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Gene pair based prognostic signature for
colorectal colon cancer
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Abstract
Background: The identification of high-risk colorectal cancer (CRC) patient is key to individualized treatment after surgery and
reliable prognostic biomarkers are needed identifying high-risk CRC patients.

Methods:We developed a gene pair based prognostic signature that could can the prognosis risk in patients with CRC. This study
retrospectively analyzed 4 public CRC datasets, and 1123 patients with CRC were divided into a training cohort (n=300) and 3
independent validation cohorts (n=507, 226, and 90 patients).

Results: A signature of 9 prognosis-related gene pairs (PRGPs) consisting of 17 unique genes was constructed. Then, a PRGP
index (PRGPI) was constructed and divided patients into high- and low-risk groups according to the signature score. Patients in the
high-risk group showed a poorer relapse-free survival than the low-risk group in both the training cohort [hazard ratio (HR) range, 4.6,
95% confidence interval (95% CI), 2.55–8.32; P< .0001] and meta-validation set (hazard ratio range, 4.09, 95% CI, 1.99–8.39;
P< .0001). The PRGPI signature achieved a higher accuracy [mean concordance index (C-index): 0.6∼0.74] than a commercialized
molecular signature (mean C-index, 0.48∼0.56) for estimation of relapse-free survival in comparable validation sets.

Conclusion: The gene pair based prognostic signature is a promising biomarker for estimating relapse-free survival of CRC.

Abbreviations: CRC = colorectal cancer, EMT = epithelial-mesenchymal transition, GSEA = gene set enrichment analysis, PCPI
= prognosis-clinical prognostic index, PRGPs = prognostic-related gene pairs, PRGs = prognosis-related genes, RMS = restricted
mean survival.
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1. Introduction
Colorectal cancer (CRC) is the third most diagnosed cancer in the
world.[1] Nearly 1.4 million people are diagnosed as new cases of
CRC every year.[2] Although new tests and treatments have been
achieved for the management of CRC, the 5-year survival rate is
only approximately 55%.[3] Surgery remains the first priority
means of curative treatment. However, a proportion of patients
will suffer local recurrences and remote metastases after surgery.
Meanwhile, patients with equal clinical or pathological con-
ditions show unpredictable clinical outcomes, even when treated
similarly.[4] The patients’ genetic heterogeneity contributes most
to the inherent clinical diversity.[5]
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Biomarkers that can estimate the genetic diversity of CRC and
accurately evaluate patient survival can guide new and more
effective clinical management of CRC.[6] For example, consider-
ing the high risk (50–60%) of recurrence, stage III patients are
routinely treated with adjuvant therapy despite potentially
curative surgery.[7] However, stage II patients are not recom-
mended to undergo adjuvant therapy under the current guide-
lines.[8] Studies have reported a 20% to 30% relapse rate for
stage II CRC patients, and the clinical popular staging system
remains ineffective in distinguishing this subgroup,[9] for whom
the toxic side effects may outweigh the benefit of adjuvant
therapy. Therefore, stratification of the subgroup of CRC
patients with a high risk of recurrence and death who have
the greatest requirement for treatment adjustment is needed
beyond the clinical pathological factors.
Regarding prognosis biomarkers, researchers have investigat-

ed the possibility of stratifying patients with CRC based on gene
expression signatures and they have built multigene-expression
signatures that can be used to stratify high-risk subgroups.[10–13]

Although these survival-related signatures hold promise, they do
not perform well when validated in independent cohorts due to
the diversity of data. Gene expression levels sequenced by
traditional approaches require suitable normalization, which is
difficult considering the biological heterogeneity and technical
biases across sequencing platforms.[14] Instead, researchers have
proposed new methods to eliminate the limitations in data
processing, such as normalization and scaling based on relative
ranking of gene expression levels, and have produced robust
outcomes in various studies.[15–17]

In this study, we constructed prognosis-related gene pairs
(PRGSs) to develop and validate an individualized prognostic
signature for CRC.
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2. Materials and methods

2.1. Ethical approval

The researchers were granted approval to conduct the research by
their Departmental Research Ethics Committee at the Beilun
People’s Hospital, Ningbo, China. The study protocol was
approved by the institutional review board of Beilun People’s
Hospital. All the procedures were performed in accordance with
the Declaration of Helsinki and relevant policies in China.
2.2. Data collection

We retrospectively analyzed gene expression profiles from public
CRCcohorts, includingmicroarraydatasets andRNA-seqdata for
The Cancer Genome Atlas (TCGA) of CRC. Normalized CRC
gene expression data sets were downloaded from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/) by GEOquery (version: v2.46.15) package.[18] Four
datasets, that is, CIT cohort (GSE39582,[19] n=566) used as a
training set, TCGA[20] (n=624), Jorissen cohort (GSE14333,[21]

n=226), and De Sousa cohort (GSE33113,[22] n=90) were
included in this study.OnlyCRCpatientswith relapse-free survival
(RFS) were included. Patients in the CIT cohort without adjuvant
chemotherapy (GSE39582,[19] n=300) were used as the training
set, while TCGA[20] (n=507), Jorissen cohort (GSE14333,[21] n=
226), and De Sousa cohort (GSE33113,[22] n=90) were used as
validation cohorts.Overall, we included 1123CRCpatients in our
study (Supplemental Table 1, http://links.lww.com/MD/C546).
2.3. Data preprocessing

All Affymetrix microarrays were normalized with the MAS5.0
method using the affy[23] package (version: v1.56.0). The probe
IDs were annotated with gene symbols using the Affymetrix
annotation file (http://www.affymetrix.com). When multiple
probe IDs matched to an identical gene symbol, the probe ID
with the largest mean of expression values among all probe IDs
was selected to represent the gene.[24] Normalized TCGA RNA-
Seq data and clinical information were downloaded from
FireBrowse (http://firebrowse.org).
2.4. Construction of CRC-specific PRGPs for prognosis
prediction

CIT (GSE39582, n=300) was used as the discovery data-set and
to train the model. Of 21,049 genes, 4746 were used as initial
candidates and were selected on the basis of mean absolute
deviation (MAD)>0.5 and the average expression level must be
beyond the median values of all genes in this data set. Then, we
identified 296 prognosis-related genes (PRGs) using the propor-
tional hazards regression model (FDR P< .01). Among them,
267 genes were measured by all platforms in this study. From
these 267 PRGs, we constructed 35,511 prognostic-related gene
pairs (PRGPs) and then filtered out PRGPs with relatively minor
variation (MAD=0) and 62 PRGPs were kept. Then, we
constructed a PRGP index (PRGPI) using Lasso Cox proportion-
al hazards regression on the training set (CIT, n=300) and 9 gene
pairs were used to define the final model.
2.5. Validation of the PRGPI

The PRGPI prognostic value was evaluated in all stages of CRC
patients and early stages group (stages I and II) in the training,
2

meta-validation, and independent validation cohorts using the
log-rank test. We then combined the PRGPI with other clinical
factors in multivariate analyses. Age and stage were treated as
continuous variables. Stage I was transformed into 1; Stage II was
transformed into 2; Stage III was transformed into 3; and Stage IV
was transformed into 4. The prognostic accuracy of the PRGPI
was estimated using the concordance index (C-index), which
ranges from 0 to 1.0. The prognostic efficiency of the PRGPI was
compared with the existing multigene signature Oncotype Dx
Colon Cancer[25] with C-index.
2.6. Gene set enrichment analysis

We performed gene set enrichment analysis[26] using GSEA
software (http://www.broadinstitute.org/gsea) with 1000 per-
mutations. For the CIT data-set, we took as phenotype the log2
fold change between the gene expression profile of high- and low-
risk groups. Gene sets used in this study were downloaded from
MSigDB (C2 and C5 databases, version 6) (http://www.broad
institute.org/gsea/msigdb/collections.jsp). FDR-adjusted P< .05
or nominal (NOM) P< .05 was used to select statistically
significant gene sets.
2.7. Construction and validation of a composite
prognosis-clinical prognostic index

We integrated age, stage, sex, and the PRGPI risk score into an
entirety prognosis-clinical prognostic index (PCPI) using Cox
proportional hazards regression in the training cohort. The
prognostic efficiency of the PCPI was compared with the C-index
of the PRGPI and depicted by the restricted mean survival (RMS)
curve.[27] A high RMS time ratio represents a large prognostic
difference.

2.8. Statistical analysis

All statistical analyses were performed using R (version: 3.4.2).
Univariate and multivariate Cox proportional hazard analyses of
the PRGPI and other clinical factors with RFS were evaluated
using the log-rank test. The C-index was calculated by survcomp
package[28] (version: 1.28.4). The RMS curve and time ratio were
calculated by survival package (version: 2.41.3). Differences were
considered as statistically significant when P< .05.

3. Results

3.1. Construction and definition of the PRGPs signature

A total of 1123 CRC patients were included in this study
(Supplemental Table 1, http://links.lww.com/MD/C546). The
CIT dataset (n=300) was selected as the training cohort. Within
this dataset, 296 PRGs were identified and 267 overlapped genes
were measured by all platforms in this study. On the basis of the
267 genes, we constructed 35,511 PRGPs. We removed PRGPs
with relative minor variation (MAD=0) and 62 PRGPs were
kept. We then constructed a PRGP index (PRGPI) using L1-
penalized Cox proportional hazards regression on the training
data set and 9 gene pairs (Supplemental Table 2, http://links.lww.
com/MD/C546) were used to define the final model. The PRGP
signature consisted of 17 unique prognostic genes (RPS6KA5,
ITGA5, FSTL3, S100A2, PEX6, KRT17, GZMA, MBTD1,
ZNF468, KLK10, MINPP1, BRIP1, ZNF184, RPS6KC1,
GLMN, WWC3, and C5orf30) and the corresponding
coefficient are shown in (Supplemental Table 3, http://links.
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lww.com/MD/C546). The median value of the risk score was
used as the cutoff to further stratify patients into high and low-
risk groups.
3.2. Validation of the PRGPI as a prognostic factor

The PRGPI significantly classified CRC patients into high- and
low-risk groups in terms of RFS in the training cohort
(Supplemental Table 3, http://links.lww.com/MD/C546 and
Fig. 1A). A multivariate analysis showed that PRGPI high
tumors were associated with a higher risk of recurrence than
PRGPI low ones [hazard ratio (HR) range, 6.86, 95%
confidence interval (95% CI), 3.89–12.12; P< .0001]); the
HR associated with the PRGPI status was higher than clinical
Figure 1. Kaplan–Meier curves of relapse-free survival among colorectal cancer (
(PRGPI) (low and high risk). (A) and (C) Relapse-free survival for patients in the trainin
with stages I and II CRC in the training and meta-validation cohorts. Hazard ratios (
rank tests.

3

and pathologic factors such as age, sex, tumor stage, and tumor
location (Supplemental Table 4 and 5, http://links.lww.com/
MD/C546). Furthermore, the PRGPI significantly classified
early stage CRC patients (I and II) into high- and low-risk
groups (HR range, 4.09, 95% CI, 1.99–8.39; P< .0001)
(Fig. 1B). Similarly, a higher PRGPI was significantly associated
with a worse prognosis at all stages (HR range, 1.76, 95% CI,
1.31–2.36; P=1.46E-4) and early-stage (HR range, 2.03, 95%
CI, 1.26–3.29; P=3.17E-3) CRC patients in meta-validation
(Fig. 1C, D). When testing in independent validation cohorts,
the PRGPI remained highly prognostic for all and early-stage
CRC patients (Supplemental Fig. 1, http://links.lww.com/MD/
C546). In summary, the PRGPI appears to estimate RFS for
CRC.
CRC) patients. Patients are stratified by the prognostic-related gene pair index
g and meta-validation cohorts. (B) and (D) Relapse-free survival among patients
HRs) and 95% CIs are for high and low immune risk. P values are based on log-
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3.3. Biological processes associated with the signature

Patients were stratified into high- and low-risk groups according
to the PRGPI signature, and gene set enrichment analysis (GSEA)
was performed on the CIT dataset. Indeed, genes comprising the
signatures of collagen binding, extracellular matrix, epithelial-
mesenchymal transition (EMT), and focal adhesion—4 programs
widely accepted for their important contribution in a mesenchy-
mal phenotype—were highly enriched for the group with a high
PRGPI signature (Fig. 2).

3.4. Comparison with oncotype Dx colon cancer

We also compared the PRGPI signature with Oncotype Dx colon
cancer,[25] which consisted of a 12-gene signature for stage II and
Figure 2. Gene set enrichment analysis (GSEA). Gene set enrichment analysis confi
CIT data set. P values were calculated by GSEA software.

4

III CRC.We calculated Oncotype Dx risk scores for both training
and validation cohorts. For the CIT data sets, the PRGPI achieved
a higher C-index (mean C-index,0.74) compared with the 12-
gene signature (mean C-index, 0.56) for estimation of RFS. The
PRGPI signature also achieved a higher accuracy [mean
concordance index (C-index): 0.6∼0.62] than Oncotype Dx
(mean C-index, 0.48∼0.53) in comparable validation sets
(Fig. 3).

3.5. Integrated prognostic index by combining the PRGPI

In multivariate analysis, clinical factors (age, stage, and sex) and
the PRGPI were independent prognostic factors in the CIT
dataset, suggesting their complementary value. To improve the
rmed that EMT-related programs were upregulated in the high-risk group in the



Figure 3. C-index comparison between PRGPI and oncotype Dx colon
cancer. Comparison of C-index between oncotype Dx colon cancer signature
and the PRGPI in the training and independent validation cohorts.
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prognostic efficiency, the PRGPI signature was combined with
age, stage, and sex to fit a Cox proportional hazards regression
model using the CIT data set and formed a PCPI as (1.834�
PRGPI)+ (0.999�Sex)+ (0.022�Age)+ (0.845�Stage). On ac-
count of time-dependent ROC curve analysis, the optimal cutoff
for the PCPI signature was chosen at 0.77 to classify patients into
high- and low-risk groups in the meta-training data set (Fig. 4A).
Significantly improved prognostic power was achieved by the
PCPI compared with the PRGPI in the meta-validation cohorts
(Fig. 4B).

4. Discussion and conclusion

Prognostic-related biomarkers are key to the risk stratification of
patients with CRC and the decision regarding treatment. Reliable
prognostic biomarkers are urgently needed to screen patients
who are at highest risk of recurrence and who might require for
additional systemic therapy. Currently, stage, grade, and
microsatellite instability remain the most prevalent ways of
assessing risk for CRC patients. A handful of multigene
prognostic signatures[10–13] has been developed in regard to
CRC, but their accuracy of prognosis estimation remains
uncertain. In this study, we established a prognostic signature
based on 9 PRGPs for CRC and validated it in 3 independent
cohorts. The PRGPI can classify CRC patients into groups with
different clinical and biological outcomes. The PRGPI achieved
higher accuracy than a commercialized molecular biomarker. We
further combined the PRGPI signature and clinical factors and
showed a higher accuracy estimation of RFS in CRC.
Considering the potential heterogeneity of tumors and the

technical bias caused by the sequencing or microarray platforms,
traditional prognostic risk models require appropriate normali-
5

zation of gene expression profiles, which is a difficulty of data
analysis. To identify a robust signature for CRC prognosis, we
used a method that can perform robustly regardless of the
technical biases across different platforms.[29] Our proposed
signature has no need for data preprocessing, such as scaling and
normalization, which is accomplished by relative ranking of gene
expression values and selecting pairwise comparison. This
approach has been reported to generate robust outcomes in
various studies, including cancer subtyping.[15] The risk score
calculated by this gene pair based signature was wholly based on
the gene expression values of single-sample, individualized CRC
patients. This showed the robustness of the PRGPs signature.
The 9 PRGPs contained 17 unique genes. Within these 17

signature genes, only KLK10 has been reported to be an
independent unfavorable predictor of DFS and OS in CRC
patients.[30,31] Overexpression of ITGA5 and S100A2 has
previously been reported to be associated with poor outcome
in nonsmall-cell lung cancer (NSCLC).[32,33] WWC3 down-
regulation is correlated with malignant phenotype and poor
prognosis in human gastric cancer (GC).[34] KRT17 has been
shown to be a possible biomarker in GC promoting tumor
growth, motility, and invasion.[35] Growing evidence suggest that
BRIP1 may have an antioncogenic role, and downregulation of
BRIP1 has been observed in multiple types of cancer.[36] On
account of the unbalanced expression in specific gene pairs,
which might play a more important role than individual genes,
the remaining 11 genes might also play a role in CRC prognosis
prediction.
The limitations of our study should also be confronted for our

study. First, the PRGPI was built on gene expression profiles
generated by RNA-seq or microarray platforms, which are
difficult to promote in routine clinical applications due to their
exorbitant price, long conversion cycle, and requirement of
bioinformatics expertise. Several alternative options may be
worth exploring, such as IHC-based assays derived from
optimized signature genes filtered from the full list of PRGPs.
Second, the training cohort used for constructing the PRGPI was
derived from a retrospective study and contained fresh frozen
samples; hence, the robustness and efficiency of the PRGPI on
FFPE samples are still questionable. More data sets with different
sample properties need to be integrated for extensive validation.
Third, we have only included the microarray data based on
Affymetrix, which might produce selection bias. More sequenc-
ing platforms should be considered to test the robustness of the
PRGPI, such as Illumina and Agilent.
In conclusion, our study developed a novel gene pairs signature

for CRC prognosis estimation.
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