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Guangjie Zhao, Qian Wang, Shuang Li and Xiaoqin Wang*

Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China

The nucleoside analogs decitabine (5-AZA-dC) and azacitidine (5-AZA) have been
developed as targeted therapies to reverse DNA methylation in different cancer types,
and they significantly improve the survival of patients who are not suitable for traditional
intensive chemotherapies or other treatment regimens. However, approximately 50% of
patients have a response to hypomethylating agents (HMAs), and many patients have no
response originally or in the process of treatment. Even though new combination
regimens have been tested to overcome the resistance to 5-AZA-dC or 5-AZA, only a
small proportion of patients benefited from these strategies, and the outcome was very
poor. However, the mechanisms of the resistance remain unknown. Some studies only
partially described management after failure and the mechanisms of resistance. Herein,
we will review the clinical and molecular signatures of the HMA response, alternative
treatment after failure, and the causes of resistance in hematological malignancies.

Keywords: decitabine, azacitidine, hypomethylating agents, resistance, acute myeloid leukemia,
myelodysplastic syndrome
INTRODUCTION

DNA methylation, which adds a methyl group to the cytosine base in the context of a CpG
dinucleotide by DNA methyltransferases (DNMTs), is a crucial epigenetic modification that
regulates gene expression in normal tissue development, aging, and disease (1, 2). In many
cancers, DNA methylation in CpG islands by DNMTs, which is associated with gene repression,
is closely related to disease pathogenesis and progression (3). The Ten eleven translocation (TET)
family mediates the formation of unmethylated cytosines through passive demethylation during cell
division or active demethylation via the base excision repair pathway (4). Given that DNA
methylation is a reversible process, expressing silenced genes and reprograming cells to a
normal-like state by inhibiting DNMTs may have treatment potentials, leading to the research
and development of DNMT inhibitors for cancer treatment. Two DNMT inhibitors, 5-AZA and
5-AZA-dC have been successfully applied in the clinic (5).
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Hypomethylating agents (HMAs) are the first-line regimen
for treating patients with intermediate and high-risk
myelodysplastic syndrome (MDS) and significantly improve
the overall survival (OS) (6). Some studies reported that HMA
treatment in MDS cannot prolong the OS, but it was associated
with improvement in patient-reported quality of life (QOL) and
reduced leukemia transformation (7, 8). The application of
HMAs to elderly patients with acute myeloid leukemia (AML)
who were ineligible for intensive chemotherapy conferred an
overall or disease-free survival advantage (9). However, there
were clinically significant differences in the achievement of red
blood cell transfusion independence or survival between
azacitidine- and decitabine-treated older AML patients (10). In
other tumors, such as ovarian cancer, melanoma, prostate
cancer, and relapsed or refractory diffuse large B-cell
lymphoma, HMAs are mainly used in combination with
standard chemotherapy to improve the activities of cytotoxic
drugs (11–15).

The active tri-phosphorylated metabolite of 5-AZA-dCTP,
which is catalyzed and formed by intracellular kinases, is
directly incorporated into DNA. For 5-AZA, the majority of 5-
AZA-CTP is incorporated into RNA, whereas the remaining part
is converted to 5-AZA-dCTP by ribonucleotide reductase (RNR)
and is incorporated into DNA during replication (16). Since the
cytotoxic action of 5-AZA-dC and 5-AZA is a result of its
incorporation into DNA, it is an S-phase-specific agent and
produces much greater cell kill of long phase cells than of
plateau-phase cells (17, 18). In the process of DNA methylation,
DNMTs establish covalent bond with the cytosine ring and are
subsequently released after methylation, while the reaction is
blocked with azacytosine. The covalent protein adducts impair
the function of DNA and trigger DNA damage signaling, resulting
in the degradation of “trapped” DNMTs by the proteasomal
pathway (19). DNMT1 (preferentially), DNMT3A, and
DNMT3B mutation at the catalytic site are still sensitive to 5-
AZA-dCTP-mediated degradation. This indicates that covalent
bond formation between DNMTs and 5-AZA-dCTP-incorporated
DNA may not be necessary for its degradation (20), and the
alternative process is not known. 5-AZA-dC treatment also
increases the level of E3 ligase, TNF receptor-associated factor 6
(TRAF6), leading to the ubiquitination of DNMTs and lysosome-
dependent degradation (21).

Anticancer activities of HMAs are executed by inducing the
expression of tumor-repressor genes, stimulating immune
responses, and reducing oncogene expression and angiogenesis,
resulting in cell differentiation and death as well as inhibition of
cell proliferation and the stem cell niche (22). However, the
overall response rate (ORR) in intermediate- and high- risk MDS
patients was approximately 50% or less (23), and some of them
lost response during treatment. HMA treatment had no benefit
in patients with chronic lymphocytic leukemia and non-
Hodgkin’s lymphoma (24). The causes of the inefficiency and
responsiveness remain unknow. In this review, we will shed light
on the signatures predicting response to HMAs, combination
strategies to overcome resistance, and the mechanism
of resistance.
Frontiers in Oncology | www.frontiersin.org 2
PREDICTING THE RESPONSE TO HMAS

Clinical Parameters
To evaluate the clinical response of patients with myelodysplasia
or AML receiving treatment, the International Working Group
(IWG) published and revised standard response criteria,
including alteration of the natural history of the disease,
cytogenetic response, hematologic improvement (HI), and
quality of life (QOL) (25, 26). Complete remission (CR),
partial remission (PR), and HI are standard clinical parameters
for predicting response. Bone marrow blasts > 15%, abnormal
karyotypes, and previous treatment with low-dose cytosine
arabinoside have been reported to be independent indicators
for lower response rates in MDS patients treated with 5-AZA
(27). However, adverse cytogenetics (intermediate and poor),
including chromosome 7 deletion, were confirmed to show
higher response rates (28, 29). The WHO classification, and
IPSS risk category were close to patient survival, but the response
rate could not be predicted. In contrast, platelets ≥ 100 × 10^9/L
and WBC<3.0 × 10^9/L before treatment, and platelet count
recovery by the second cycle of 5-AZA-dC treatment can be used
as an early predictive marker of response (30–32).

Mutation
A series of gene mutations drive clone expansion and malignant
transformation (33) and are significantly prevalent in
hematological disorders. Studies have shown that TET2 and
DNMT3A mutations (29, 32, 34) are linked to improved
response to HMAs in MDS and related disorders; P53
mutation also predicted 5-AZA-dC -induced complete
remission in patients with MDS (35). In contrast, mutations in
ASXL1, CBL, RAS and SF3B1 genes are not associated with the
prediction of response to treatment (32). According to a study of
15 gene mutation analyses in CMML patients, no somatic
mutations (SRSF2, TET2, ASXL1, NRAS, DNMT3A, RUNX1,
U2AF1, TP53, JAK2, KIT, KRAS, SF3B1, EZH2, IDH1 and
IDH2) were significantly correlated with response to 5-AZA-
dC (36). FLT3-ITD mutation did not affect the overall response
rate (ORR) in patients with AML (37). Notably, an unbiased
framework on investigating the role of several mutations in
predicting HMA resistance in MDS showed that EZH2
mutation predicted a lower response, while IDH1 mutation
was linked to a higher response rate; seven different mutation
combinations including ASXL1, NF1, EZH2, TET2, RUNX1,
SRSF2 and BCOR predicted the resistance to HMAs (38, 39). Wu
et al. reported the co-occurrence of RUNX1 and ASXL1
mutations that were associated with a poor response to HMAs
(40), it was summarized in Table 1. This indicates that the HMA
treatment response might be affected by two or more mutations.

DNA Methylation
A critical mechanism of HMAs in anticancer treatment is
demethylation. More researchers have explored the role of
DNA methylation or demethylation in predicting the HMA
response. Global hypomethylation (predominantly in CpG
islands and CpG island-associated regions) was correlated with
September 2021 | Volume 11 | Article 706030
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the response in AML patients treated with low-dose 5-AZA.
However, for some genes such as LINE1, HOXA5, P15, and H19,
the alteration of DNA methylation after treatment cannot
predict response (41, 42). K Raj reported that the baseline level
of P15 methylation was much lower in responders than non-
responders (43). However, one study suggested that gene
methylation (ERa, NOR, CDH1, NPM2, OLIG2, CDH13,
CDNK2B, PGRA, PDZ and RIL) at baseline did not correlate
with clinical response to 5-AZA-dC, in which a significant
correlation between reduced methylation after more than four
cycles of treatment and clinical responses was observed (44).
Owing to the identification of some epigenetic enzyme
mutations, and given that concurrent hypermethylation and
hypomethylation after treatment complicated the predictive
factors of the HMA response, DNA methylation cannot be
used as a marker to predict the response to HMAs (45). While
some methylation regions were still able to potentially predict the
response, 167 differentially methylated regions (DMRs) of DNA
at baseline, which were preferentially located at distal regulatory
regions, distinguished responders from non-responders in
CMML patients (36).

Gene Expression
Gene expression may be a predictive marker for HMA response.
In AML patients treated with 5-AZA-dC, different gene
expression patterns can be used to identify the 5-AZA-dC
response. Genes such as SLC24A3, MUM1, TNFSF9, DBN1,
ABAT, and DDX52 were highly expressed, manifesting the
response to treatment; in contrast, overexpression of IFI44L,
IFI27, PDK4, MX1, FAS, and ITGB2 were uncorrelated to HMAs
(46). CXCL4, CXCL7, CJUN, and CMYB were highly expressed
in non-responder patients with CMML (36, 47). Although these
genes are related to the inflammatory pathway, the mechanism
by which the altered expression of these genes affects HMA
responsiveness is not clear.

As described previously, DNMTs are implicated in DNA
methylation, the expression levels of DNMTs might be related to
the 5-AZA-dC response. In breast cancer, patients with high
DNMT3A and DNMT3B protein expression levels, and to a less
extent, DNMT1, were more sensitive to 5-AZA-dC (21). The target
of DNMTs, micro-29b, was highly expressed in responsive AML
patients and could predict the response (48). Gene expression
TABLE 1 | Gene mutation and HMA response.

Mutation status Patients with
mutation

Good Response
correlation

Reference

TET2
DNMT3A
IDH1/IDH2
TET2+/-DNMT3A
ASXL1
CBL
KRAS/NRAS
SF3B1

17/92 MDS/MPN/AML
8/92 MDS/MPN/AML
7/92 MDS/MPN/AML
24/92 MDS/MPN/AML
24/92 MDS/MPN/AML
3/92 MDS/MPN/AML
2/92 MDS/MPN/AML
12/92 MDS/MPN/AML

Yes
Yes
Yes
Yes
No
No
No
No

(32)

TET2
DNMT3A
IDH1/IDH2
NPM1
DNMT3A+NPM1
FLT3-ITD
FLT3-TKD
CEBPA

8/46 AML
8/46 AML
7/46 AML
9/46 AML
5/46 AML
3/46 AML
1/46 AML
5/46 AML

No
Yes
No
No
Yes
No
/
No

(34)

TET2
DNMT3A
ASXL1
CEBPA
TP53
U2AF2
RUNX1
SRSF2
ITIH3
WT1
GATA2
BCOR
SETBP1
STAG2

13/109 MDS
17/109 MDS
16/109 MDS
0/109 AML
15/109 MDS
15/109 MDS
10/109 MDS
5/109 MDS
13/109 MDS
2/109 MDS
5/109 MDS
3/109 MDS
6/109 MDS
7/109 MDS

No
No
No
/
Yes
No
No
No
No
No
No
No
No
No

(35)

TET2
DNMT3A
IDH1
KRAS
NRAS
SF3B1
TP53
SRSF2
EZH2
KIT
JAK2
U2AF1

17/40 CMML
5/40 CMML
1/40 CMML
1/40 CMML
8/40 CMML
1/40 CMML
3/40 CMML
21/40 CMML
1/40 CMML
2/40 CMML
2/40 CMML
4/40 CMML

No
No
/
/
No
No
No
No
/
No
No
No

(36)

FLT3-ITD
NPM1

7/34 AML
34/126

No
No

(37)

TET2
DNMT3A
IDH1
IDH2
ASXL1
CBL
KRAS
NRAS
SF3B1
NPM1
CEBPA
TP53
U2AF1
RUNX1
SRSF2
EZH2
KIT
JAK2

93/367 MDS
62/367 MDS
17/367 MDS
23/367 MDS
134/367 MDS
19/367 MDS
10/367 MDS
32/367 MDS
52/367 MDS
22/367 MDS
9/367 MDS
52/367 MDS
51/367 MDS
65/367 MDS
73/367 MDS
33/367 MDS
3/367 MDS
21/367 MDS

No
No
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No*
No
No

(38)

(Continued)
TABLE 1 | Continued

Mutation status Patients with
mutation

Good Response
correlation

Reference

WT1
GATA2
BCOR
NF1
ZRSR2
EVT6
PRPF8
PRPN11

11/367 MDS
10/367 MDS
34/367 MDS
29/367 MDS
19/367 MDS
18/367 MDS
17/367 MDS
17/367 MDS

No
No
No
No
No
No
No

IDH1/IDH2 7/35 AML Yes (39)
RUNX1+ASXL1 18/84 MDS No* (40)
September 20
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mutually affects DNA methylation. Loss of MLL5, a novel histone
lysine methyltransferase, was associated with resistance to low-
dose 5-AZA-dC, reduced global DNA methylation in promoter
regions, and reduced DNA demethylation (49). Reduced
methylation of phosphoinositide-phospholipase C beta1 in the
promoter region and subsequent high mRNA expression after
5-AZA treatment predicted the responsiveness (50).
OPTIONS AFTER HMA FAILURE

Even though HMAs treatment showed prolonged survival in
patients, the response was almost transient, many patients lost
sensitivity within two years (51). After HMA failure, patients
with MDS or AML receive traditional AML-like chemotherapies,
which include low-dose cytarabine, the combination of
cytarabine and daunorubicin, purine nucleoside analogs, or
investigational treatment (inhibitors targeting PD-1, CTLA-4,
Ras, BCL-2, IDH1 and IDH2 mutations, TLR-2, AXL, TGF-beta,
spliceosome, NED88 activating enzyme), some of which also
benefit from switching to another nucleoside analog (52–72). We
have summarized this in Table 2. Novel forms of HMAs, which
could be taken orally, could potentially change the routine of
administration (73). Compared to intravenous administration,
the oral form of cedazuridine/decitabine (ASTX727) produced
similar decitabine exposure and efficacy and was recently
approved by the FDA (74). However, there is still a lack of
randomized controlled trials that compare the investigational
drugs with and without HMA to a single use of HMA, and
whether target therapies combined with HMA could improve the
OS or ORR remains unknown. In addition, CD47, CD33/CD3
antibody, FLT3 inhibitors and autophagy inhibitors (ROC-325)
are also being investigated for the treatment of naïve high-risk
MDS/AML and refractory/relapsed AML (75–78), and
autophagy inhibitors may be very promising treatment options
for hematological malignancies in the future. The efficiency of
these novel treatments in relapsed or refractory AML/MDS after
HMA failure is unknown. We believe that the administration of
these novel drugs should be based on the molecular
characteristics of patients who relapse after HMA treatment.
RESISTANCE TO HMA

Membrane Transporters
Hydrophilic drugs, such as 5-AZA and 5-AZA-dC, are taken up
into the cells by human membrane nucleoside transporters
(hNTs), which include equilibrate nucleoside transporters
(hENT1, hENT2, hENT3, hENT4) and concentrative
nucleoside transporters (hCNT1, hCNT2, hCNT3) (79).
However, 5-AZA and 5-AZA-dC exhibited different nucleoside
transportability profiles. All seven hNTs showed the ability to
transport 5-AZA, hCNT3 showed the highest transportation
efficiency, whereas hENT1 and hENT2 showed modest and
hCNT1 and hCNT3 showed poor transportation of 5-AZA-dC
(80). In fact, hENT1 mainly takes up 5-AZA-dC in a Na+
Frontiers in Oncology | www.frontiersin.org 4
independent manner, which determines the activity of 5-AZA-
dC in human HCT116 cancer cells (81). The expression level of
these genes may determine the concentration and activity of 5-
AZA and 5-AZA-dC in the cells. A study of 12 patients showed
that in primary AML blast cells, hENT1 mRNA expression was
highly abundant compared to hCNT1, hCNT3, hENT2 and
hCNT2, and the transportation of 5-AZA also predominantly
depended on the activity of hENT1 (82). To determine how
transporters mediate resistance to 5-AZA-dC, Wu et al.
measured the expression levels of hENT1 and hENT2 in 98
patients with MDS and found that patients responding to 5-
AZA-dC displayed significantly higher hENT1 expression levels
than non-responders, whereas hENT2 did not (83). However,
Qin et al. reported that the gene expression of hENT1, hENT2,
hCNT3 was not different between responders and non-
responders in 14 MDS patients, and these genes expression
were also comparable at diagnosis and relapse (84). We still do
not know whether these patients who achieved a response
initially and finally relapsed showed reduced expression of
hENTs in a large population, and whether MDS/AML patients
with AZA resistance had low expression levels of hNTs
compared to responders. Notably, the development of lipid
nanocapsules (LNCs) to encapsulate 5-AZA-dC showed high
activity in 5-AZA-dC resistant and sensitive leukemia cells and
could potentially bypass these transporters (85).

Metabolism of HMA
After being transported into the cells, 5-AZA and 5-AZA-dC
were catalyzed by a series of enzymes including deoxycytidine
kinase (DCK), uridine cytidine kinase 2 (UCK2), cytidine
deaminase (CDA), and carbamoyl-phosphate synthetase
(CAD). 5-AZA-dC was converted to 5-AZA-dCTP and
incorporated into DNA; however, most 5-AZA was
incorporated into RNA as 5-AZA-CTP, and only 10%–20% is
translated into 5-aza-dCTP after multistep catalyzation (21).
Therefore, researchers believe that insufficient metabolites of 5-
AZA and 5-AZA-dC might result in HMA resistance because of
aberrant expression of metabolic genes. By measuring the
expression of several genes encoding metabolic enzymes, Gu
et al. found that mRNA expression of UCK2 and CDA increased
in 5-AZA-dC treated MDS patients at relapse, while DCK
expression was decreased compared to pre-treatment levels. In
contrast, at relapse, DCK expression was upregulated while
UCK2 and CDA expression was reduced. The expression of
the de novo pyrimidine synthesis enzyme CAD increased in
patients who resisted to both 5-AZA-dC and 5-AZA (86). In
another study of 32 MDS patients who were either resistant or
sensitized to 5-AZA-dC, DCK and CDA gene expression levels
were comparable, but the ratio of CDA to DCK was significantly
higher in non-responders than in responders, suggesting that
this could be a mechanism of primary resistance (84). Mutations
in genes that encode metabolic enzymes may affect HMA
metabolism, and switching mutation of DCK from
heterozygosity to homozygosity impaired the 5-AZA-dC
sensitivity in the HL-60 cell line. However, no such mutation
has been found in MDS patients (84, 87). In addition, the sterile
alpha motif and histidine-aspartate domain-containing protein 1
September 2021 | Volume 11 | Article 706030
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(SAMHD1) is a 2’-deoxynucleoside-5’-triphosphate (dNTP)
triphosphohydrolase that interacts with DAC-TP (not AZA-
TP) and influences DAC efficacy in leukemia cells. SAMHD1
expression is inversely correlated with the clinical response to 5-
Frontiers in Oncology | www.frontiersin.org 5
AZA-dC in AML patients (88). We summarized them in the
Figure 1A. This indicates that gene expression related to dNTP
metabolism potentially interferes with 5-AZA or 5-AZA-dC
activity and needs further investigation.
TABLE 2 | Different strategies for patients with HMA failure.

Treatment Patients Response Median OS Reference

DAC After AZA failure 36 CMML
or MDS

3 marrow CR, 2 SD+HI-E,1 SD+HI-P, 1 SD+HI-E. 7.3 (52)

14 MDS ORR, 19.4% 6 (53)
25 MDS/MPN ORR, 28%. 3, CR, 1 HI. 5.9 (54)
6 MDS (High risk) No response, ORR, 0 8.9 (55)
4 s-AML No response, ORR, 0 7 (56)
21 MDS ORR, 3/4. 2 pCR, 1 HI. 17.8 (57)

ORR, 19%, 1 mCR, 3 HI.
AZA after DAC failure 10 MDS ORR, 40%. 2 mCR,2 HI. 22 (57)
Chemotherapy
intensivea 13 MDS ORR, 31% 4.4 (55)

35 MDS ORR, 3/22 8.9 (58)
low dosea 32 MDS ORR, 0/18 7.3 (58)
IA 10 AML, 10 MDS 2 CR, 1 mCR in AML 6b (59)

2 mCR in MDS 7b

7+3 173 MDS, 30 AML CR+iCR 39%, 63% 9.3, 8 (60)
IDAC 44 MDS, 12 AML CR+iCR 64%, 25% 10.9, 6.9
PNA 90 MDS, 17AML CR+iCR 34%, 21% 12.9, 4.4
Clofarabine 20 MDS ORR 33% 7.8 (61)
HSCT 37 MDS ORR, 13/19 19.5 (58)

2 MDS ORR, 2/2 6.9 (55)
1 AML, 4 MDS 1 AML CR, 2 CR in MDS 14, 24b (59)
68 MDS/CMML 3 y RFS, 23% not available (62)

Lenalidomide 38 MDS ORR,36.8%, 7 CR, 1 mCR, 3 PR, 3 HI-E 15.4 (63)
Lenalidomide+AZA 3 MDS 3 CR 5,7,7b (64)
Vorinostat+cytarabine 40 MDS ORR, 6/40. 2 CR, 2

CRi, 2 HI
9.1 (65)

SGI-110 (GDAC) 56 MDS/AML ORR, 14.3%, 2 CR, 3 HI, 2 mCR, 1 PR 7.1 (66)
Bemcentinib (AXL inhibitor) 43 AML/MDS

Recruiting
Phase II Waiting NCT 03824080

CPX-351 23 MDS (anticipated)
Recruiting

Phase II Waiting NCT 03957876

Recruiting Phase I Waiting NCT 02019069
Recruiting Phase II Waiting NCT 03672539
Recruiting Phase I Waiting NCT 03896269

Enasidenib (IDH2 inhibitor) Recruiting Phase II Waiting NCT 03383575
AG-120 (IDH1 inhibitor) Recruiting Phase II Waiting NCT 03503409
OPN-305 (TLR-2 antibody) 51 low risk

MDS
ORR, 50% not available (67)

Rigosertib 199 AML/MDS/CMML ORR, 27% 8.2 (68)
Rigosertib Recruiting Phase III Waiting NCT 02562443
Rigosertib+AZA 17 MDS ORR, 59% not available (69)
Nivolumab 15 MDS ORR, 13%, 0 CR/PR 8 (70)
Ipilimumab 20 MDS ORR, 35%, 3 CR/PR 8
Nivolumab+
Ipilimumab 7 MDS ORR 39% 8.4 (71)
Durvalumab Recruiting Phase II Waiting NCT 02281084
Pembrolizumab Recruiting Phase I Waiting NCT 02936752
H3B-8800 Recruiting Phase I Waiting NCT 02841540
Venetoclax+/-AZA 70 MDS (anticipated)

Recruiting
Phase I Waiting NCT 02966782

Venetoclax Recruiting Phase I Waiting NCT 03404193
Pevonedistat+
AZA

71 MDS (anticipated)
Recruiting

Phase 2 Waiting NCT 03238248

Sotatercept 36 low-risk MDS ORR, 58% not available (72)
Septemb
er 2021 | Volume 11
CR, complete remission; PR, partial remission; iCR, incomplete remission; SD, stable disease; HI, hematological improvement; mCR, bone marrow complete remission; ORR, overall
response rate; HSCT, hematopoietic stem cell transplantation; s-AML, second AML; IDAC, intermediate- to high-dose cytarabine; PNA, purine nucleoside analog based fludarabine,
cladribine or clofarabine; 7 + 3, cytarabine plus daunorubicin; CPX-351, daunorubicin and cytarabine; H3B-8800, spliceosome inhibitor; PD-1 inhibitor, Nivolumab, Durvalumab,
Pembrolizumab; CTLA-4 inhibitor, Ipilimumab; a, not indicated; b, complete remission duration time.
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AZA incorporation may also be associated with 5-AZA
sensitivity. By applying AZA mass spectrometry (AZA-MS) to
primary bone marrow samples of MDS/CMML patients
undergoing 5-AZA therapy, responders showed greater
incorporation of 5-AZA-CdR into DNA than non-responders;
however, much higher free AZA and AZA-RNA were observed
in non-responders, which may have resulted from a shift in
azacitidine/cytidine nucleotide ratios in the cytoplasm of non-
responders. RNAmethylation was not changed in either group of
patients (89). In this study, it showed that the incorporation of 5-
AZA-dCTP into DNA affected anticancer activity. Given the
difference in the cell cycle, cell viability and gene expression
between 5-AZA and 5-AZA-dC (90), the 5-AZA-CTP-RNA
should have its unneglectable function and worth investigating.

T Cells and Immune Response
Several groups have proposed that the clinical benefits for
patients treated with HMA may be the result of direct
cytotoxic and differential effects or immune responses for
malignant cells. The role of HMA in the frequency and
function of natural killer (NK) cells, T cells, and dendritic cells
(DCs) has been reviewed previously (91). Overall, there is no
Frontiers in Oncology | www.frontiersin.org 6
consensus on how HMA affects the functionality of immune
cells, and the role of DCs and NK cells in HMA responsiveness
remains unknown. In this study, we mainly present the
association of T cells with the HMA response, as briefly
described in Figure 1B.

In a T-cell lymphoma mouse model, 5-AZA-dC stimulated
CD80 expression in malignant cells and upgraded the cytolytic
activity of IFN- g- producing CD8+ T-cells (92). Low-dose 5-
AZA-dC enhanced the activation and proliferation of human
IFN-gamma+ T cells, as well as Th1 polarization and activity of
cytotoxic T cells in solid tumor patients, increased IFN- g+ T cells,
and increased T-cell cytotoxicity predicted improved ORR and
survival (93). In contrast to another study, Zhao et al. reported
that 5-AZA-dC treatment was associated with increased
expression of inhibitory receptors on T cells and reduced T cell
population in elderly patients with AML. When comparing the
differences in T cell differentiation and phenotypes between
responders and non-responders, they found more naïve and
central memory T cells, and inducible T cell costimulatory
(ICOS)-expressing CD8+ T cells in responders, and found a
specific immune signature predicted the response to 5-AZA-dC
(94). These observations suggest IFN-g+ T cells are implicated in
A B

FIGURE 1 | The influence of HMAs on bone marrow cells. (A) 5-AZA and 5-AZA-dC are transported into blast cells or immune cells (T cells, NK cells and DCs) by
hENT1, hENT2, and hENT1-2, hCNT1 and hCNT3, respectively, part of which are catalyzed by CDA and result in degradation. The remaining AZA and 5-AZA-dC
are catalyzed into 5-AZA-CMP and 5-AZA-dCMP by UCK and DCK, separately. In the following process, NMPK and NDPK play a role in the formation of 5-AZA-
CTP and 5-AZA-dCTP. 5-AZA-CTP is mainly incorporated into RNA and possibly promotes the formation of 5-AZA sensitive chromatin structure, which consists of
hnRNPK, DNMT2, NSUN3, CDK9/p-TEF-b and TF. 5-AZA-dCTP depletes DNMTs and increases gene expression, degradation of DNMTs is processed by proteosome
pathway or by upregulating TRAF6 that leads to DNMTs ubiquitination, 5-AZA-dCTP is also activated and becomes hydrolyzed by SAMHD1 in leukemia. Simultaneously,
5-AZA-dCTP activates the transcription of ERV, induces dsRNA formation and facilitates type III interferon response. (B) 5-AZA-dC and 5-AZA inhibit NK cells by
upregulating the inhibitory receptor KIR, or activate the antitumor activities by secreting some cytokines (IFN-Gamma or TNF-Alpha). HMAs induce the expression of CD40
and CD86 on DCs, which interact with CD8+ T cells by CD80/86-CD28 and TCR-MHC I CD8+ T cells communicate with blast cells by TCR-MHC I, PD-1-PDL1, and
CTLA-4-CD80. HMAs increase the secretion of IFN-Gamma and antitumor activity of CD8+ T cells, and the expression of PD-1 and CTLA4 is upregulated as well, which
participate in immune suppression. HMAs decrease the percentage of MDSCs in the bone marrow, which may promote the function of HMA. MSCs secrete IL-6, IL-10,
IDO-1, etc., to inhibit CD8 T cells or directly interact with blast cells by VCAM1-VLA4. Leukemia cells express high level of CXCL4 and CXCL7 to promote the survival of
leukemia cells under the treatment of HMAs. MSC can also secret CXCL7. These interactions and secretion of chemokines or cytokines in the bone marrow, which
potentially mediate the resistance to HMAs, are still not completely understood.
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the 5-AZA-dC response. Of note, 5-AZA-dC inhibited Gamma
Delta T cell proliferation and cytotoxicity, and induced the
expression of KIR2DL2/3 on Gamma Delta T cells, which were
less toxic than negative cells (95), Suggesting that T cell activation
was a double-edged sword and needed further analysis in HMA
responders and non-responders.

Several studies have shown that 5-AZA upregulates the
expression of tumor-specific antigens and cytotoxic T-
lymphocytes. HMA induces the expression of inhibitory
receptors on the surface, such as T cell programmed death-1
(PD-1), PD-L1, PDL-2 and CTLA-4 (96). Persistent expression
and engagement of PD-1 and CTLA-4 results in T cell
exhaustion and tumor immune evasion (97). The expression of
these receptors was associated with resistance to 5-AZA-dC and
5-AZA treatment, and may be exploited by target therapies (96).
Combination treatment with PD-1 antibody showed higher ORR
than 5-AZA-dC or 5-AZA alone in older AML patients who were
ineligible for intensive chemotherapy (98). HMA triggered the
expression of endogenous retroviral (ERV) elements, and
increased the transcription of double-stranded RNA, innate
type I or III interferon response by the MDA5/MAVS/IRF7
pathway (99). However, the difference in ERV activation between
responders and non-responders has not been explored in MDS/
AML. In another study, when comparing the 5-AZA-dC
responders and non-responders, there was no differential
expression of PD-1 before and after treatment (94). In contrast
to a report from Nahas et al. they showed guadecitabine (GDAC)
negatively regulated inhibitory accessory cells by decreasing PD-
1 expressing T cells and AML-mediated expansion of myeloid-
derived suppressor cells (MDSCs) in mouse model, therapy with
guadecitabine resulted in enhanced leukemia-specific immunity
as well, as manifested by increased CD4+ and CD8+ cells
expressing IFN-g (100). These inconsistencies are likely due to
different models in vitro or in vivo, functional assays,
concentration administration, etc.

The 5-AZA not only induces a cytotoxic CD8+ T-cell response,
but also stimulates a shift from cytotoxic to regulatory T cells with
a functional phenotype in proinflammatory Th1 cells, indicating a
potent inhibition of tumor -specific T cell immunity by 5-AZA
(101, 102). Given the inhibitory and activating effects of HMA on
T cells, further research is needed to explore its role in mediating
HMA responsiveness.

Bone Marrow-Derived Cells
Bone marrow-derived cells, mesenchymal stromal cells (MSCs)
and myeloid-derived suppressor cells (MDSCs), are essential
parts of the bone marrow microenvironment in regulating the
immune response (103). In the myeloma microenvironment, 5-
AZA-dC treatment inhibited tumor growth and enhanced T cell
infiltration by depleting monocytic myeloid-derived suppressor
cells (M-MDSCs) (104), which has also been shown in AML
(100). Nevertheless, the percentage of M-MDSCs in non-
responsive pat ients is uncerta in . The phenotypes ,
transcriptome, and epigenomics of MSCs in MDS were
significantly different from those of healthy donors, following
5-AZA treatment, and the gene expression pattern of MSCs from
MDS patients with response was closely clustered with that of
Frontiers in Oncology | www.frontiersin.org 7
healthy donors. MSCs from patients who failed to respond to 5-
AZA and could not be programmed by HMA were associated
with rapid adverse disease transformation (105). MSCs play a
role in immune suppression by secreting high levels of
indoleamine 2, 3-dioxygenase (IDO-1), or other cytokines,
which are generated by DCs and tumor cells as well. IDO-1
expression was associated with the failure of 5-AZA treatment
through immunosuppression, which reduced the number of
infiltrating CD8+ T cells and shortened the overall survival in
high-risk MDS patients (106). IDO-1 inhibitors were
investigated alone or combination with immune checkpoint
inhibitors in the clinic (107). In addition, MSCs also secret
CXCL7 that may promote the survival of cells (108), it was
supported by the report that leukemia cells express high levels of
CXCL4 and CXCL7 which is associated with the HMA non-
responsiveness (36). The impact of MSCs on HMA
responsiveness, the microenvironment in MDS/AML, and
differential mediators secreted by MSCs that are implicated in
HMA non-response remain uncertain.

Hematopoietic Stem Progenitor Cell
Accumulating evidence suggests that leukemia stem cells (LSCs)
are responsible for chemoresistance and leukemia relapse, as they
can self-renew and to differentiate into the heterogeneous lineages
of leukemia cells (109). Even though HMA substantially reduced
the LSC-containing population in patients with CR/iCR, it cannot
eradicate LSC, which will finally re-expand when relapse occurs. In
non-responders, there was no significant reduction in the size of
the LSC-containing population (110). In MDS patients with
monosomy 7, the clonal involvement in dominant CD45RA+
progenitor populations was not reduced following the 5-AZA
response, which indicated the resistance of this compartment
(111). Using RNA sequencing performed on HSPC cells,
Unnikrishnan et al. found that cell cycle arrest predicts resistance
to 5-AZA, and with 5-AZA response, the inflammatory pathway
was activated. Although 5-AZA did not completely eliminate
dysplastic clones upon response, it changed the clonal
contribution, which enabled previously dormant clones with a
lower mutational burden (112). Therefore, targeting LSCs may
potentially improve HMA efficiency and prevent disease relapse.
The LSC targets CD44, CD47, CD33, CD96, TIM-3, and CD123
antibodies are undergoing investigation (113, 114); in particular,
TIM-3 antibody, MBG-453, which targets LSCs and leukemia blast
cells, is used to combinate with HMA, and has shown encouraging
response and durability (115). This will facilitate its clinical
application and further research on LSC target therapies.
CONCLUSION

Clinical studies have shown that patients with intermediate-and
high-risk MDS or elderly old AML receive HMA treatment
preferentially. HMAs have also been widely used in low-risk
MDS (116), in combination with other chemotherapies to
enhance the activity of cytotoxic drugs in leukemia, lymphoma
and other solid tumors (117–119), as maintenance therapy after
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allogeneic hematopoietic stem cell transplantation (allo-HSCT),
and as part of conditioning regimens before allo-HSCT (120–
122). Researchers have been exploring how to predict the
response, cause, and outcome of resistance because of non-
responsiveness in some patients. Clinical parameters, DNA
methylation, gene expression signatures, and specific immune
cell counterparts are promising markers for predicting response.
MicroRNAs, such as microRNA-181 (123), microRNA-29c
(124), microRNA-124 (125), and microRNA-29b (48) were
also associated with HMA response. However, the role of long-
noncoding RNAs (lncRNAs) in predicting HMA responsiveness
and inducing the resistance is unknown.

New combination strategies have been developed to alleviate
the resistance of HMAs and demonstrate the advantages of their
safety and efficiency. It is important that more clinical trials are
conducted to better understand of the mechanisms of resistance.
Recently, Cheng et al. found 5-AZA-resistant MDS and AML
patients showed a significant increase in RNA:m5C and NSUN1/
BRD4-associated active chromatin. HnRNPK interacts with the
lineage-determining transcription factors (TFs), GATA1, SPI1/
PU.1, and CDK9/P-TEFb to recruit RNA-polymerase-II at
nascent RNA, leading to the formation of an AZA-sensitive
chromatin structure (Figure 1A) (126). Notably, 5-AZA
inhibited cytosine 38 methylation of tRNA, a major substrate
of DNMT2, resulting in tRNA hypomethylation (127). These
studies suggested that 5-AZA was involved in RNA
demethylation and that RNA demethylation affects the
sensitivity to HMAs by modeling chromatin.

Importantly, 5-AZA-dC and 5-AZA induce cell cycle arrest at
G1 phase via p21 and G2/M phase via p38 MAPK kinase
pathway (128). However, some reports showed both drugs
induced a G2/M-arrest in P39 and HL-60 leukemia cell lines,
but not in KG-1 and MDS-1 cells (129). They both inhibit cell
proliferation by increasing genes expression, such as Cylcin-D,
p21, MyoD (130). In addition, the gene expression of HO-1
affects the efficacy of 5-AZA-dC by decreasing the expression of
cell cycle related protein p15 (131). High expression of the
melanocyte late-differentiation driver, SOX9, also upregulates
the expression of cyclin-dependent kinase inhibitors (CDKN)
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p27/CDKN1B and p21/CDKN1A that mediate cell cycle exit
with differentiation (132). When comparing the gene expression
differences between MDS patients with HMA non-
responsiveness and HMA responsiveness, Ashwin U, et al.
found that cell cycle quiescence of hematopoietic progenitors
marked AZA non-responders, targeting cell cycle quiescence
might overcome AZA resistance (112). In CMML patients,
HMA non-responders have high expression of CXCL4 and
CXCL7, both of them are related to cell cycle activity (36). It
indicates that cell cycle plays the essential role in HMA resistance
and deserves further investigation.

The immune cells, T cells, NK cells, and DCs are essential
components of the bone marrow microenvironment, which can
be programmed by HMAs and participate in resistance,
Figure 1B. The monocyte subset repartition after treatment is
also a useful tool for predicting HMA response (133). These cells
may antagonize the function of HMAs and promote leukemia
cell survival by interacting with leukemia cells directly or
indirectly secreting a variety of cytokines and chemokines, or
in the opposite way. The functioning of these cells in the bone
marrow to confer HMA resistance is not completely understood.
Single-cell sequencing has the advantage of distinguishing novel
cell populations and plotting gene expression patterns of
different cell types, which will lay the foundation for exploring
the mechanism of HMA resistance.
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