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ABSTRACT The processing and analysis of massive
high-dimensional datasets are important issues in preci-
sion livestock farming (PLF). This study explored the
use of multivariate analysis tools to analyze environmen-
tal data from multiple sensors located throughout a
broiler house. An experiment was conducted to collect
a comprehensive set of environmental data including
particulate matter (TSP, PM10, and PM2.5), ammonia,
carbon dioxide, air temperature, relative humidity, and
in-cage and aisle wind speeds from 60 locations in a typi-
cal commercial broiler house. The dataset was divided
into 3 growth phases (wk 1−3, 4−6, and 7−9). Spear-
man’s correlation analysis and principal component
analysis (PCA) were used to investigate the latent asso-
ciations between environmental variables resulting in
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the identification of variables that played important
roles in indoor air quality. Three cluster analysis meth-
ods; k-means, k-medoids, and fuzzy c-means cluster
analysis (FCM), were used to group the measured
parameters based on their environmental impact in the
broiler house. In general, the Spearman and PCA results
showed that the in-cage wind speed, aisle wind speed,
and relative humidity played critical roles in indoor air
quality distribution during broiler rearing. All 3 cluster-
ing methods were found to be suitable for grouping data,
with FCM outperforming the other 2. Using data clus-
tering, the broiler house spaces were divided into 3, 2,
and 2 subspaces (clusters) for wk 1 to 3, 4 to 6, and 7 to
9, respectively. The subspace in the center of the house
had a poorer air quality than other subspaces.
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INTRODUCTION

Monitoring and controlling the indoor environment is
critical for intensive poultry production (Ni et al., 2012).
Unfavorable indoor environmental conditions can
reduce chicken growth and welfare while increase the
risk of disease and mortality (Daghir, 2008). The com-
plex structures of multilayer broiler houses may cause
uneven environmental conditions, particularly in winter,
when ventilation is restricted to reduce the consumption
of heating energy.

Multiple parameters influence environmental condi-
tions in broiler houses including temperature, humidity,
air movement (speed), harmful gases, and particulate
matter (PM) (Ni et al., 2021). Air temperature and
relative humidity are environmental factors that are sig-
nificantly related to broiler mortality, because birds do
not have sweat glands and are highly sensitive to heat
stress (Dawkins et al., 2004; Nawab et al., 2018). Fur-
thermore, inadequate relative humidity can increase the
prevalence of infectious diseases by impairing the animal
respiratory tract (Xiong et al., 2017). Ventilation is a
critical management strategy for ensuring good air qual-
ity, production efficiency, and animal well-being (Luck
et al., 2017). In chicken houses, harmful gases such as
ammonia (NH3) can damage the respiratory tracts of
chickens and humans (Portejoie et al., 2002); while high
concentrations of CO2 can affect animal health and wel-
fare in confined buildings. The impact of particulate
matter on animals and humans dependent on the parti-
cle size, which is commonly measured as total suspended
particles (TSP) with aerodynamic diameters (AD) ≤
100 mm, inhalable particulate matter (PM10) with AD
≤ 10 mm, and fine particulate matter (PM2.5) with AD
≤ 2.5 mm (Banhazi et al., 2008; Bonifacio et al., 2015).
All 3 PM categories are indicators of air quality in ani-
mal buildings.
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Currently, only a few parameters such as temperature, rel-
ative humidity, carbon dioxide, or ammonia are monitored
in typical poultry barns. Environmental control systems
based on a few environmental factors are insufficient for
achieving optimal environmental control during broiler rear-
ing (Martinez et al., 2021). Broiler chicken’s environmental
requirements and management strategies differ depending
on their growth periods, and the relationships between envi-
ronmental variables can also vary (Zhao et al., 2015).With a
single input parameter, such as temperature, as inmost barns
in current practices, environmental control is relatively sim-
ple; however, withmultiple parameters atmultiple locations,
sophisticated data analytics are required to develop optimal
environmental control strategies (Miles et al., 2008).

One of the challenges in precision livestock farming
(PLF) is the processing of massive amounts of data
from various sensors for environmental control. There-
fore, there is a need to develop effective methods for inte-
grating, analyzing, and interpreting data from multiple
sensors. Multivariate analysis and clustering are power-
ful digital technologies for processing large amounts of
data from various sensors for the environmental control
of PLF. Principal component analysis (PCA) and clus-
tering methods have been used to analyze multidimen-
sional data from ecological environments (Kim et al.,
2011; Salvati et al., 2016), genetic analysis (Zhang et al.,
2016), and microbial identification (Hou et al., 2012;
Hug et al., 2015). Principal component analysis and
clustering are widely used for data mining to identify
groups and classify individuals, as well as machine learn-
ing (Thevenot et al., 2013). However, each of these
methods has its strengths and limitations, and their suit-
ability for a particular problem is often determined
experimentally (Mukhopadhyay et al., 2014).

The goal of this study was to explore various data
analytics methods for their suitability and effectiveness
in processing and analyzing multivariate heterogeneous
environmental data from broiler houses during winter.
Specifically, feature selection and principal component
analysis were performed to investigate the latent rela-
tionships among the environmental parameters, and the
key environmental parameters that reflected the indoor
air quality distribution were identified. We also used
clustering methods to cluster the measurement points
throughout the house and evaluated the environmental
quality of each cluster. Cluster division evaluation of
broiler house indoor air quality may help farmers
improving environmental monitoring through strategic
selection and sensor placement.
MATERIALS AND METHODS

An experiment was conducted to collect an array of
environmental data in a commercial multi-layer broiler
barn, including aerosols (TSP, PM10, and PM2.5), NH3,
CO2, wind speed (in-cage and aisle), temperature, and
relative humidity. Spearman correlation analysis and
PCA were used to investigate the relationships between
environmental variables and determine the target
variables that best described the environment in the
broiler house. Clustering analyses were used to evaluate
temporal and spatial variations in the environment
within multiple-layer broiler houses.
Broiler House Description

This study was conducted in a typical commercial
broiler house located in Jiangsu Province (34°250 N, 118°
30 E) from November 19, 2020 to January 20, 2021 with
34,000 one-day-old yellow-feathered broilers. The barn
was 90 m long and 16 m wide, and oriented north-south
(Figure 1). There were 7 rows of cage stacks, each con-
sisting of 3 tiers with a manure belt. The feed lines were
on the sides of each row of cage stack, while the drinker
lines were in the center of each row. The chickens were
fed a diet formulated to meet NRC (2012) standards for
all ingredients and received feed and water ad libitum.
Fresh air entered the house through evenly distributed
air inlets of 27 cm £ 56 cm spaced at 0.64 m along both
sidewalls. There were 20 belt-driven exhaust fans of 1.4-
m diameter (5000 BOX, Big Herdsman, Qingdao, China)
distributed along the south-end wall, while up to 3 fans
located in the middle of the wall opened during the study
period. The design ventilation rate was approximately
0.15 to 1.85 m3/h per bird during the study period. A
simple environmental control system was installed in
the broiler house based on temperature, and a coal-burn-
ing boiler system supplied heating energy for 1- to 5-wk-
old broilers.
Environmental Monitoring

Due to symmetric housing structures and ventilation
operations, only half of the broiler house was included in
the environmental measurement process. The interior
environment of the broiler houses was measured using
multi-attribute sensors at 60 locations (Figure 1). The
environmental parameters measured included TSP,
PM10, PM2.5, NH3, CO2, air temperature, relative
humidity, and in-cage and aisle air movement (speed).
Concentrations of different sizes of PM were measured
using a DustTrak II 8533 aerosol monitor (TSI Instru-
ments Co., Ltd., Shoreview, MN). The concentrations of
NH3 and CO2 were measured using a Korno GT-1000-
X5 instrument (Shenzhen Korno Electronic Technology
Co., Ltd., Shenzhen, Guangdong, China). The air tem-
perature and relative humidity sensors used were Elitech
RC-4HC (Elitech Technology, Co., Ltd., San Jose, CA).
The wind speed sensor used for the in-cage and aisle air
movement measurements was a Testo 425 (Testo SE &
Co. KGaA, Lenzkirch, Germany). All the environmental
measurement sensors were checked and calibrated prior
to the study. The TSP, PM10, PM2.5, NH3, CO2, and air
movement (speed) in the cage and aisle were measured
at 60 points 3 times a week and 3 times a day (8:00 am,
14:00 am, and 20:00 pm). Two people approached the
measurement point from both the front and back, col-
lecting data at the same time. To minimize errors, each



Figure 1. Plan and sectional views of the broiler house with approximate measurement (unit: cm) and 60 measuring locations indicated.
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environmental parameter value was collected after one
minute of stabilization and repeated 3 times. Tempera-
ture and humidity sensors were installed at 60 measur-
ing points to record temperature and relative humidity
at 10-min intervals throughout the study period. To
accurately reflect the bird’s true microclimate, all nine
environmental parameters were measured at or near
their height. All variables were recorded without inter-
ference from commercial broiler production.
Preprocessing of Data and Correlation
Analysis

We divided the data into 3 datasets based on the pro-
duction phases of yellow-feathered broilers: the brooding
period (wk 1−3), growing period (wk 4−6), and fatten-
ing period (wk 7−9). The means of all measured parame-
ters for each location were calculated for each dataset,
which was then subjected to multivariate analysis. A
similar approach has been used in previous studies (Han-
nah et al., 2000; Ouyang et al., 2010).

When 2 features were highly correlated, removing one
of them did not significantly affect the variations in all
measured parameters in the PCA. Thus, the correlation
analysis and PCA may reveal the potential for reducing
the number of environmental parameters (sensors) to be
monitored in barns. The collected data was analyzed by
Spearman’s correlation analysis in R with the Hmisc
package (Harrell, 2022). Feature selection was per-
formed using the Caret package to determine highly cor-
related variables (Peng et al., 2005), with a pairwise
absolute correlation cutoff of 0.9.
Principal Component Analysis

The relationships between environmental variables
were examined using PCA (Wang et al., 2021). In addi-
tion, PCA is typically used as a preprocessing tool before
cluster analysis (Delaval et al., 2021). PCA was per-
formed by using the R package “FactoMineR” (Le et al.,
2008). Principal component loadings were used to deter-
mine the relationships between the original variables
and principal components, while score calculations were
used to display the principal component classification
results for each location.
K-Means Cluster Analysis (k-Means)

A useful approach to k-means clustering for determin-
ing the optimal number of clusters in data without prior
knowledge is to run different simulations with different
k values and then use the silhouette method to assess
clustering efficiency. Based on previous studies (Javed
et al., 2021; Bodereau et al., 2022) and our preliminary
observations, we set the test interval for the k values as
[2, 8]. This test interval was also used for k-medoids and
the fuzzy c-means clustering, as discussed in the follow-
ing sections. The R statistics package was used for
k-means clustering (Grunsky, 2002). The silhouette
method is described in the Cluster validation.
K-Medoids Cluster Analysis

K-medoids clustering is a robust alternative to k-
means clustering (Xu and Wunsch, 2005). Compared
with k-means, k-medoids are less sensitive to noise and
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outliers because they use medoids as cluster centers
instead of means. This study adopted the PAM algo-
rithm using the R fpc package, which is the most com-
mon k-medoid clustering method (Husson et al., 2017).
Fuzzy c-Mean Cluster Analysis

Fuzzy c-mean clustering is widely regarded as a reli-
able algorithm in environmental sciences (Hamedian et
al., 2016). Fuzzy clustering is considered soft clustering,
which differs from k-means and k-medoids, where each
object is assigned exactly to one cluster. Fuzzy c-means
cluster analysis (FCM) involves an additional parame-
ter called the fuzzifier m. The value of m defines the
maximum fuzziness or noise in a dataset. To determine
the optimal value of m, the fitting equation (Eq. 1) was
used to carefully adjust the fuzzifier based on the num-
ber of objects and the dimensions of the dataset
(Schwammle and Jensen, 2010):

m ¼ 1þ 1418
N

þ 22:05
� �D�2

þ 12:33
N

þ 0:243
� �D�0:0406 ln Nð Þ�0:1134

ð1Þ

where N is the number of objects and D is the number of
dimensions of an object. The fclust package was used to
carry out FCM (Ferraro et al., 2019).
Cluster Validation

Cluster validation is indispensable to avoid finding
clusters in random data and to compare different clus-
tering methods. Cluster validation includes clustering
tendency assessment, determination of the optimal num-
ber of clusters, cluster validation statistics, and selection
of the best clustering method. The hopkins package in R
was used to calculate the Hopkins index for assessing
clustering tendency (Cross and Jain, 1982) and Hopkins
values of 0.7 to 1.0 was considered to be acceptable clus-
tering. To determine the optimal number of clusters, the
silhouette coefficient method in the NbClust package
(Charrad et al., 2014) and the factoextra package were
used for both k-means and k-medoids (Kassambara and
Mundt, 2020). For the FCM, the fuzzy silhouette index
from the fclust package was used (Ferraro et al., 2019).
The vegan package was used for the Analysis of
Figure 2. Spearman correlation coefficient results for different
Similarities (ANOSIM) method to compare within-
and between-group similarities (Dixon, 2003). To iden-
tify significant differences between the environmental
variables for the groups formed by cluster analysis,
the Kruskal−Wallis test was performed using the
PMCMRplus package (Kruskal and Wallis, 1987). This
test identifies the parameters responsible for differentiat-
ing the groups formed by clustering. Finally, the best
clustering method was selected based on a combination
of the above results.
Statistical Analysis

All data were analyzed with the R software 4.2.2 (R
Foundation for Statistical Computing, Vienna, Aus-
tria). The details and R-packages of the Spearman corre-
lation analysis, PCA, and clustering analyses (k-means,
k-medoids, and FCM) are mentioned in the previous sec-
tions. Values are expressed as the mean§ standard error
of the mean (SEM). Significant differences were
observed at p < 0.05 or p < 0.01.
RESULTS

General Observations

The statistical results showed that most environmen-
tal variables were significantly different between the 3
growth periods, including TSP, PM10, PM2.5, NH3, CO2,
temperature (TEM), and relative humidity (HUM)
(Table S1). The highest values of NH3, CO2, TEM, and
HUM were observed in wk 1 to 3 than other weeks (p <
0.05), while the concentrations of TSP, PM10, and
PM2.5 were the lowest (p < 0.05); TSP, PM10, and PM2.5
were the highest in wk 7 to 9 than other weeks (p <
0.05), while the other environmental variables were the
lowest (p < 0.05).
As shown in Figure 2, the Spearman correlation analy-

sis indicated that there was a positive correlation
between TSP, PM10, and PM2.5 (RTSP-PM10 = 0.67,
RTSP-PM2.5 = 0.59, RPM10-PM2.5 = 0.85, P < 0.01) in wk 1
to 3. There was also a positive correlation between NH3
and CO2 and between INCAGE and AISLE (RNH3-

CO2 = 0.54, RINCEGE-AISLE = 0.69, P < 0.01). Meanwhile,
NH3 and CO2 had a negative correlation with TSP,
PM10, and PM2.5 (RNH3-TSP = -0.50, RNH3-PM10 = -0.41,
RNH3-PM2.5 = -0.45, RCO2-TSP = -0.36, RCO2-PM10 = -
0.58, RCO2-PM2.5 = -0.79, P < 0.01), and TEM had a
production periods. (A) wk 1 to 3; (B) wk 4 to 6; (C) wk 7 to 9.



Figure 3. Principal component eigenvalues and variance interpretation percentages for different production periods. (A) wk 1 to 3; (B) wk 4 to
6; (C) wk 7 to 9.
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negative correlation with INCAGE, AISLE, and HUM
(RTEM-INCAGE = -0.63, RTEM-AISLE = -0.64, RTEM-

HUM = -0.54, P < 0.01). But in wk 4 to 6, INCAGE and
AISLE were negatively correlated to TSP, PM10, NH3,
CO2, and TEM (RINCAGE-TSP = -0.59, RINCAGE-PM10 = -
0.41, RINCAGE-NH3 = -0.49, RINCAGE-CO2 = -0.59, RIN-

CAGE-TEM = -0.74, RAISLE-TSP = -0.50, RAISLE-PM10 = -
0.50, RAISLE-NH3 = -0.55, RAISLE-CO2 = -0.70, RAISLE-

TEM = -0.75, P < 0.01) and positively correlated to
HUM (RINCAGE-HUM = -0.40, RAISLE-HUM = -0.26, P <
0.05). In wk 7 to 9, most environmental variables (TSP,
PM10, PM2.5, NH3, CO2, and TEM) were positively cor-
related with each other (P < 0.01), with 2 exceptions:
most environmental variables have a negative correla-
tion to INCAGE and AISLE (RINCAGE-TSP = -0.54, RIN-

CAGE-PM10 = -0.56, RINCAGE-PM2.5 = -0.54, RINCAGE-

NH3 = -0.53, RINCAGE-CO2 = -0.48, RINCAGE-TEM = -
0.56, RAISLE-TSP = -0.53, RAISLE-PM10 = -0.54, RAISLE-

TSP = -0.55, RAISLE-NH3 = -0.27, RAISLE-CO2 = -0.55,
RAISLE-TEM = -0.61, P < 0.01); and a negative correla-
tion between HUM and CO2 and TEM (RHUM-CO2 = -
0.53, RHUM-TEM = -0.38, P < 0.01). The feature selection
results showed absolute correlation values greater than
0.9 between PM10 and PM2.5 in wk 1 to 3 and between
TSP, PM10, and PM2.5 in wk 7 to 9.
PCA Results

PCA showed that the first 2 principal components
(PC1 and PC2) were above the scree (eigenvalues > 1)
and accounted for 71.82, 69.05, and 76.14% of the varia-
tion in all measured parameters for wk 1 to 3, 4 to 6, and
7 to 9, respectively (Figure 3). Specifically, in wk 1 to 3
PC1 represented 38.85% of the variance in all measured
parameters, with PM2.5, INCAGE, and AISLE in the
Figure 4. Principal component contribution values (PC 1: x-ax
positive direction and CO2 and NH3 in the negative
direction (Figure 4A); PC2 explained 32.97% of the vari-
ance, with HUM in the positive direction and TEM and
TSP in the negative direction. In wk 4 to 6, PC1
explained 52.93% of the variance, with TSP, PM10,
NH3, CO2, and TEM in the positive direction, and
INCAGE and AISLE in the negative direction
(Figure 4B). PC2 accounted for 16.12% of the variance,
with PM2.5 in the positive direction of PC2, and HUM in
the negative direction. In wk 7 to 9, PC1 explained
51.89% of the variance, with PM2.5, TEM, and CO2 in
the positive direction, and INCAGE and AISLE in the
negative direction; PC2 explained 24.25% of the vari-
ance, with HUM and NH3 in the positive direction
(Figure 4C).
Data Clustering

The Hopkins values for the 3 growth phases were
0.978, 0.997, and 0.968, indicating a clear clustering
trend. Specifically, the 60 locations were divided into 3,
2, and 2 clusters for wk 1 to 3, 4 to 6, and 7 to 9, respec-
tively (Figure S1). Furthermore, FCM yields the same
clustering results based on the fuzzy silhouette index.
The data clusters obtained using different methods

are summarized in Figure 5. In wk 1 to 3 (Figures. 5A,
5D, and 5G), cluster 1 was in the positive direction of
PC1, while clusters 2 and 3 were in the negative direc-
tion of PC1 and were separated by PC2. In wk 4 to 6,
Clusters 1 and 2 were distinguished using PC1. Cluster 1
included INCAGE, AISLE, and HUM (Figures 5B, 5E,
and 5H), whereas Cluster 2 contained the other 6 varia-
bles (TSP, PM10, PM2.5, NH3, CO2, and TEM). Vectors
in PC2 could explain the degree of overlap between
clusters, including PM2.5 and HUM. Furthermore, the
is vs. PC 2: y-axis). (A) wk 1 to 3; (B) wk 4 to 6; (C) wk 7 to 9.



Figure 5. Cluster results of different cluster methods (k-means, k-medoids, and FCM) for 3 production periods.
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k-means clustering results were consistent with the FCM
results from wk 4 to 6. In wk 7 to 9, Cluster 1 integrated
the INCAGE and AISLE vectors of the first principal
component, while cluster 2 housed the remaining vec-
tors. The HUM vector was located between Clusters 1
and 2, indicating some degree of overlap between the
clusters. Variables on the PC2 axis also showed evidence
of overlap.
Cluster Validation

The ANOSIM results of the 3 different cluster meth-
ods (k-means, k-medoids, and FCM) showed greater
between-group dissimilarity than within-group dissimi-
larity for all 3 phases (Figure S2). Tables S2, S3, and S4
further confirm that the 3 cluster methods yielded
similar results (i.e., the same locations were clustered
together by all 3 methods), although slight differences
in the cluster means and standard deviations were
observed.

The spatial distribution of clusters after applying par-
tition-based clustering methods (k-means, k-medoids,
and FCM) revealed that the 60 measurement locations
were divided into different clusters, primarily along the
longitudinal direction of the broiler house (Fig. 6). In wk
1 to 3, Cluster 1 had the highest aerosol concentration
and wind speed among all clusters (P < 0.05), Cluster 2
had the highest temperature (P < 0.05), and Cluster 3
had the highest NH3 and CO2 concentrations and
humidity (P < 0.05). In wk 4 to 6, Cluster 1 had a higher
concentration of aerosols, NH3, CO2, and temperature
than Cluster 2 (P < 0.05) but lower wind speed and
humidity than Cluster 2 (P < 0.05). The statistical
results for wk 7 to 9 were similar to those for wk 4 to 6,
except for humidity, which showed no significant differ-
ences between the clusters in wk 7 to 9 (P > 0.05).
DISCUSSION

Compared with the literature data (Winkel et al.,
2015), the PM10, PM2.5, and CO2 concentrations were
higher. Several factors could explain this finding. First,
as broilers age, the concentration of PM in houses tends
to increase logarithmically. The PM concentration of
particulate matter in the house was also influenced by
broiler feeding activities and farm personnel manage-
ment. Similar NH3 concentration trends were observed
in 2 large mechanically ventilated layer hen houses
equipped with manure belts (Chai et al., 2010). The
CO2 concentrations in this study were higher than those
reported in previous studies (Alberdi et al., 2016; Zheng
et al., 2020). This inconsistency may be due to low venti-
lation and the accumulation of CO2 in broiler houses
during winter. In addition, no significant differences



Figure 6. Distribution of clusters obtained from different cluster methods (k -means, k -medoids, and FCM) for 3 production periods.
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were observed between the in-cage and aisle airspeeds,
with low values in all 3 production phases.

As expected, with an increase in bird body in wk 4 to 6
and 7 to 9, ventilation and wind speed also increased;
therefore, higher wind speeds had a greater influence on
other environmental variables (INCAGE and AISLE).
These results are consistent with previous findings,
which demonstrated that the accumulation of hot and
harmful air with low ventilation in winter, as well as
humidity, is a major factor in environmental control sys-
tems in multiple-layer poultry houses (Zajicek and Kic,
2013; Ni et al., 2017). The feature selection results indi-
cated that PM10 could be excluded in wk 1 to 3 and TSP
and PM10 in wk 7 to 9 for subsequent PCA and cluster-
ing analyses because their effects could be represented
by PM2.5 in the original data. The absolute correlation
value between the in-cage and aisle wind speed variables
was below 0.9, which could be attributed to the different
effects of dilution and dissipation on other environmen-
tal parameters.

The results of the PCA showed that PC1 and PC2
could adequately represent all measured environmental
variables, implying that prediction models, such as
machine learning models, can be used in barns with lim-
ited sensors/measurements of environmental parame-
ters; that is, variable selection feasible. The directional
relationship between the environmental vectors was also
consistent with the Spearman’s correlation results. The
main factors affecting the environmental conditions in
broiler houses were identified by examining the combi-
nations of PC1 and PC2. Table 1 shows that the contri-
butions of environmental variables to PC1 and PC2
varied across production periods. The rankings of the
contributions were also different. The most important
result was that both in-cage and aisle wind speeds were
always on the PC1 axis, and their contributions in PC1
were higher than in PC2, whereas HUM was always on
the PC2 axis, with a higher contribution in PC2 than in
PC1. The stable contributions suggest that INCAGE,
AISLE, and HUM are key variables representing the
other variables in the PCA results.
The clustering results showed that the variables on

the PC1 axis were mainly responsible for cluster division
while the variables on the PC2 axis were primarily
responsible for cluster overlap. Combined with the PCA
results, the in-cage wind speed, aisle wind speed, and rel-
ative humidity could be considered the key variables
representing the indoor air quality distribution in the
broiler house. All 3 variables are closely related to venti-
lation, which is critical for environmental control and
reduction of harmful gases and particulates (Carvalho et
al., 2011; Gillespie et al., 2017). An excess or lack of ven-
tilation may interfere with broiler production (Kucuk-
topcu et al., 2022). The HUM vector was on the PC2
axis throughout all 3 growth periods, indicating that the
humidity distribution pattern was different from the
other environmental variables. This was consistent with
our previous findings, which showed that the cold draft



Table 1. Contributions of environmental variables in PC1 and PC2 for 3 production periods.

Environmental variables

1−3 wk 4−6 wk 7−9 wk Average contribution

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

TSP 3.23 24.05 12.67 2.70 NA NA 7.95 13.37
PM10 NA NA 10.26 0.52 NA NA 10.26 0.52
PM2.5 21.80 5.06 4.26 41.20 17.38 7.57 14.48 17.94
NH3 8.08 8.02 9.70 0.02 7.50 30.66 8.43 12.90
CO2 25.52 2.70 12.29 17.22 18.81 9.89 18.88 9.94
INCAGE 13.94 12.11 14.43 0.27 16.29 2.06 14.89 4.81
AISLE 15.63 9.05 13.52 8.17 15.05 0.05 14.74 5.76
TEM 11.14 18.73 17.53 0.40 22.86 2.79 17.17 7.31
HUM 0.66 20.28 5.33 29.49 2.11 46.98 2.70 32.25

NA, not available because of the feature selection; INCAGE, in-cage wind speed; AISLE, aisle wind speed; TEM, temperature; HUM, relative humid-
ity.
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generated by the outdoor air created a zone with high
relative humidity in the cage rows near the sidewalls.
This finding was also reported by Dain et al., 2022.

The ANOSIM results showed that all 3 methods pro-
duced consistent results and were suitable for analyzing
the environmental data collected for this study. Clusters
containing data from the middle section of the house
consistently had higher concentrations of harmful gases
and higher temperatures, indicating poor environmental
conditions. Interestingly, for wk 1 to 3 there were signifi-
cant differences in PM10 levels between various FCM
clusters. Given that the clustering results of FCM were
identical to those of k-means at wk 4 to 6, FCM seemed
more discriminative than k-means or k-medoids. This
finding broadly agrees with those of other studies on air
pollution area (Yu et al., 2012; Suris et al., 2022). In this
study, fuzzifier m was optimized based on a specific
dataset. However, when the number of objects and the
dimensions were changed in the new dataset, the appro-
priate value of m was determined again. Furthermore,
applying the findings of this study using a different sen-
sor or different broiler houses (e.g., different numbers of
air inlets and outlets, and different building dimensions)
would help ensure its generalization.
CONCLUSIONS

This study found that multivariate data mining meth-
ods can analyze complex datasets describing the envi-
ronmental conditions in a multi-layer broiler house and
extract additional information to facilitate PLF develop-
ment. Spearman’s correlation analysis and PCA indi-
cated that different environmental variables were
correlated in a complex manner during different growth
periods. Spatial variations in environmental conditions
in the broiler house were causally related to in-cage and
aisle air movements (speed) and relative humidity.
Although this observation was limited to the dataset
used in this study and may not be universally applicable
to other conditions, it demonstrated that PCA could be
used to reduce the dimensions of data containing multi-
ple environmental variables, and the results could be
used to optimize the design of environmental monitoring
systems with the least number of sensors. Three different
clustering algorithms (k-means, k-medoids, and fuzzy
c-means clustering) performed well, with fuzzy c-mean
being slightly more discriminative. The clustering meth-
ods divided the broiler house space into 3, 2, and 2 clus-
ters for wk 1 to 3, 4 to 6, and 7 to 9, respectively. The
cluster for data collected in the middle of the house indi-
cated poorer environmental conditions than the other
clusters. This study focused on the effects of individual
environmental variables on overall environmental qual-
ity. Although it is generally agreed that better environ-
mental quality results in better production, the impact
of different environmental parameters on production
when reducing the dimensions of diverse environmental
data should be further studied.
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