b-
amyloid (1–40) and b-amyloid (1–42) [55]. MMP-9 can also
degrade humanmyelin basic protein (MBP), thereby directly
contributing to myelin damage [56–58].

MMP-9 was called a tuner and amplifier of immune
functions [59], because of its assistance in peripheralization
of leukocytes in response to chemokines [59] into sites of
inflammation and by acting as switch and catalyst at the
interplay between the innate and adaptive immune systems.
MMP-9 has been implicated in opening the route for immune
cells into the neuropil in various diseases, including not
only MS but also strokes and brain injuries [1, 25, 31, 60–
65]. In fact, the infarct size can be lessened by reducing the
MMP-9 activity with a monoclonal antibody [66] or through
enzymatic inhibition respectively, gene knockout [65].

Although the cause of MS remains unknown, MMPs are
implicated in the pathology of MS. Focal BBB leakage and
extravasation of immune cells into the brain parenchyma are
the earliest steps in the pathogenesis of MS as mentioned
above [67, 68]. MMPs are effectors of BBB disruption [69];
extensive studies in MS and EAE demonstrated especially
activity of MMP-2 [70] and MMP-9 [71, 72]. MMP-9 around
blood vessels suggest that MMP-9 might be pathologically
involved in the disruption of the parenchymal basement
membranes [73], paving the way for infiltrating cells of
the immune system [1]. Within the CNS immune cells
orchestrate myelin and axonal destruction resulting in severe
destruction of normal CNS constituents. The histopatholog-
ical hallmark of MS is the plaque, a well-demarcated white
matter lesion characterized by demyelination and axonal
loss. Expression of MMP-1, -2, -3, -7, and -9 in monocytes/
macrophages, microglia, astrocytes, and lymphocytes around
perivascular cuffs in MS lesions has been described [73–75].
We could also confirm by immunostaining that microglia are
sources of MMP-2 and MMP-9 (see Figure 3).

The secretedMMP-9 can cause demyelination and axonal
injury [76, 77]. Axonal damage is considered to be a major

cause of secondary progression (with irreversible neurolog-
ical impairment) [78–80], which seems to be caused not
only by T cells [81] but also by microglia/macrophages and
their toxic products [75, 82, 83]. Cuzner et al. [84] could
confirm enhanced MMP-9 expression in reactive microglia
and astrocytes in autopsies from MS brains. Interestingly,
intrathecal synthesis of MMP-9 appears to be specific for MS
[85, 86]. Around the time of onset of the symptoms in EAE,
elevated levels ofMMP-9 can be found.The administration of
GM6001 (a MMP inhibitor) improved the clinical condition
by blocking the BBB injury [87].

The view that MMP-9 is a promoter of neuroinflam-
mation has been additionally supported by the finding that
young (3-4 weeks) but not older (7-8 weeks) MMP-9 null
mice were less susceptible to development of EAE than
wild type controls [71]. In addition, MMP-2 null mice were
reported to have an earlier onset and more severe disease
compared to wild type controls. Apparently this was related
to a compensatory increase of MMP-9 in the MMP-2 null
mice [71]. Enzyme inhibitors of MMPs have been shown
to ameliorate the clinical course and reduce inflamma-
tory cell infiltration in EAE [87–89]. Treatment of PTx-
injectedCCL2-overexpressingmicewith the synthetic broad-
spectrum inhibitor BB-94 (Batimastat) alleviated symptoms
of neuroinflammation [90] and put blood-derived cells on
hold in perivascular spaces. This was the first evidence that
the second step of neuroinflammation, that is, passage of the
glia limitans, but not the first, migration across the vascular
wall, depends on MMPs.

The production of MMP-9 is negatively regulated by IL-4
[91], IL-10 [92], and interferon-𝛽 [93] whereas transforming
growth factor-𝛽 was found to enhance the production of
MMP-9 in transformed lymphocytes [94]. Furthermore it
was shown that cytokines, chemokines [95, 96], eicosanoides
and peptidoglycan, lectins, double-stranded RNS and endo-
toxin [31, 59, 65, 97, 98] are acting as soluble upregulators [99–
101]. Potent stimulators of MMP-9 and MMP-2 expression in
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Figure 3: Immunohistochemistry of murine microglia, stained for MMP-2 and MMP-9. Microglia from CD11c GFP mice, fixed with PFA,
treated with TBS and NGS, anti-MMP-2 (1 : 125) and anti-MMP-9 (1 : 500); control: BSA and secondary antibodies.

cultured astrocytes and microglia are the proinflammatory
cytokines interleukin 1 (IL-1), tumor necrosis factor-alpha
(TNF-𝛼), and lipopolysaccharide (LPS) [102, 103].

Furthermore, interferon-𝛽 (an immune-modulator that is
commonly used in MS) inhibits the expression of MMPs in
glial cells. Liuzzi et al. [104] demonstrated that LPS treated
microglia secreted higher levels of MMP-9. As soon as the
microglia cells were pre-/treated with different doses of IFN-
𝛽 they found dose-dependent inhibition of MMP-9. IFN-
𝛾 or IFN-𝛽 was also suggested to inhibit the expression
of MMP-9 in human astroglioma and fibrosarcoma cell
lines, as well as in primary astrocytes, supposable by the
modulation of transcription factors that regulate the MMP-
9 transcription [105, 106]. Still an indirect pathway cannot
be excluded: IFN-𝛽 could regulate the MMP expression
either through the reduction of proinflammatory cytokines
or by the inhibition of the activity of enzymes involved in
MMP activation [107]. IFN-𝛽 also reduces the production
of MMP-9 by T cells and monocytes in vitro [8, 108, 109]
leading to diminished MMP-9 levels in serum of multiple
sclerosis patients [110, 111]. This was paralleled by the clinical
recovery of the patients, presumably as a result of a significant
reduction of T lymphocytes infiltrating in the brain. Besides
interferon-𝛽 also increases gene transcription of TIMP-1, thus
attenuating MMP overactivity in MS. Intravenous gamma
globulins (IVIG) used in severe cases of MS were shown
to diminish the amount of secreted MMP-9 and its mRNA
expression [112].

In addition to their detrimental roles MMPs might also
have a beneficial effect in MS, as they also have important
functions in (the developmental) plasticity of the nervous

system [70, 113, 114]: MMP-9 mediates the oligodendrocytes
process outgrowth [115]. Cultured oligodendrocytes secrete
MMP-9, and cell-associated gelatinases are found at the site
of their growing tips of their processes [116].

Notably MMP-9 is significantly upregulated in the acute
period of spinal cord injury [117, 118] which might promote
the maturation of oligodendrocytes and their formation
of myelin [119]. MMP-9 [115, 116] and MMP-12 [120] are
expressed by oligodendrocytes and seem to be essential for
regulating the extension of their processes. Remyelination
was impaired in MMP-9 and MMP-9/-12-null mice, corre-
lating with fewer mature oligodendrocytes [121]. Taking that
into account the MMP-9 secretion by microglia might allow
a microenvironment in lesions for better remyelination and
repair [31]. MMP-2 levels increase between 7 and 14 days
after spinal cord injury, andMMP-2 null mice do not recover
equally well as wild type controls do suggesting that the
delayed expression is necessary for ECM remodeling and
functional recovery [122].

MMP-1, MMP-3, and MMP-8 were also reported to play
a role in BBB disruption followed by a leukocyte infiltration
into the brain [123, 124]. Woo et al. [125] demonstrated that
the mRNA expression of MMP-1, -3, -8, and -9 in primary
cultured microglia cells was significantly increased by LPS
and other immunostimulants. Furthermore, the inhibition
of MMP-3 and MMP-9 could suppress inflammatory reac-
tions in activated microglia (such as iNOS, proinflamma-
tory cytokine expression, and upstream signaling molecules
such as MAPKs, which would amplify the inflammatory
cascade by initiating the MMP production in an autocrine or
paracrine way).
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5. Conclusion

The data discussed beforehand reinforces the concept that
leukocyte transmigration involves distinct molecular mecha-
nisms. MMP-2 and MMP-9 are expressed by microglial cells
which contribute to the formation of the glia limitans [126].
These cell types might be responsible for the opening of
the glia limitans and the further progression of autoreactive
immune cells into the neuropil. Besides the contribution of
MMP-9 to BBB breakdown, it is also involved in the genera-
tion of autoimmune epitopes as well as the bioavailability of
cytokines.

The treatment of neurological inflammation still remains
a challenge today. Targeting MMPs in the CNS may serve
as therapeutic option in autoimmune diseases. It is tempting
to employ inhibitors of MMP activity to abrogate increased
MMP expression (partially driven by microglial activation)
within the inflamed CNS. However, MMPs also fulfill benefi-
cial roles in theCNS, includingmediation of tissue repair [31],
synaptic plasticity [127], learning, and memory [128]. With
respect to the multiple roles of MMPs, not only detrimental
but also physiological, the need and the judicious application
of specific inhibitors against individual MMPs should be
highlighted. Due to their bifaced role, timing may also be
crucial for therapeutic effects. There is the likelihood that
nonspecific MMP inhibitors, although protecting against
particular detrimental effects of some MMPs, could block
useful actions of MMPs, thus slowing down disease recovery,
too. It will be necessary to analyze further therapies aimed at
decreasing MMP-2 and MMP-9 expression or activity.

6. Microglia and Gliomas

The most common brain tumors are malignant gliomas,
infiltrating diffusely into normal brain parenchyma [129].
So far all current (multimodal) therapeutic approaches were
ineffective, and life expectancy from the time of the diagnosis
in glioblastoma multiforme is on average 14 months [130–
133].

In 1921 Rio-Hortega [134], was the first to describe the
presence of microglia cells in brain tumors. Microglia con-
tribute substantially (at least 1/3) to the tumor mass of
glioblastoma as they make up the largest population of
tumor-infiltrating cells [135–138]. Microglia seem to possess
a decisive tumor-supporting role by creating a microen-
vironment, which plays a critical role in tumor initiation
and progression [139–144]. This special environment is also
an immunosuppressive milieu, where, for example, IL-10
is released [135, 145, 146]. Microglia/macrophages play also
an influential role in glioma invasion: there is a positive
correlation in their density in gliomas with the invasiveness
and grade of gliomas [139, 144]. The antitumor properties,
namely glioma-cytotoxic effects of microglia, could only be
shown in vitro so far [147, 148]. Favoring gliomas’ growth
could be due to a suppression and/or control of microglial
cells by glioma cells and glioma-derived molecules (e.g.,
their loss of phagocytic function [149]. It was also suggested
that, under the influence of glioma cells, microglia develop
a different, noninflammatory phenotype suppressing their

defense properties [139, 144, 150]. Instead of releasing pro-
inflammatory cytokines, microglia upregulate enzymes that
facilitate tumor invasion and proliferation. A key mecha-
nism in the expansion and invasion of gliomas is the deg-
radation of extracellular matrix by membrane-bound or sec-
reted proteases such as MMPs [151], especially matrix-
metalloproteinase-2 [152] and MMP-9 [151].

7. MMPs and Glioma Cells

Due to their ECM-degrading ability and confirmed upreg-
ulation in almost all cancer entities, MMP-2 has been
linked to invasiveness and dissemination [153–155]. Because
serum concentration of MMP-2 was significantly elevated in
tumor patients, MMP-2 was suggested as a diagnostic and
prognostic marker [156, 157]. On the other hand elevated
MMP-9 levels in the serum seem to be even more relevant
values, because in healthy individuals under physiological
conditions MMP-9 is hardly detectable [158]. Abnormal
MMP-9 concentrations in patients serumwere also shown for
brain cancers [159], and notably there is a positive correlation
with poor prognosis [160].

So far, there is no evidence that links MMP-2 to a special
phase of tumor development (in contrast toMMP-9): besides
creating a microenvironment in the early phase favoring
cancer growth (activation of growth factors), the transition
into an undifferentiated phenotype permittingmigration and
invasiveness is also related to MMP-2 activity, for example,
the proteolytic detachment of adhesion molecules like inte-
grins or cadherins or cytoskeleton changes [161, 162]. MMP-
2 acts in multiple ways on tumor cells by modulation of
their metabolism, their receptor turnover [163], and their
resistance to apoptosis [164]. In fact, anti-MMP-2 siRNA-
treated glioma cells underwent apoptosis [165] and MMP-2
inhibition autophagy-associated cell death [166].

The expression of the MMP-2 gene in human glioma
tissues was found to be upregulated in comparison to normal
brain tissue, and dramatically increased in glioblastomas
[167–169]. MMP-9 expression could be correlated with high
malignancy and progression of gliomas [170, 171]. Various
studies show that glioma and microglia cells both produce
MMP-2 in vitro [144, 168] and in situ [172]. However, MMP-2
is released as an inactive profrom by glioma cells (especially
at the invasive tumor zone), and glioma cells themselves are
unable to activate pro-MMP-2. Since the extracellular acti-
vator MT1-MMP is highly upregulated in glioma infiltrating
microglia [138, 151, 172, 173], glioma cells engage microglial
cells to promote their spread and survival [174]. This concept
of microglial “abuse” has been impressively demonstrated by
the group of Kettenmann [138].

8. Pathways of MMP Induction and
Suppression in Gliomas

Another key player of glioma motility and invasion seems to
be FasL, which is expressed in tumor cells. It not only induces
apoptosis in T cells thereby leading to local immunosup-
pression, but blockade of Fas signaling resulted in impaired
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Figure 4: Regulation and induction of MMP-9: a variety of molecules are involved.
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Figure 5: MMP in gliomas: the various roles of MMPs in promoting the growth of cancer cells.

MMP-2 activity with a subsequent reduction of glioma inva-
siveness and motility [175]. The expression of MMPs is also
facilitated by glioma-derived TGF-𝛽 which suppresses the
expression of TIMPs and also has an immunosuppressive role
[176–178]. The inactive precursor of TGF-𝛽 can be processed
by MMP-2 [179, 180], and TGF-𝛽 induces gene transcprition
of MMP-2, thus generating a vicious circle leading to further
tumor growth [181, 182] (Figure 4).

Another player in glioma growth, gliomagenesis, and
progression is the activation of STAT3 [183].This signal trans-
ducer and activator of transcription protein 3 is constitutively
activated in glioblastoma cell lines [184–187] and increases
MMP-9 expression and activation in human astrocytoma
cell lines [188, 189]. The expression of MMP-2, -9, and -14
in microglia/macrophages was also shown to be enhanced
by glioma-derived CX3CL1 (Chemokine (C-X3-C Motif)
Ligand) and is significantly associated with the recruitment
of microglia into the tumor [190]. Another role in the
production of MMP-9 in glioma cells is played by protein
kinaseC (PKC) [191] and IL-6 is a confirmed growth factor for
glioma stem cells, too [192].The tumor-promoting role of IL-
6 may be exerted via MMP-2, whose production is increased
by IL-6 [193]. Glioma-induced MMP-2 activity in microglia
could be significantly decreased by the A1AR (an adenosine
receptor subtype, found on microglia and neurons) [194],
which might explain the fact that adenosine treatment leads
to decreased extracellular protease activity and thereby exerts
its inhibitory effects on glioma invasion. Early studies in MS

patients could also show that A1AR activation in microglia
interfered with the MMPs production [195].

Although the substrate specifity of MMP-2 and MMP-9
overlaps, MMP-9 (in contrast to MMP-2) is highly inducible
mostly by integrins, growth factors, and cytokines [13, 196]
leading to a defined chronologically and spatially distri-
bution. The expression of MMP-9 is further triggered by
autocrine or paracrinemechanisms (IL-1𝛽, TNF-𝛼, and TGF-
𝛽), cell binding (to fibronectin or vitronectin), EGF release
or distinct molecular pathways (transcription factors NF-
𝜅B, Raf/MEK/ERK cascade, or the p38 MAPK/MAPK2-
signaling) [180, 196–200] (Figure 5).

In sum, ample data describe the communication between
tumor cells and microglia. Microglia and their expression
of MMPs could be a crucial target for future therapeutic
options in gliomas, due to their profound involvement in
tumor progression.
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