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Abstract

The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies
have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one
study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed
increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression,
and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these
disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies
these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that
mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of
CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and
outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the
same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have
higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate
observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in
future studies of receptor expression on cells exposed to HCV.
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Introduction

HCV entry into target cells is a multi-step process involving

interactions of the viral envelope proteins E1 and E2 with several

cell surface receptors, namely, scavenger receptor class B type I

(SR-BI) [1], the tetraspanin CD81 [2,3], and the tight junction

proteins claudin-1 (CLDN1) [4] and occludin [5] (reviewed in [6]).

Recent studies suggest a role of the CD81- CLDN1 receptor

complex in HCV entry [7–9]. Antibodies targeting the CD81-

CLDN1 interaction effectively blocked the entry of HCV,

including that of escape variants from patient sera [10,11]. The

host cofactors epidermal growth factor receptor (EGFR) and

ephrin receptor A2 (EphA2) mediate HCV entry through

regulation of the CD81-CLDN1 association [12]. CLDN1 also

appears to be necessary for cell-cell transmission of infection

[13,14]. Modulation of the expression of CLDN1 on cells is

expected therefore to alter the susceptibility of cells to HCV

infection.

Two recent studies examined CLDN1 expression on cells

exposed to HCV and made conflicting observations. Reynolds et

al. [15] found a significant increase in CLDN1 expression on

infected cells compared to uninfected cells, suggesting up-

regulation of CLDN1 after infection. In contrast, Liu et al. [16]

found that the mean CLDN1 expression on cells decreased

following HCV infection, suggesting down-modulation of CLDN1

after infection. The latter observation suggests a role for HCV-

mediated CLDN1 down-modulation in superinfection exclusion.

Superinfection exclusion is the process by which a cell once

infected becomes resistant to further infections, and has been

observed with HCV in vitro [16–18]. Cellular superinfection has

important implications in viral evolution via recombination and

may affect disease progression and the emergence of resistance to

direct acting antiviral agents [19], as observed with HIV [20–22].

The conflicting observations above leave unclear the influence of

HCV infection on CLDN1 expression and hence its role in

superinfection exclusion. Here, we present a possible reconciliation

of these conflicting observations.

We recognize that different cells in culture express different

levels of CLDN1 and may consequently be susceptible to HCV

infection to different extents. Cells with high CLDN1 expression

may be more readily infected than cells with low CLDN1

expression. At the same time, cells with high CLDN1 expression

may be outgrown by cells with low CLDN1 expression as the latter

cells may remain uninfected and proliferate unhindered by HCV.

The underlying viral kinetics may therefore skew the distribution

of CLDN1 expression on cells following exposure to HCV and

may explain the above conflicting observations. To test this

hypothesis, we employed a mathematical model of viral kinetics.
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Mathematical models of HCV kinetics and drug therapy have

provided valuable insights into disease pathogenesis and treatment

outcomes [19,23–36]. Recently, we constructed a mathematical

model of viral kinetics in vitro that quantitatively described several

independent observations of the dependence of HCV entry and

kinetics on the expression of CD81 on target cells and estimated

the minimum number of E2-CD81 complexes necessary for HCV

infection [37]. Here, we adapted our model to describe

experiments where cells with a known distribution of CLDN1

expression were exposed in culture to HCV and the resulting

changes in the distribution measured. We found, in agreement

with Reynolds et al. [15], that the preferential infection of cells

expressing high CLDN1 ensured that measurements yielded

higher CLDN1 expression on infected cells than uninfected cells.

At the same time, retarded growth of infected cells compared to

uninfected cells manifested as a shift of the overall CLDN1

expression in culture to lower levels as observed by Liu et al. [16].

Further, our model, without requiring active modulation of

CLDN1 by HCV, provided good fits to the latter data, suggesting

that the role of HCV-induced modulation of CLDN1 expression

in superinfection exclusion may require further examination.

Results

Model formulation
We considered in vitro experiments where a population of target

cells, T , with a known distribution of the CLDN1 expression level

was exposed to HCVcc (cell culture adapted) virions, V . The

distribution of CLDN1 expression on the target cells was well

described by a mixture of two log-normal distributions (Fig. 1). We

divided the target cells into different subpopulations Ti with

distinct CLDN1 expression levels ni, where i~1,2, . . . ,K . We let

the dependence of the relative susceptibility of cells Ti to infection,

Si, on the CLDN1 expression, ni, be characterized by a Hill

function (Methods). Accordingly, Si increased with ni (Fig. 1).

Above a certain ni (<20 fluorescence units), CLDN1 expression

did not limit entry and cells were nearly completely susceptible

(Si&1). Below a certain ni (<5 fluorescence units), cells remained

refractory to infection (Si&0). Following exposure to HCV, cells

Ti were assumed to proliferate, die, and be infected at a rate

proportional to Si, yielding infected cells Ii. Infected cells were lost

at an enhanced rate compared to uninfected cells due to virus-

induced cytopathicity in vitro [38,39]. Free virions were produced

by infected cells and were cleared. We constructed dynamical

equations to describe the ensuing viral kinetics (Methods), which

we solved using parameter values representative of HCVcc

infection in vitro (Table 1).

Dependence of viral kinetics on CLDN1 expression
We found that infection proceeded in three phases (Fig. 2A). In

the first phase, the population of uninfected cells, T , rose because

of cell proliferation. Simultaneously, infection of cells by virions

resulted in the growth of infected cells, I (Fig. 2B). The viral titre,

V , declined initially as viral clearance dominated viral production

from the small population I (Fig. 2B). As I grew, viral production

increased and compensated viral clearance. V then evolved

proportionally to I , indicating the establishment of a pseudo-

steady state between viral production and clearance (Fig. 2B). The

growth of V increased the rate of infection of T ; the loss of T due

to infection then became comparable to its growth by prolifera-

tion, so that, in the second phase, T exhibited a plateau (Fig. 2A).

Not all cells, however, were equally susceptible to infection. For

subpopulations with high CLDN1 expression (Si*1), infection

dominated proliferation. Accordingly, Ti for such subpopulations

declined leaving behind infected cells, Ii (see Si*1 in Fig. 2C).

The total subpopulation TizIi thus reached a plateau (Fig. 2D).

In contrast, for subpopulations with low CLDN1 expression,

proliferation dominated infection so that Ti continued to grow

(Si*0 in Fig. 2C) and the total subpopulation TizIi continuously

increased (Fig. 2D). Thus, in the third phase, T rose again (Fig. 2A)

due to the proliferation of the latter cells. I (and hence V )

Figure 1. Expression of CLDN1 on cells and their susceptibility
to infection. Best-fit (red line) of the normalized distribution of CLDN1

expression,
f nið Þ
fmax
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where fmax is the maximum value of f nið Þ, to experimental data [16]
(red circles). The best-fit parameter estimates (95% CI) are
m1~1:24 1:23{1:25ð Þ, s1~0:49 0:48-0:51ð Þ, m2~1:74 1:62-1:86ð Þ,
s2~1:03 0:97-1:08ð Þ, fmax~0:66 0:65-0:67ð Þ, and x~0:64 0:58-0:69ð Þ.
The corresponding susceptibility, Si , as a function of CLDN1 expression
is also shown (black line). (Inset) Residuals (symbols) of the best-fit to
experimental data; the mean error is 0:0001 and is not significantly
different from zero (line) (P~0:94 using the two tailed t-test).
doi:10.1371/journal.pone.0036107.g001

Table 1. Summary of model parameters and their values
employed.

Parameter Description Value (95% CI) Source

l Proliferation rate constant of
target cells

0.44 d21 [37]

m Death rate constant of
target cells

1.761024 d21 [37]

d Death rate constant of
infected cells

1.161022 d21 [37]

b Infection rate constant of cells
with excess CLDN1 expression

1.261024 mlN(ffuNd)21 [37]

p Viral production rate per
infected cell

2.78 ffuN(mlNd)21 [37]

c Virion clearance rate constant 23.2 d21 [37]

n50
i

CLDN1 expression level at
which Si~0:5

33 (31–35)
fluorescence units

Best-fit
(Fig. 3)

h Hill coefficient 3.3 (3.0–3.6) Best-fit
(Fig. 3)

doi:10.1371/journal.pone.0036107.t001

Claudin-1 Expression Following HCV Infection

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e36107



remained nearly constant in the third phase (Fig. 2B) as new

infections occurred rarely and the lifespan of infected cells

(*100 d) was much larger than the duration of the experiments

(5 d). This triphasic kinetics was analogous to the predictions of

our previous model and corresponding experiments where HCV

infection was limited by CD81 expression [37]. We examined next

whether this kinetics could reconcile observations of CLDN1

expression on cells following exposure to HCV.

Time-evolution of the distribution of CLDN1 expression
We found that following the onset of infection the overall

CLDN1 expression decreased with time, as observed by Liu et al.

[16] (Fig. 3). As a control, no change in the distribution was

observed in mock infected cells. Remarkably, our model provided

good fits to the measured distribution of CLDN1 expression on

cells at day 5 post-infection when the parameters h and n50
i , which

characterize the Hill function defining the susceptibility, were

adjustable. Note that no down-modulation of CLDN1 by HCV

was assumed. Cell subpopulations with high CLDN1 expression

reached a plateau by day 5 (Si&1 in Fig. 2D), whereas

subpopulations with low CLDN1 expression continued to

proliferate (Si&0 in Fig. 2D). Consequently, the latter cells

dominated the culture, explaining the shift in the CLDN1

distribution towards lower mean CLDN1 expression with time

(Fig. 3). This drop in the mean CLDN1 expression also explains

the observed resistance of the cells in culture at day 5 post-

infection to HCV pseudo-particle (HCVpp) entry [16].

Expression of CLDN1 on uninfected and infected cells
We found that the mean CLDN1 expression was greater on

infected cells than uninfected cells at any time post-infection

(Fig. 4A). This followed from the higher susceptibility to infection

of cells expressing more CLDN1. To mimic the observations of

Reynolds et al. [15], we randomly sampled twenty cells from the

infected and uninfected cell populations at different times post-

infection. We found that the average CLDN1 expression on the

infected cells sampled was higher than on the uninfected cells

sampled at all post-infection times considered (Fig. 4B), in

qualitative agreement with the observations of Reynolds et al.

[15] who reported data at day 3 post-infection. The difference

between the mean expression level of the samples became

significant with the progression of the infection (P = 0.14 at day

1 and P = 0.01 at day 3, using the one-tailed unequal variance

Students t-test on the data in Fig. 4B). Again, no active modulation

Figure 2. Model predictions of HCV viral kinetics in vitro. The time evolution of (A) uninfected cells, T , (B) infected cells, I , and viral load, V ,
(C) uninfected cell subpopulations, Ti (solid line), and infected cell subpopulations, Ii (dashed line), corresponding to Si&0 (red) and 1 (cyan) and (D)
total subpopulations, TizIi , corresponding to Si&0 (red) and 1 (cyan). The three phases of infection are marked in (A). Initial conditions:
T(0)~2|105cells; I(0)~0 cells; V (0)~ 2|104 ffu:ml-1 (~0:1 MOI). Parameters employed are listed in Table 1.
doi:10.1371/journal.pone.0036107.g002
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of CLDN1 expression by HCV was assumed. That subpopulations

with higher CLDN1 expression were more susceptible and hence

preferentially infected underlies the observed higher CLDN1

expression on infected cells than uninfected cells.

Discussion

Several recent in vitro studies have observed superinfection

exclusion with HCV [16–18], the mechanistic origins of which are

yet to be established. The superinfection block has been argued to

occur at the level of RNA replication and not at the level of virus

entry [17,18]. The block may also be due to genetic bottlenecks

associated with mitosis (Webster B, Wissing S, Herker E, Ott M,

and Greene W, presented at the 18th International Symposium on

Hepatitis C Virus and Related Viruses, Seattle, Washington,

September 2011). More recently, Liu et al. [16] found that the

mean CLDN1 expression level on cells in culture decreased

following HCV infection suggesting that the superinfection block

could be at the level of entry and due to HCV-induced down-

modulation of CLDN1. Reynolds et al. [15] observed, however,

that CLDN1 expression on infected cells was higher than on

uninfected cells, suggesting an up-regulation of CLDN1 by HCV.

The role of HCV in modulating CLDN1 expression and hence

inducing a superinfection block at the level of virus entry thus

remained unclear. Here, we showed that the different susceptibil-

ities to infection of cells expressing different levels of CLDN1 and

the ensuing viral kinetics may render these conflicting observations

two sides of the same coin. Our model of viral kinetics without

requiring explicit modulation of CLDN1 expression by HCV fit

well the measured distribution of CLDN1 expression on cells

following exposure to HCV in vitro and also described the observed

higher CLDN1 expression on cells infected by HCV than those

uninfected. Thus, the HCV superinfection block in vitro may not be

due to HCV-induced down-modulation of CLDN1.

Although CLDN1 is required for HCV entry, its role in

mediating entry remains to be established. Only recently have

studies identified its association with CD81 as important for entry

[8–12]. Consequently, a mechanistic description of how the

susceptibility of cells to infection depends on CLDN1 expression

remains difficult to construct. Here, we have assumed, based on

our earlier model of the dependence of the susceptibility on CD81

expression [37], that the dependence of the susceptibility on

CLDN1 expression follows a Hill function (Methods). With this

assumption and without requiring explicit modulation of CLDN1

expression by HCV, our model fit the observed distribution of

CLDN1 expression at day 5 post-infection, giving us confidence in

our model. Yet, we cannot rule HCV-induced down-modulation

of CLDN1 out entirely, for it is conceivable that some down-

Figure 3. Evolution of the distribution of CLDN1 expression.
Model predictions (lines) of the normalized distribution of the CLDN1
expression on cells at day 1 (blue), day 3 (light green), and at day 5 (dark
green) post-infection, the latter fit to corresponding experimental data
[16] (green cricles). The best-fit parameter estimates are
n50

i ~33 (31{35) fluorescence units and h~3:3 (3:0{3:6). The other
parameters employed are listed in Table 1. Initial conditions were the
same as in Fig. 2. Inset (A) shows the normalized distribution of CLDN1
expression on mock infected cells (V 0ð Þ~0) at all post-infection times
(lines overlap and are indistinguishable). Inset (B) shows the residual
(symbols) of the best-fit to the experimental data; the mean error is
0:0015 and is not significantly different from zero (line) (P~0:71 using
the two tailed t-test).
doi:10.1371/journal.pone.0036107.g003

Figure 4. Model predictions of CLDN1 expression on infected
and uninfected cells. (A) Time-evolution of the mean CLDN1
expression level on infected (orange) and uninfected (blue) cells. (B)
Average CLDN1 expression on twenty cells sampled from the infected
(orange) and uninfected (blue) populations at different post-infection
times. Error bars represent standard deviations. Parameters and initial
conditions employed were the same as in Fig. 2.
doi:10.1371/journal.pone.0036107.g004
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modulation of CLDN1 expression by HCV along with a different

set of parameters that define the Hill function above would also fit

the observed distribution equally well. Indeed, Liu et al. showed

that coexpression of CLDN1 with the HCV proteins Core and

E1E2 in 293T cells inhibited CLDN1 expression [16]. The relative

extents of the explicit modulation of CLDN1 by HCV and the

shift in the distribution of CLDN1 expression due to the

underlying viral kinetics remain to be delineated fully. Infection

assays with growth-arrested cells [40,41] may facilitate this

delineation. The distribution of CLDN1 expression (or any entry

receptor) would remain unchanged post-infection on such cells if

there were no explicit modulation by HCV over times short

compared to the average life span of infected cells.

Our model assumed that CLDN1 alone limited HCV entry.

However, other receptors may also limit HCV entry. Indeed, in

the experimental distribution of CLDN1 expression at day 5 post

infection (Fig. 3), a tiny peak appears in the high CLDN1 region

possibly because here other entry receptors limit entry. Our model

thus did not capture this small peak. Our model was also limited to

a qualitative comparison with the experiments of Reynolds et al.

[15] because the distribution of CLDN1 expression on the Huh-

7.5 cell line they used was not known and a quantitative

relationship between measured fluorescence intensities and

CLDN1 expression remains to be established. Our aim was to

present a reconciliation of the disparities in the experimental

observations of the modulation of CLDN1 expression following

exposure to HCV, which our study accomplishes despite the above

limitations.

Importantly, our study points to the significance of considering

the underlying viral kinetics in interpreting data of receptor

expression following HCV infection. Several studies have argued

that HCV entry factors are down-modulated in HCV infected

cells. For instance, Liu et al. [16] have suggested that not only

CLDN1 but also occludin expression levels decreased post-

infection in their experiments. Sainz et al. [42] claimed down-

modulation of Niemann-Pick C1-like 1 (NPC1L1), a recently

identified HCV entry factor, following HCV infection. Our study

suggests that the observed reduction in the levels of entry receptors

could be due to the underlying viral kinetics and not necessarily

HCV-induced down-modulation of the receptors. Indeed, long-

term HCV infection in cell culture showed that the mean CD81

expression declined as CD81-low cells refractory to infection

outgrew CD81-high cells susceptible to infection [17,38] and the

cells infected allowed unhindered subsequent HCVpp entry

suggesting minimal HCV-induced down-modulation of CD81

[17]. Thus, whether HCV actively down-modulates entry

receptors remains to be established.

Methods

Initial CLDN1 expression on cells
We fit the distribution of CLDN1 expression on Huh7 cells [16]

using a mixture of two log-normal distributions, given by

f nið Þ~
x

nis1

ffiffiffiffiffiffi
2p
p e

{
(log10ni{m1)2

2s2
1 z

1{x

nis2

ffiffiffiffiffiffi
2p
p e

{(log10ni{m2)2

2s2
2 ,

where m1 and m2 were the means and s1 and s2 the standard

deviations of log10ni, and x was the mixture coefficient (Fig. 1). We

performed the fit using the nonlinear regression tool NLINFIT in

MATLAB and examined the goodness of fit by evaluating

residuals and characterizing them using the two-tailed t-test.

Dependence of the susceptibility on CLDN1 expression
Using reaction-equilibrium to estimate the mean number of E2-

CD81 complexes formed across a virus-cell contact and a Poisson

process to account for stochastic fluctuations, we previously

deduced the susceptibility of cells to infection, Si, to be a

sigmoidal function of CD81 expression [37]. CLDN1 is thought

not to interact directly with E2 but to mediate entry through its

association with CD81. Accordingly, we retained the sigmoidal

form and represented the dependence of Si on CLDN1 expression

using a Hill function, Si~
nið Þh

n50
i

� �h
z nið Þh

, where h is the Hill

coefficient and n50
i is the CLDN1 expression level at which

Si~0:5. Note that Si&0 when ni&0 and Si&1 when niwwn50
i .

Model of HCV viral kinetics
We constructed a mathematical model of HCV kinetics in vitro,

where the susceptibility of a cell to infection was a function of its

CLDN1 expression level. Mimicking experiments, we considered a

population of target cells, T , with a known distribution of the

CLDN1 expression level across cells exposed to HCVcc virions.

We divided the cells into different subpopulations Ti with distinct

CLDN1 expression levels ni, where i~1,2, . . . ,K . We let Si be the

relative susceptibility of cells Ti to infection. Cells Ti were assumed

to proliferate with the rate constant l, die with the rate constant m,

and be infected with the second order rate constant bSi, where b
represents the infection rate constant of cells expressing excess

CLDN1 (Si&1). The resulting infected cells, Ii, were lost with the

enhanced rate constant d due to HCV-induced cytopathicity

[38,39]. We neglected the proliferation of Ii as HCV induces cell

cycle arrest [39,43]. Free virions, V , were produced by Ii at the

rate p per cell and were cleared with the rate constant c. Here, c

represents the combined rate of the natural degradation of virions,

the loss of viral infectivity, and the loss of virions due to entry and

attachment [44,45]. The following coupled dynamical equations

then predicted the time-evolution of Ti, Ii, and V [37]:

dTi

dt
~ l{mð ÞTi{bSiTiV , i~1,2,::,K ð1Þ

dIi

dt
~bSiTiV{dIi, i~1,2,::,K ð2Þ

dV

dt
~p

XK

i~1

Ii{cV ð3Þ

Parameters
We solved the above equations using the initial distribution of

CLDN1 expression on Huh7 cells measured experimentally (Fig. 1)

[16]. We set the initial cell subpopulations to Ti(0)~f (ni)DniT(0),
where T(0) was the total initial target cell population and Dni was

the narrow range of CLDN1 expression that constituted each

subpopulation. We let Dlog10ni~0:05 and K~78; finer discre-

tisation did not alter our results [37]. We allowed h and n50
i to be

adjustable parameters and set the other model parameters

(l, m, d, p, c and b) to values that captured the dynamics of

infection of Huh-7.5 cells with the JFH-1 strain [37]. Model

parameters are summarized in Table 1.

Claudin-1 Expression Following HCV Infection
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Data and comparisons with model predictions
We considered data from recently published studies on the

modulation of CLDN1 expression following HCVcc infection

[15,16]. First, we considered the experiments of Liu et al. [16],

where Huh-7 cells were mock infected or exposed to JFH1 virions

(0.1 MOI) for 5 days. The total cellular CLDN1 expression level

was measured by western blotting and the cell surface expression

level was measured by flow cytometry (Fig. 4A and 4B in [16]). We

digitized data using Engauge digitizer. Using our model, we

predicted the distribution of CLDN1 expression at any time t post-

infection as f ni,tð Þ~ Ti tð ÞzIi tð Þð Þ
�PK

i~1

Ti tð ÞzIi tð Þð Þ. We fit

model predictions of the latter distribution at day 5 to the above

data using the nonlinear regression tool NLINFIT in MATLAB.

We examined the goodness of fit by evaluating residuals and

characterizing them using the two-tailed t-test. We also repeated

the fits with different initial guesses of the adjustable parameters

and found that the fits remained unaltered.

Next, we considered the data of Reynolds et al. [15], where

Huh-7.5 cells were infected with JFH-1 virions and the average

CLDN1 expression on twenty cells from NS5A positive infected,

NS5A negative infected and uninfected populations were found at

day 3 post-infection (Fig. 6F in [15]). To mimic these observations,

we randomly sampled twenty cells each from the infected and

uninfected cells present at any time t and obtained the

corresponding mean and standard deviation of the CLDN1

expression levels on the sampled cells. The probability of choosing

a cell Ti from the population of uninfected cells was

Ti tð Þ=
PK
i~1

Ti(t) and that of choosing a cell Ii from the population

of infected cells was Ii tð Þ=
PK
i~1

Ii(t). We also computed the time-

evolution of the mean CLDN1 expression on all uninfected and

infected cells present in culture as
PK
i~1

niTi tð Þ
�PK

i~1

Ti tð Þ andPK
i~1

niIi tð Þ
�PK

i~1

Ii tð Þ, respectively.
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