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The dynamic behavior of hydration water in phospholipid membranes has been

investigated to understand the relationship between water and biological molecules

using various experimental techniques. Quasi-elastic neutron scattering (QENS) is an

effective method for this purpose because the dynamic behaviors of both water and lipid

molecules could be identified by using selective deuteration. In addition, the measurable

ranges from the 10−12 to 10−9 s time scale and the 10−11 to 10−8 m length scale are

suitable to investigate the slowing down of water molecules due to their interaction with

lipid membranes. In this mini-review, QENS experiments on the dynamic behavior of

hydration water molecules in neighboring phospholipid membranes are summarized.
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Water is essential for biological systems. For example, approximately 70% of the human body is
water. This means that understanding the relationship between water and biological molecules is
crucial to clarify the origins of biological functions.Many studies have been conducted onwater and
biological molecules such as DNA, proteins, and biological membranes (Bagchi, 2005; Berkowitz,
2019).

Many biological activities involve comprehensive transport processes through biological
membranes. To understand these processes, gaining a full understanding of the structural
and dynamic properties of biological membranes as well as surrounding water molecules is
important. Because the composition and structure of a real biological membrane are too complex,
simplified systems such as pure lipid membranes have been investigated as model systems. Because
phospholipids are amphiphilic molecules, they naturally form into bilayers with hydrophobic tails
inside and hydrophilic heads outside. These types of lipid membranes have been investigated
using various types of experimental techniques such as nuclear magnetic resonance (NMR)
(König et al., 1994; Hsieh and Wu, 1995; Nevzorov and Brown, 1997), X-ray diffraction (XRD)
(Rand and Parsegain, 1989; Klose et al., 1992), neutron scattering (Pfeiffer et al., 1993; König
et al., 1994; Rheinstädter et al., 2005, 2006; Seto et al., 2008; Nagao et al., 2017), dielectric
spectroscopy (Antonietti et al., 1996; Klöesgen et al., 1996), differential scanning calorimetry (DSC)
(Shalaev and Steponkus, 2003), dynamic light scattering (Hirn et al., 1999), and Fourier transform
infrared spectroscopy (Wong and Mantsch, 1988). These experiments showed that the dynamics
of membranes are hierarchical in spatial and temporal scales. It is also clear that all the dynamic
behaviors strongly depend on the hydration of membranes.

To understand the relationship between phospholipid bilayers and water molecules, several
experimental and computational studies have been conducted (Milhaud, 2004; Martelli et al., 2018;
Calero and Franzese, 2019; Watanabe et al., 2019). Aoki and Kodama investigated the behavior
of interlamellar water in phosphatidylethanolamine, phosphorylglycerol, and phosphocholine and
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showed the existence of both freezable and non-freezable water
(Aoki and Kodama, 1998). Lazrak et al. revealed the water
exchange between the inner part of the lipid membrane and the
bulk region by NMR (Lazrak et al., 1987). The detailed structures
of lipid membranes were shown, and the number of water
molecules near the lipid headgroups were estimated through
XRD (Nagle and Tristram-Nagle, 2000; Alsop et al., 2016).
Molecular dynamics simulations showed that the hydration force
and dynamic behavior of water molecules between lipid bilayers
depend on the water structure (Marrink et al., 1993). Ultrafast
polarization selective vibrational pump-probe spectroscopy of
a stack of bilayers of phospholipid 1,2-dilauroyl-sn-glycero-3-
phosphocholine (DLPC) showed that the dynamic behavior of
water molecules between lipid membranes was different from
that of hydration water at the phosphate and choline groups
(Zhao et al., 2008). In another study, femtosecond mid-IR pump-
probe spectroscopy verified that the structure and dynamics
of water between 1,2-dimyristyl-sn-glycero-3-phosphocholine
(DMPC) membranes varied with the phase transition of the
DMPC bilayer from the gel phase to the liquid crystalline
phase (Kundu et al., 2016). Another study investigated the
dynamic behavior of water near the DMPC membranes by
THz spectroscopy, and it was shown that 28 water molecules
were hydrated per DMPC molecule, which was greater than the
previously reported value (Hishida and Tanaka, 2011). Other
THz spectroscopy experiments showed that the ratio of hydration
water molecules against the total number of water molecules
increased during the transition from the gel to the liquid
crystalline phase (Choi et al., 2012).

Of the various types of experimental techniques, quasi-elastic
neutron scattering (QENS) is a powerful method to investigate
the dynamic behavior of water molecules from the 10−12 to 10−9

s time scale and from the 10−11 to 10−8 m length scale through
the dynamic structure factor S(Q,ω). Because hydrogen has a
huge incoherent scattering cross section throughout the atoms,
neutron scattering from materials containing rich hydrogen is
dominated by incoherent scattering. Although this incoherent
scattering does not include the static structure, it provides
information on the self-correlated dynamics of hydrogen such
as the self-diffusion coefficient and rotational relaxation time
(Teixeira et al., 1985; Amann-Winkel et al., 2016). The coherent
and incoherent neutron scattering cross sections of deuterium
are different from those of hydrogen, where the labeling of
hydrogen can be performed by selective deuteration. Thus, the
appropriate deuteration is useful to investigate the structural and
dynamic properties of mixed compounds such as water included
in materials.

Physical properties of water have attracted considerable
attention for years because water shows specific features not
found in other simple liquids, including a maximum density at
4◦C (Zheleznyi, 1969) and divergence of heat capacity in the
super-cooled region (Angell et al., 1982; Debenedetti, 2003). To
elucidate the origin of the aforementioned specific features, Poole
et al. showed the possible existence of a second critical point
below the homogeneous nucleation temperature by molecular
dynamics simulation (Poole et al., 1992). Both dynamic and
structural behaviors of confined water in mesoporous materials
such as mesoporous silicate have been investigated by neutron

scattering because the crystallization is considered to be
suppressed in the nanometer-scale space. Liu et al. reported
the pressure and temperature dependence of the translational
relaxation time of confined water in MCM-41 (Liu et al.,
2005). Here, the translational relaxation time showed a strong-
fragile transition. Yoshida et al. also reported the strong-fragile
transition of confined water in MCM-41 (Yoshida et al., 2008).
This transition is discussed with a hypothesis for the second
critical point of water as previously described (Poole et al.,
1992). The experimental results have been summarized in reviews
(Mishima and Stanley, 1998; Debenedetti, 2003; Cerveny et al.,
2016).

In addition, hydration water at the interface has been
recognized to play a major role in functional and biological
materials. Perrin et al. reported the dynamics of hydrated water
in the Nafion R© membrane, which is one of the most popular
proton conductors, and showed the existence of two types of
water characterized by local and long-range diffusion (Perrin
et al., 2007). Copper rubeanate, which is a porous coordinate
metal complex, exhibits high proton conductivity under high
relative humidity conditions (Kitagawa et al., 2003). Yamada et al.
reported that the adsorbed water in the copper rubeanate pore
could be categorized into “free water,” the diffusion coefficient
of which was similar to that of bulk water, and “condensed
water,” the diffusion coefficient of which is 10 times slower than
that of free water (Yamada et al., 2011). The free water was
condensed on the pore surface with the first-order transition at
260 K, and the transition was a type of liquid-liquid transition.
The dynamics of the water was slowed down due to the steric
hindrance in the case of hydroxyethyl copper rubeanate (Yamada
et al., 2013). Noferini et al. investigated the dynamics of hydration
water in polyhydroxyethyl methacrylate gels (Noferini et al.,
2019). The hydrated water was separated into immobile water
associated with the polymer matrix and mobile water confined
in a gel matrix. Russina et al. reported the water dynamics
in a hydrophobic pore of aluminophosphate AlPO4-5, which
provided a one-dimensional hydrophobic channel (Russina et al.,
2019). The water had two diffusive motions: fast diffusion, which
corresponded to the position exchange between neighboring
water molecules, and slow diffusion, which corresponded to the
long-range diffusion along the pore channel. These studies clearly
indicated that QENS has advantages in exploring the hierarchy of
the dynamics of hydration water.

As described above, the incoherent and coherent scattering
cross sections are different between hydrogen and deuterium.
Thus, selective deuteration enables identifying the structure and
dynamics of water and phospholipid molecules separately. The
first QENS results on the dynamic behavior of water molecules
between lipid bilayers were published in 1994. König et al.
examined oriented perdeuterated 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine bilayers (DPPC) at two hydration levels (nw =

4 − 5 and 11) (König et al., 1994). Two membrane orientations
(i.e., where the scattering vector was normal and parallel to
the membrane) were selected to observe the anisotropy of the
water dynamics in the membrane. These experiments were
performed using the IRIS spectrometer at ISIS, UK, at an
energy resolution of 15 µeV. The researchers showed that water
molecules exhibited a slow rotationalmotion and no translational
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diffusion in the low hydration state. Jump diffusion motion
similar to that of bulk water was identified in the high hydration
state. The experimental results revealed homogeneous dynamic
behavior, and anisotropy was not observed.

The results of the QENS experiments with selective
deuteration were shown by Swenson et al. (2008). They
prepared three samples: fully protonated DMPC with heavy
water (DMPC/D2O), acyl-chain deuterated DMPC with heavy
water (d54-DMPC/D2O), and acyl-chain deuterated DMPC
with light water (d54-DMPC/H2O). QENS experiments were
also performed with the IRIS spectrometer at a 17-µeV energy
resolution. The solutions were deposited on Si(111) wafers to
determine the orientation difference. The dynamic behavior of
water molecules was obtained by subtracting the QENS data of
d54-DMPC/D2O from that of d54-DMPC/H2O. The S(Q,ω)
data were converted into the intermediate scattering function
I(Q, t), and described through the Kohlrausch-Williams-Watts
(KWW) stretched exponential relaxation function. From the Q
dependence of the relaxation time, the researchers concluded
that the relaxation process was that of jump diffusion, and the
diffusion constant was lower than that of bulk water by only a
factor of two. This was attributed to the limited energy resolution
of the experiment as well as the failure to approach the sub-
nanosecond time scale. No significant directional dependence
was observed.

Rheinstädter et al. published the results of high-resolution
QENS experiments with selective deuteration in 2008
(Rheinstädter et al., 2008). They deposited organic solution of
acyl-chain deuterated DMPC (d54-DMPC) or fully protonated
DMPC on Si wafers and hydrated with D2O or H2O vapor
after drying. They measured four samples, d54-DMPC/D2O,
d54-DMPC/H2O, DMPC/D2O, and DMPC/H2O, using the
cold neutron backscattering spectrometer IN16 at the Institute
Laue-Langevin, France, with an energy resolution of 0.9
µeV. The QENS data were analyzed with the aid of an all-
atom MD simulation of DMPC, which showed a cooperative
structural relaxation process in fluid membranes over several
lipid distances.

The subsequent results of this group on the dynamic behavior
of hydration water molecules were published in 2015 (Toppozini
et al., 2015). The researchers prepared oriented d54-DMPC
layers on Si wafers hydrated with H2O vapor and performed
QENS experiments with the LET spectrometer at ISIS. They
also analyzed the QENS data using the KWW function. They
concluded that the dynamics of hydration water molecules is
anisotropic and exhibit a sub-diffusive behavior in nanometer-
length scales.

The most recent results were published in 2017 by Yamada
et al. (2017). They prepared two samples, perdeuterated DMPC
(d67-DMPC) with H2O and protonated DMPC with D2O to

compare the dynamic behaviors of water and lipid molecules.
The DMPC powder was mixed with the appropriate amount of
water to obtain a ratio of 37 water molecules for each DMPC
molecule, which corresponded to nearly the maximum amount
water incorporated between lipid bilayers (Hishida and Tanaka,
2011). In contrast to the experiments previously described, the
mixtures were wrapped with aluminum foil and placed in an
aluminum cylinder cell. The QENS experiments were performed
using the DNA spectrometer inMLF, J-PARC, Japan, at an energy
resolution of 3.6 µeV. Data analysis showed that the hydration
water could be categorized into three types: (1) free water with
dynamic behavior is slightly different from that of bulk water;
(2) loosely bound water with dynamic behavior is one-order of
magnitude slower than that of free water; and (3) tightly bound
water with dynamic behavior is comparable to that of DMPC
molecules. The slow dynamics of loosely and tightly bound water
were also reported based on molecular dynamics simulation,
where the boundwater forming strong hydrogen bonds toDMPC
were observed to have a 20-times smaller translational diffusion
coefficient than that of bulk water (Calero and Franzese, 2019).
The number of the free water was 23, and the activation energy
of the free water was smaller than that of bulk water. It could
be related to the intermediate range order of the hydrated water
reported by Martelli et al. (2018). The sum of the tightly and
loosely bound water was 14, and the fraction depended on
temperature. These results were quantitatively consistent with
those measured by DSC (Aoki and Kodama, 1998) and by
terahertz spectroscopy (Hishida and Tanaka, 2011).

QENS experiments on water and lipid membranes have the
potential to relate the dynamic and structural properties of
water and the functions of biological molecules. In addition, it
has been known that the existence of a significant amount of
loosely bound water, also referred to as “intermediate water”
or “freezable water” in the literature, is considered a key factor
in characterizing bio-compatible polymers (Tsuruta, 2010). The
aforementioned results suggest that QENS could be a major tool
used to clarify the origin of bio-related functions in biology and
in material science.
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