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Insufficient bone matrix formation caused by diabetic chronic inflammation

can result in bone nonunion, which is perceived as a worldwide epidemic, with

a substantial socioeconomic and public health burden. Macrophages in

microenvironment orchestrate the inflammation and launch the process of

bone remodeling and repair, but aberrant activation of macrophages can drive

drastic inflammatory responses during diabetic bone regeneration. In diabetes

mellitus, the proliferation of resident macrophages in bone microenvironment

is limited, while enhanced myeloid differentiation of hematopoietic stem cells

(HSCs) leads to increased and constant monocyte recruitment and thus

macrophages shift toward the classic pro-inflammatory phenotype, which

leads to the deficiency of bone regeneration. In this review, we

systematically summarized the anomalous origin of macrophages under

diabetic conditions. Moreover, we evaluated the deficit of pro-regeneration

macrophages in the diabetic inflammatory microenvironment. Finally, we

further discussed the latest developments on strategies based on targeting

macrophages to promote diabetic bone regeneration. Briefly, this review

aimed to provide a basis for modulating the biological functions of

macrophages to accelerate bone regeneration and rescue diabetic fracture

healing in the future.
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1 Introduction

According to the World Health Organization (WHO), more

than 422 million people are currently suffering from diabetes

mellitus (DM), of whom 90% to 95% have type 2 DM (T2DM)

(1–3). Among sits complications, the disruption of normal skeletal

system is documented as the most common complication of

T2DM (1–3). The healing times of fractures in DM patients have

extended by 87% more commonly, and the risk of fracture-related

complications have magnified 2.2-6.4 fold higher (3–5). Recently,

bone regeneration in DM patients has attracted more attention

as aging population is growing with increasing cases of metabolic

diseases. The impairment of glucose and insulin metabolism results

in an imbalance between osteoclastogenesis and osteogenesis

fracture-related complications have magnified 2.2-6.4 fold higher

(6). The accumulation of advanced glycation end products (AGEs)

and the amplification cascade of reactive oxygen species (ROS)

signaling promote collagen cross-linking and the generation of

activated osteoclasts (7). Furthermore, the alterations caused by

DM in skeletal muscle and vasculature can also affect bone

regeneration. These direct or indirect effects could hinder bone

metabolism and remodeling under DM conditions, leading to bone

regeneration deficiency and non-healing of bone wounds (8–12).

Unfortunately, the existing bone repair strategies are mostly focused

on the healthy individuals, which may not be applicable to DM

patients. Undoubtedly, there is an urgent need to explore novel

strategies to improve bone regeneration and rescue diabetic

fracture healing.

Macrophages can be found in a wide range of tissues, such as

bone tissues, where they assist in maintaining homeostasis from

embryonic development till adults (13, 14). Activated

macrophages are generally divided into two major

differentiation phenotypes, classically activated macrophages

(M1-l ike macrophages) and alternatively act ivated

macrophages (M2-like macrophages). M1-like macrophages

play a role in pro-inflammatory response, while M2-like

macrophages are mainly involved in anti-inflammatory

response and tissue regeneration. Macrophages present

different phenotypes and functions through their polarization

in response to the changes in the microenvironment (15).

Macrophages in the defect microenvironment of damage sites

can precisely control immune response and osteogenesis at all

stages of bone regeneration, whether the early inflammatory

stage or the later repair stage (16, 17). The osteoblast function is

susceptible to bone resident macrophages, as evidenced by

targeted macrophage depletion which results in a reduction of

osteoblastic bone formation (13, 18). The alteration of bone

marrow (BM) niche in the diabetic microenvironment disrupts

macrophage metabolism and functional plasticity, which

prevents the macrophages switching to the pro-repair M2 like

macrophages (19–22). Therefore, it is believed that strategies
Frontiers in Immunology 02
targeting the macrophages may help promote diabetic

bone regeneration.

In this review, we elaborated the origin and function of

macrophages, and the mechanism of how niche macrophages

affect osteogenesis under DM conditions. Focusing on the loss of

pro-regeneration of macrophages in diabetic inflammatory

microenvironment, we summarized the latest developments in

the strategies targeting macrophages to promote diabetic bone

regeneration. This review aims to provide a basis for modulating

macrophage function and behavior to improve bone

regeneration and rescue diabetic fracture healing in the future.
2 The origin of macrophages is
dependent on the environmental
niches

Differences in the environmental niches within or between

tissues endow macrophage subsets with the ability to coexist

with unique homeostasis in different tissues (23). The

heterogeneity in different tissues determines different origins

of macrophages in the ecological niche.

Macrophages in brain and epidermis have the ability to

renew themselves throughout life, independent of monocytes

(24). Macrophages in liver, dermis, and intestine, show

particular origin patterns during different developmental stages

(25). For example, macrophages seeded in the intestinal mucosa

from embryonic precursors show extensive proliferation in situ

during the neonatal period, but it is almost entirely dependent

on the continued replenishment of circulating monocytes in

adult mice (26). In embryonic and postnatal arteries,

macrophages are generated from CX3CR1+ precursors and

BM-derived monocytes, respectively. In adulthood, the

functional homeostasis of macrophages in artery is maintained

by cell proliferation via the CX3CL1/CX3CR1 axis, rather than

the recruitment of monocytes (27). Together, these findings

provide a clue for the niche of macrophages in bone. The

specificity of bone environmental niche and the accessibility of

localnichesduringbone regeneration (steady-state/unsteady-state)

may serve as a pivotal driver for the source of bone macrophages.
2.1 The origins and types of
macrophages in physiological bone
tissues

During the stage of embryonic hematopoiesis, HSCs move

into bone to form bone tissue-resident macrophages (TRMs).

TRMs in bone can proliferate modestly and the balance between

osteoblast and osteoclast. The population of bone TRMs is

mainly maintained by cell proliferation during adulthood,
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instead of recruiting monocytes (28, 29). Importantly, bone

TRMs can promote angiogenesis and matrix mineralization,

which is driven by bone-specific niches under the regulation of

autocrine/paracrine factors, to maintain bone homeostasis (30).

Based on their own specific functions, TRMs in bone and

BM can be divided into HSCs-niche macrophages, erythroblastic

island macrophages, osteal macrophages (31). Especially, HSCs-

niche macrophages can sense the niche signals and adjust their

states accordingly, including quiescence, differentiation, self-

renewal and movement (32). CXCL12 signal in the niche

binds to CXCR4 on the cell membrane of HSCs-niche

macrophages (33) and then maintain the quiescence of HSCs

under steady state (34). Rather, granulocyte colony stimulating

factor (G-CSF) signaling can promote HSCs mobilization and

reduce HSCs-niche retention (35). Granulocyte-colony

stimulating factor receptor (G-CSFR) bound with G-CSF in

HSCs-niche macrophages and induce macrophage polarization

to the M2-like subtype (36).

Osteoclasts is a classic representative of bone TRMs, which

exists at all stages of bone healing (37). As a subpopulation of

bone-BM tissue macrophages, embryonic erythroid progenitor

(EMPs)-derived osteoclast precursors are generated separately

from the HSCs lineage, and osteoclasts from EMP and HSC

lineages may have the potential for cell-cell fusion (38).

Osteoclasts derived from EMPs play important roles in skeletal

development and tooth eruption, whereas HSCs-derived

osteoclasts primarily maintain postnatal bone mass (39).

Osteal macrophages derived from the hematopoietic niche, are

mainly distributed in the periosteal cambium and endosteum

(18). Osteal macrophages play significant roles in initiating bone

healing cascades in vivo (37). Osteal macrophages do not express

tartrate-resistant acid phosphatase, and there is a clear difference

in CD169 expression that can be used to distinguish them from

osteoclasts (40). In the absence of osteal macrophages, the

osteoblastic niche was disrupted and HSCs were mobilized

into the blood (41).
2.2 The origins of macrophages in the
inflammatory microenvironment

The HSCs can be activated under inflammatory conditions.

Expanded HSCs have the capacity to rapidly modulate responses to

inflammatory stimuli via the paracrine pathway (34), in which

myeloid differentiation is enhanced and more monocytes are

recruited (42). In the inflammatory response along with TRMs

depletion, recruited monocytes can develop as macrophages and

fill the empty niche left by depleted macrophages (43).

Conversely, infiltrating monocytes cannot be obviously observed

in inflammation without depleting TRMs, such as

lipopolysaccharide (LPS)-induced peritonitis (44).
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In the inflammatory microenvironment, TRMs can usually

be repenished by the new macrophages differentiated from

monocytes or proliferated by remaining TRMs, and then

repopulate the macrophage niches (45). In traumatic

inflammatory bone regeneration microenvironment, this

replenishment mechanism acts as the first response of bone

TRMs. After being activated, some TRMs may undergo

apoptosis, leaving the empty niches available for pro-

inflammatory macrophages derived from monocytes (46).

Monocyte-derived macrophages secrete pro-inflammatory

chemokines at the fracture sites, which contribute to microbial

clearance and the amplification of local inflammatory responses,

synergizing with self-proliferation of remaining TRMs to

maintain bone homeostasis to promote osteogenesis and bone

healing (47). In summary, the availability of niches is important

for macrophages participating in bone remodeling and

maintaining bone homeostasis during inflammation.
2.3 The origins of bone TRMs tends to be
from monocytes in the diabetic
microenvironment

Diabetic microenvironment (niche) is an imbalanced

inflammatory microenvironment, which can interfere the

physiological processes of hematopoietic stem and progenitor

cells (HSPCs) and their progeny. Multiple cellular types and

several inflammatory factors can show different degrees of

change in diabetic BM (48).

In the diabetic niche, the number of osteoblasts is

significantly reduced (49). Nestin-positive perivascular cells

have also been impaired. In addition, endothelial cells (ECs)

show increased oxidative stress and permeability, and reduced

migratory in the diabetic niche. Together, these changes result in

the deficiency of HSPCs mobilization. Beyond the changes of

cellular components in the diabetic BM, intra-marrow

sympathetic nerve fibers may be sparser (50). Diabetic BM

displays much more pro-inflammatory cytokines, such as

tumor necrosis factors-a (TNF-a), IL-1b, G-CSF and IL-3.

Besides, it is reported that insulin-like growth factor 1 (IGF-1),

insulin-like growth factor-binding protein 5 (IGF-5),

osteoprotegerin (OPG), and vascular endothelial growth factor

(VEGF), are downregulated in the diabetic BM, which impair the

repopulation of HSPCs and the proliferation of ECs in BM (51).

Hyperglycemia has influence on the expression of microRNAs,

such as the downregulation of miR-155, regulating the

homeostasis, expansion, and differentiation of stem cells (52).

Diabetes mellitus leads to the dysregulation of the entire

myeloid cell lineage from progenitors to terminally differentiated

cells, exhibiting the myeloid bias (53). This myeloid bias or

epigenetic modification could promote more monocytes to
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differentiate into macrophages (54, 55). Indeed, HSPCs can also

be preprogrammed to myeloid lineage by hyperglycemia in vitro.

Myeloid progenitors from diabetic mice are more likely to

differentiate into monocytes than those from the non-diabetic

wild type mice (56).

With continued exposure to the diabetic microenvironment,

bone TRMs is prematurely activated (57, 58). In DM patients,

dysfunctional HSPCs could induce the monocytes to mature

into macrophages and acquire a prolonged pro- inflammatory

phenotype, occupying the limited niche (59). The proportion of

infiltrating monocyte-derived macrophages is increased, while

the regenerative capacity of bone tissue resident macrophages is

limited, resulting in an imbalance of niche macrophages during

bone regeneration (60). Ly6Chi monocytes in the blood of

transplanted donors were labeled with EdU and found that

blood glucose did not affect the migration of monocyte-

derived macrophages from the lesions, and the reduction of

EdU+ cells in the normal and diabetic groups was similar (51).

The increased numbers of Ly6Chi monocytes and circulating

neutrophils are associated with common myeloid progenitors

(CMPs) and granulocyte-macrophage progenitors (GMPs).

Neutrophils are the predominant source of S100A8 and

S100A9, and they are damage-associated molecular pattern

proteins. The expression of both S100A8 and S100A9 is

obviously increased in diabetic BM. Binding of S100A8/A9 to

receptor for advanced glycation end products (RAGE), which is

highly expressed on CMP, induces the secretion of inflammatory

cytokines and the proliferation and expansion of GMP, resulting

in enhanced myelopoiesis (54, 56). Together, we speculate that

the source changes of macrophages in the diabetic

microenvironment may be the vital cause of the persistent
Frontiers in Immunology 04
inflammation and damaged non-union in the process of bone

regeneration (Figure 1).
3 The main roles of macrophages in
bone regeneration

Affected by specific extracellular signals in the local bone

regeneration microenvironment, the gene expression programs

in niche macrophages are regulated by lineage-specific

differentiation or specific gene expression programs, and

surface marker expressions appears different, which reflect

great the plasticity of macrophages (61, 62). The chromatin

landscape of tissue resident macrophages in heterogeneous,

leading to higher tolerance to acute inflammation, which could

assist the bone homeostasis and promote the repairment (60, 63,

64). Whereas macrophages from infiltrating monocytes are

more inflammatory, which mainly respond to pathological

signals and participate in the innate and adaptive immune

responses (65).
3.1 Phenotypic and functional changes of
macrophages during bone healing

Macrophages work as critical cells both in physiological and

pathological processes, and if they are depleted, intramembranous

and endochondral osteogenesis could be significantly affected (66,

67). Macrophages with sufficient plasticity integrate multiple

signals from the regenerative environment of bone tissue, and

generate corresponding phenotypes and functions too adapt to
FIGURE 1

The niche of macrophages in bone tissues. HSC-derived macrophages form the tissue-resident macrophages and remain quiescent. The
macrophages in the physiological bone niche are mostly inactive TRMs, maintaining homeostasis through moderate self-proliferation. HSCs
could be activated by the stimulation of inflammation and the myeloid differentiation will enhance, allowing monocytes to circulate into bone
tissue. The niche of resident macrophages can also be selectively activated according to the degree of inflammation, while monocyte-derived
pro-inflammatory macrophages occupy available niches to maintain homeostasis. In diabetes, more available niche are occupied by pro-
inflammatory macrophages, making the bone regeneration micro environment maintaining in a long-term pro-inflammatory state.
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niche changes (22, 68–71). In bone tissue under physiological

condition, the expressions levels of CD86, CD206, macrophage

colony stimulating factor (MCSF), stromal-derived factor-1(SDF-

1) and CD166 in resident macrophages-osteomacs are

substantially higher than those in bone marrow-derived

macrophages (BMDMs). There are also significant differences in

functions such as proliferation, osteoclastogenesis and

phagocytosis (72). CSF-1 and IL-34 could provide essential

trophic factors for survival of niche macrophages (73).

Following the repair process of bone regeneration,

macrophages are polarized according to the level of extracellular

factors (74). This polarization is reversible, and the change of the

ecological niche makes macrophages highly dynamic, which show a

diversity of responses in different stages. The accessibility and

availability of niches undoubtedly determine the functional

transformation of macrophages. In the early stage of bone

regeneration, macrophages act as “scavengers” to remove

microorganisms such as infectious substances and bacteria. At the

same time, inflammatory factors such as TNF-a, IL-1b and IL-6 in

the microenvironment can activate the infiltrating monocytes to

differentiate into pro-inflammatory macrophages. Time and

duration of inflammation significantly affect the composition of

the niche and the outcome of the subsequent bone regeneration

(75). In the primary callus stage, bone resident macrophages

indirectly regulate the matrix microenvironment through

paracrine cytokines to complete the recruitment of stem cells and

their transformation to osteogenic lineage cells. The macrophages

derived from monocytes gradually differentiate and mature

according to the local microenvironment. Macrophages can

switch between M1-like macrophages and M2-like macrophages.

During bone remodeling, the secretion of pro-inflammatory factors

decreases, and IL-4, IL-10, etc. can inhibit the formation of

osteoclasts by inhibiting nuclear factor of activated T cells c1

(NFATC1) (76, 77). The balance of the M1/M2-like macrophage

niche contributes to the pro-osteogenic effect in the later stage of the

repair process, which ultimately determines the quality and

structure of bone.
3.2 Diabetes severely affects macrophage
function during bone regeneration

The metabolic disturbance in diabetes coincides with

changes in the number and phenotype of tissue macrophages.

The metabolism of macrophages involved in bone healing is

affected, both in type 1 DM (T1DM) and T2DM (78, 79).

Enhanced glucose uptake and conversion to glycolysis are key

features of M1-like macrophages, whereas M2-like macrophages

are mainly using fatty acid oxidation and oxidative

phosphorylation. Not only involved in classical inflammatory

macrophage activation, glucose metabolism is also needed for

alternative activation. Inhibition of glycolysis, such as 2-

deoxyglucose (2-DG) can attenuate early M2 marker responses
Frontiers in Immunology 05
to IL-4 by decreasing oxidative phosphorylation (OxPhos)

(80, 81).

3.2.1 Delayed, prolonged inflammatory
response

Loss of mobilization of HSPCs in diabetic BM may

contribute to the insufficient and persistence inflammatory

reactions (82). The deficiency of HSPCs in diabetic BM

is referred to as “diabetic stem cell mobilopathy” (83). As the

classical signals affecting the function and mobilization of

HSPCs, excessive CXCL12 in the diabetic niche can enhance

the adhesion of HSPCs to the matrix (84)and remain in their

niche, unable to mobilize from the BM into peripheral blood

(PB) (85) . Cl inical studies of BM transplantat ion

further suggest that diabetes impairs the mobilization

of HSPCs induced by G-CSF under the imbalanced state of

CXCL12 in blood (84). Moreover, the altered intra-marrow

sympathetic nerve fibers caused by diabetes mellitus, may

reduce the flow of HSPCs and deactivate the mobilization of

HSPCs induced by G-CSF (86). Compared with non-T2D

patients, the level of CD34+ HSPCs in PB of T2DM is

significantly reduced by 30-40% (87). CD45.2 BM cells from

diabetic mice also exhibited a significantly lower engraftment

and repopulation capacity as compared to the cells from the

healthy mice (51).

Cytokine dysregulation in diabetic BM has significant effect

on the induction of a protracted or delayed inflammatory response.

Dysfunctional HSPCs in the diabetic BM can recruit much more

monocytes and differentiate into M1-like macrophages, which

release varying and numerous of pro-inflammatory factors (88).

Morey, et al. reported that accumulated M1-like macrophages can

express at least two-fold pro-inflammatory factors and chemokines

in the in vitro high-glucose environment, including TNF-a, IL-1a,
IL-1ß, IL-6, IL-24, colony stimulating factor 2(CSF-2), leukemia

inhibitory factor (LIF), CXCL1-5, CCL4 and CCL19, etc. (89). The

increased levels of Toll-like receptor 2/4 (TLR2/4) in blood from

T2DM patients can also activate TLRs-MyD88-NF-kB signaling.

The activation of NF-kB can upregulate the expression of various

cytokines, including CCL2, CCL5, CXCL10 and TNF-a
(90). However, short-term exposure to high-glucose in vitro has

been verified to cause monocytes to secrete more IL-10, which

inhibits TLRs signaling and the expression of CCL2 (91). Otherwise,

Bmi1 deficiency in the diabetic BMmay lead to significant defect in

the engraftment and repopulation of myeloid progenitor cells (51).

Bmi1‐knockdown BMDMs can increase the expression level of IL-

10, which promotes the formation of M2-like macrophages (92).

Enhanced myeloid differentiation of Ly6Chi monocytes

in BM (53)is a hallmark of the macrophage polarization,

and the predominance of pro-inflammatory M1-like

macrophages represents a major component in diabetic

environments. Prolonged exposure to high glucose could lead

a progressive increase in cytoplasmic glucose levels, which can

cause increased mitochondrial damage and a shift in monocytes/
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macrophages to a pro-inflammatory macrophage (91). In the

diabetic BM, there is obviously increased proportion of myeloid

progenitors (MyP) and circulating inflammatory monocytes

(Mo) (53), accompanying with excessive inflammatory factors

secretion (89). M1-like macrophages in the diabetic BM can also

raise the production of Oncostatin M (OSM), which induces the

expression of CXCL12 in niche stromal cells and attenuates

HSPCs mobilization, forming chronic inflammatory response

(93). Hyperglycemia always change the phenotype of the

autophagy-lysosomal system, causing mitochondrial ROS-

induced lysosomal dysfunction, which induces more M1-like

macrophage polarization in diabetes state (94). Excessive

ROS acts as a signaling messenger, which links the altered

metabolism and phenotypic changes with the production of

proinflammatory mediators, activating some important

mediators of proinflammatory signaling pathway and inducing

the expression of proinflammatory genes in macrophages by

inducing MAPK, STAT1, STAT6 and NF-kB signaling pathways

(95). The non-enzymatic glycosylation of excessive glucose in

the circulation could accumulate massive AGEs, which can
Frontiers in Immunology 06
activate the MAPK signaling cascade and NF-kB by binding to

RAGE and further contribute to increased pro-inflammatory

effects (96).
3.2.2 Impaired healing
Diabetes altered the macrophage plasticity during wound

repair, making macrophages show hyperresponsiveness to

inflammatory stimuli. The ability to switch from pro-

inflammatory to pro-reparative phenotypes was impaired and

the inflammatory phenotype was prolonged (97, 98). Under

hyperglycemic conditions, the secondary influx of Ly6Chi

monocytes/macrophages delays the conversion to Ly6Clo

monocytes/macrophages, leading to wound healing

impairment. The expression of proinflammatory and

profibrotic gene is quite different between two cell types (99).

At the same time, in peripheral blood, the increase of IL-1b and

the drop of IFN-b in CD14+ monocytes could decrease JAK-

STAT1 signaling, impeding macrophages’ transition to repair

mode (100) (Figure 2).
BA

FIGURE 2

Macrophages in different bone regeneration microenvironments. (A) Macrophages will make adaptations in the local microenvironment. From
the inflammatory stage, callus formation stage to the reconstruction stage, the predominance of pro-inflammatory M1 macrophages will
gradually shift to the pro-repair M2 macrophages. Meanwhile, macrophages have coordinated cross-talk with other osteoblast-related cells,
jointly regulating bone regeneration. (B) The origin of macrophages could change and the function could be impaired under the stimulation of
high glucose, inflammation, AGEs, ROS and other metabolites in diabetes. The increase of monocyte-derived macrophages in the inflammatory
phas and the failure of macrophage polarization during callus formation and bone remodeling stage could ultimately lead to insufficient
osteogenesis.
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4 The strategies based on
macrophages for diabetic bone
regeneration deficiency

Now, more and more bone regeneration schemes have

turned to regulate macrophages. However, since the entire

microenvironment is more complicated in diabetic patients

(101), and the accessibility and availability of niches shift

markedly, intervention methods used under normal

physiological conditions are not yet well suited to solving the

bone regeneration problems in diabetes. Therefore, proposing a

more effective therapeutic strategy still faces many difficulties.

Drugs, biomaterials, and a combination of both, are now

frequently applied as an optimal strategy to promote bone

regeneration and reconstruction by reversing the pathological

state under hyperglycemia condition through modulating

macrophage behavior.
4.1 Decrease of excessive monocyte
recruitment

In diabetic conditions, the macrophage niche alters with the

increase of chemokine levels. Accordingly, chemokine-

chemokine receptor signaling can activate more monocytes to

infiltrate to the area of bone damage. CCL2, for example, can

interact with the receptor CCR2, which exists on the surface of

monocyte, to promote the recruitment of monocytes (102, 103).

It has been suggested that finding drugs to reduce chemokine

levels and reduce excessive pro-inflammatory monocyte

infiltration could therefore be one of the methods to reduce

bone loss and promote bone repair. Shen et al. found that CCL2

levels were up-regulated in the periodontium of diabetic db/db

mice with periodontitis, leading to increased monocyte

recruitment and a positive feedback loop that enhanced and

prolonged the inflammation. Oral administration of Bindarit, a

CCL inhibitor that can reduce serum CCL2 levels, suppressed

the excessive proinflammatory monocyte infiltration in

periodontal tissue, which decreased inflammatory cytokines

secretion. As a result, the alveolar bone loss was rescued and

the periodontal inflammation was alleviated in Diabetes-

associated periodontitis (DP) mice (104).
4.2 Promotion of macrophage
polarization

4.2.1 Activation of phenotype transition with
drug treatment

Since macrophages played an important role in diabetic

microenvironment, finding a drug targeting the biological

behaviors and phenotypes of macrophages, could be a pretty
Frontiers in Immunology 07
good option. There is an imbalance between M1 and M2-like

macrophages in high glucose environment. It’s reasonable to

utilize the switch of macrophage to reverse the diabetes, making

more M2-like macrophages occupy the limited niches and

achieving reprogramming and repolarization of macrophage

(105–107). Xiang et al. reported that, using Bindarit, a

dipeptidyl peptidase-4 inhibitor can repolarize macrophages

from M1-like macrophages to M2-like macrophages in

diabetic mice, promoting angiogenesis and bone regeneration

at the bone-implant interface and suggesting a potential

medication for better osseointegration on the surface of

titanium (Ti) implants for diabetic patients (108).

Drugs can also promote macrophage polarization by altering

the metabolic microenvironment. Glucose at high concentration

destroys the balance between ROS formation and antioxidant

defense. The antioxidant defense system is in the inhibitory state

along with the overproduction of ROS. It has been found that

ROS could produce a marked effect in the induction of M1-like

macrophage polarization (109), so ROS inhibitors could attempt

to be used for adjusting ROS production and decrease M1-like

polarization. Studies have shown that N-acetyl cysteine (NAC)

could act as a ROS scavenge to reduce ROS level, partially

reversing the effect of hyperglycemia on macrophage

polarization and ameliorating alveolar bone loss in

periodontitis in diabetic rats (110). Chen et al. indicated that

the administration of PPARb/d agonist GW501516 can restore

abnormal macrophage polarization and rectify high glucose-

mediated dysfunction via the upregulation of Angptl4. The in

vivo experiment indicated that PPARb/d agonist could decrease

bone loss in diabetic mice, suggesting that PPAR agonist

treatment may potentially become a novel therapeutic target

for clinical therapy (111).

The increased production of AGEs under hyperglycemic

conditions can modulate multiple signals and affect M1-like

macrophage polarization (96, 112). Studies have demonstrated

that, Adrenomedullin 2(ADM2) could reverse AGE-induced

macrophage inflammation and M1-like macrophage

polarization via the PPARg/IkBa/NF-kB signaling pathway,

resulting in transformation into M2 phenotype. Applying

ADM2 to a diabetic rat of Distraction osteogenesis (DO)

model accelerated bone regeneration in distraction area,

suggesting a new treatment for diabetic patients undergoing

DO (113) (Figure 3).

4.2.2 Stimulation of macrophages via drug
delivery system

To develop new drug vector with good operability, adding

materials and drugs together to ensure the continuous release of

drug molecules, may be an efficient solution to bone

regeneration. Microsphere delivery system has been

investigated in a lot of studies (114, 115). Hu et al. developed

an injectable microsphere, which is composed of heparin-

modified gelatin nanofibers. Furthermore, interleukin 4 (IL-4)
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was incorporated into the microsphere (NHG-MS). As IL-4 can

bind heparin, the loading efficiency of IL-4 in NHG-MS

improved obviously, leading to better and more precise release

of IL-4. The results suggested that the NHG-MS with

encapsulation of IL-4 could restore M2/M1-like macrophages

ratio to normal under DM conditions and ultimately enhanced

bone regeneration (116).

Moreover, some materials can assist in achieving local

release of the drug or cytokine, allowing the drug to reach an

effective concentration as quickly as possible to exert more

beneficial effects. Geng et al. devised an injectable silk gel

scaffold loaded with sitagliptin for enhancing bone

regeneration at bone-implant interface in diabetic patients.

The results suggested that utilizing the scaffolds not only keep

the primary action of sitagliptin in macrophage phenotypic

transformation, but also enables the sustained release of

selegiline in situ at the Ti‐bone interface, creating a local

healing-promoting microenvironment and providing a new

solution to implant placement failure due to diabetes (117). In

another study, Chen et al. dispersed hydroxyapatite (HA)

nanocrystals and magnesium oxide (MgO) nanocrystals

homogeneously into the polyglutamic acid (PGA-Cys) to build
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a HA/MgO nanocrystal hybrid hydrogel (HA/MgO-H) scaffold.

It has been reported that magnesium could decrease

inflammation by switching macrophages from M1 phenotype

M1-like macrophages to M2-like macrophages. The dense

structure of the material maintained sufficient mechanical

strength to provide mechanical support, making it hard to be

washed away from the defect site, thus achieving the controlled-

release of Mg2+ at the defect site in diabetic rats (118). Similar

applications were widely utilized. For example, constructing a

gelatin/b-TCP scaffold to deliver IL-4 can help promote the

healing of tooth extraction socket (TES) in T2DM patients, as

the IL-4 delivery system could be helpful to ameliorate the

abnormal polarization (119). A recent study used gelatin, 4-

arm poly (ethylene glycol) acrylate (PEG) and gelatin

methacryloyl (GelMA) to prepare 3D bioprinted scaffolds,

which carried RAW264.7 macrophages, bone marrow

mesenchymal stem cells (BMSCs) and BMP-4-loaded

mesoporous silica nanoparticles (MSNs). Owing to the better

mechanical properties of the scaffolds and the application of

MSNs, sustained release of BMP-4 coule be ensured. The results

showed that BMP-4 promoted the polarization of M2-like

macrophage. Using this new material, the repair of the
FIGURE 3

Application of drugs to modulate macrophages in the diabetic microenvironment. Drugs could promote bone regeneration in diabetes through the
following ways: (1) Decreasing the excessive recruitment of monocytes; (2) Inhibiting the overproduction of ROS; (3) Inhibiting the level of AGEs.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.990457
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2022.990457
calvarial critical-size defect in diabetic rat got accelerated

significantly (120). Li et al. incorporated polydopamine-

mediated graphene oxide (PGO) with hydroxyapatite

nanoparticle (PHA) into the alginate/gelatin (AG) scaffold

(121). Due to the catechol groups on the PHA and PGO, the

material demonstrated advantages in antioxidation and helped

prevent excessive amount of ROS. The scaffold could inhibit M1-

like macrophage polarization and significantly increase M2-like

macrophage polarization via activating the RhoA/ROCK

signaling pathway, showing positive effect on periodontal bone

regeneration in diabetes rat model.
4.2.3 Guiding of macrophage switching by
material modification

Conventional biomaterials put more emphasis on immune

escape, as they were generally thought as a trigger of the immune

response that has a negative impact on bone regeneration (122).

Therefore, a series of inert biomaterials have been manufactured,

aiming to minimize adverse immune reactions (123, 124).

However, recognizing the importance of macrophage

repolarization (37), studies on biomaterials have been driven

to a new direction, focusing more on how to promote

repolarization of macrophages. Modifying the properties of the

material surface is one of the leading methods.

The properties of biomaterial surface, like morphology and

wettability, can trigger different cellular response (125). It is

possible to create an anti-inflammatory microenvironment

through innovating material features (123, 126). Several

clinical trial studies reported that implants with a hydrophilic

surface showed a good survival and successful rate in patients

with diabetes mellitus. Hotchkiss et al. cultured macrophages on

seven different surfaces, and the results showed that micro-

rough Ti lead to anti-inflammatory macrophage (M2-like)

activation. Moreover, compared to hydrophobic material, the

improvement of surface wettability could help produce a better

microenvironment. Therefore, it can be considered as a

cooperative strategy based on roughening the surface and

increasing the hydrophilicity (125). The study of Lee et al.

showed that the modSLA surface could promote the

differentiation to M2-like macrophage while attenuating the

pro-inflammatory response. It helped restore the homeostasis

of the immune microenvironment, thus accelerate the osseous

repair in Type 2 diabetic rats (127). Furthermore, the modSLA

surface played similar role in streptozotocin-induced type I

diabetic rats, which could regulate the inflammatory response

in early stages and promote M2-like polarization (128).
4.2.4 Modulation of macrophages through
electrical microenvironment construction

Electrical signals can regulate the functions of macrophages

(129), and hence can be considered to promote macrophage

phenotypic transition by using materials with good electrical
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properties. Dai et al. modeled electrical microenvironment

inside natural bone by polarizing BaTiO3/poly (vinylidene

fluoridetrifluoroethylene)(BTO/P(VDF-TrFE)) nanocomposite

membrane. The polarized membrane affected the cell

morphology and inflammatory cytokine secretion, which

aba t ed M1- l i k e mac rophage po l a r i z a t i on in the

hyperglycaemia states and increased the regeneration of bone

in rats with type 2 diabetes mellitus. Mechanistic research

indicated that the expression of AKT2 and IRF5 in the PI3K-

AKT pathway was inhibited when applying the membrane,

causing the hindrance of AKT2-IRF5/HIF-1a signaling (130).

Considering that electrical microenvironment has a great impact

on osteoimmunomodulatory and osteanagenesis, electrical

characteristics become a growing interest in studies on

biomaterials for guiding bone regeneration (Figure 4).
5 Summary and prospect

In recent years, there is a growing realization that alterations

on the origin and phenotype of macrophages could be

responsible for the persistent inflammation and impaired non-

healing during diabetic bone regeneration. The niche of immune

microenvironment is out of balance in the diabetic

microenvironment. Indeed, some strategies targeting

macrophages, applying drugs and materials, have led to some

improvement in bone regeneration in diabetic conditions.

However, as existing studies failed to clearly explain the

molecular mechanisms in the switch of macrophages, and the

interactions between macrophages of different functional

phenotypes and related cells such as BMSCs and ECs were not

elucidated, therapeutic options remained somewhat limited and

non-specific, and the actions of relevant drugs were relatively

homogeneous, making them more difficult to target macrophage

during bone regeneration. It is difficult to precisely modulate

bone regeneration at different stages in which macrophages are

actively involved. Thus, the search for better and more effective

treatment options for diabetic bone regeneration targeting

macrophages is still challenging.

We believe that diabetic bone regeneration strategies

targeting macrophages should gradually evolve towards multi-

direction, individualization and precision. For example, new

drugs should be developed so that they can not only control

patients’ blood glucose levels, but also alter the abnormal

microenvironment to promote bone regeneration. In addition,

the physical and chemical characteristics of biomaterials need

further exploration and fully utilization to establish a more

precise drug release control system. The precise release of

drugs for bone damage can be accomplished according to the

fluctuation of specific indicators in different patients and

different types of diabetes (131). Therefore, to develop an ideal

treatment, there is an urgent need in basic research on the

molecular mechanism of macrophage regulation and the
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interaction between different cells to achieve the precise

regulation of macrophages in the diabetic microenvironment

and reverse the imbalance of niche, which may provide more

ideas and new directions for improved bone repair and

regeneration in diabetic patients.
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Application of materials targeting to macrophages. Strategies on material application to promote diabetic bone regeneration mainly include
these aspects: (1) Guiding of macrophage switching by material modification, such as changing the surface roughness and wettability; (2)
Stimulation of macrophages via drug delivery system, achieving better anchoring of drugs at the site of injury; (3) Modulation of macrophages
through electrical microenvironment construction, creating a local pro-polarizing microenvironment to promote the transmission from M1 to
M2 macrophages.
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