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Older adults frequently complain that while they can hear a person talking, they cannot
understand what is being said; this difficulty is exacerbated by background noise.
Peripheral hearing loss cannot fully account for this age-related decline in speech-in-noise
ability, as declines in central processing also contribute to this problem. Given that
musicians have enhanced speech-in-noise perception, we aimed to define the effects of
musical experience on subcortical responses to speech and speech-in-noise perception
in middle-aged adults. Results reveal that musicians have enhanced neural encoding
of speech in quiet and noisy settings. Enhancements include faster neural response
timing, higher neural response consistency, more robust encoding of speech harmonics,
and greater neural precision. Taken together, we suggest that musical experience
provides perceptual benefits in an aging population by strengthening the underlying neural
pathways necessary for the accurate representation of important temporal and spectral
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INTRODUCTION

Hearing speech in a noisy environment is difficult for every-
one, yet older adults are particularly vulnerable to the effects
of background noise (Gordon-Salant and Fitzgibbons, 1995).
Given that everyday activities often occur in noisy environments,
speech-in-noise perception is an important aspect of daily com-
munication. Indeed, difficulty hearing in noise is one of the top
complaints of older adults (Tremblay et al., 2003; Yueh et al,
2003). Additionally, their reduced ability to hear in noise may lead
to the avoidance of social situations where noise is present, result-
ing in social isolation and decreased quality of life (Heine and
Browning, 2002). With widespread population aging (Vincent
and Velkoft, 2010), it is becoming increasingly pressing to under-
stand the age-related changes in communication skills as well as
the underlying biology that contributes to these communication
problems.

Aging has a pervasive impact on the neural encoding of
sound, with delayed neural responses and decreased neural pre-
cision (Walton et al., 1998; Burkard and Sims, 2001; Finlayson,
2002; Tremblay et al., 2003; Lister et al., 2011; Parthasarathy
and Bartlett, 2011; Recanzone et al., 2011; Vander Werff and
Burns, 2011; Wang et al., 2011; Anderson et al., 2012; Konrad-
Martin et al., 2012; Parbery-Clark et al., 2012). While it was once
thought that these effects were an obligatory trajectory of aging,
an increasing body of work contradicts this notion (Thomas and

Baker, 2012). Instead, studies using animal models have suggested
that windows of critical period plasticity can be reopened for
learning (Zhou et al., 2011) and that age-related declines are
reversed with training (de Villers-Sidani et al., 2010). Recently,
we demonstrated that lifelong musical training similarly prevents
such declines (Parbery-Clark et al., 2012), suggesting that inten-
sive auditory experience may act in some capacity as an “aging
antidote.” The study of aging musicians may therefore inform
what constitutes “optimal aging,” fostering the development of
remediation strategies.

Intensive auditory experience, such as that offered by musical
training, enhances brain systems underlying the neural encod-
ing of communication sounds (Pantev et al., 2003; Fujioka et al,,
2004; Schon et al., 2004; Shahin et al., 2005; Magne et al., 2006;
Moreno and Besson, 2006; Marques et al., 2007; Musacchia et al.,
2007; Lee et al., 2009; Tervaniemi et al., 2009; as reviewed in
Kraus and Chandrasekaran, 2010; Besson et al., 2011; Bidelman
et al., 2011a,b; Chobert et al., 2011; Marie et al., 2011; Shahin,
2011), including those aspects of neural encoding that are crucial
for hearing in noise in young adults and children (Parbery-
Clark et al., 2009a, 2011b; Bidelman and Krishnan, 2010; Strait
et al., in press). Despite evidence for a speech-in-noise advan-
tage in older adult musicians (Parbery-Clark et al., 2011a; Zendel
and Alain, 2011), the mechanism through which musical expe-
rience impacts the neural encoding of speech in noise in an
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older population is poorly understood. Here, we aimed to delin-
eate the effects of musical experience on the neural encoding of
speech in noise by assessing speech-evoked auditory brainstem
responses (ABRs) in quiet and noise in a middle-aged population
of musicians and nonmusicians.

We focused our analyses on neural response timing, spectral
encoding, and phase-locking to the stimulus, both in terms of the
temporal envelope and higher-frequency components, because
these elements decline with age (Anderson et al., 2012; Parbery-
Clark et al., 2012; Ruggles et al., 2012), yet are enhanced in
young musicians (Musacchia et al., 2007; Parbery-Clark et al.,
2009a; Strait et al., 2012). Additionally these particular neural
response components are important contributors to speech-in-
noise perception in young adults and children. For example,
there is a well-defined relationship between neural response
timing and hearing in noise, with earlier response timing relat-
ing with improved speech-in-noise perception (Parbery-Clark
et al., 2009a; Anderson et al., 2010). We also know that accu-
rately perceiving and encoding the timbral structure unique
to an individual’s voice facilitates the creation of an auditory
object (Griffiths and Warren, 2004; Shinn-Cunningham and
Best, 2008) and its subsequent segregation from competing
auditory streams (Iverson, 1995). Timbre perception is driven
by both envelope and harmonic encoding (Krimphoff et al.,
1994; McAdams et al., 1995) with both of these components
known to play a role in hearing in noise (Swaminathan and
Heinz, 2012; Strait et al., in press). As such, we hypothesized
that musicians have enhanced neural encoding of the spec-
tral and temporal components of the speech stimulus, result-
ing in a more precise neural representation of this signal. We
were also interested in defining the relationship between these
neural measures and indices of speech-in-noise perception in
middle-aged listeners. To this aim we administered standard-
ized (i.e., Hearing in Noise Test (HINT); Nilsson et al., 1994),
and subjective (i.e., self-report questionnaire of perceived diffi-
culties hearing in noise; Gatehouse and Noble, 2004) measures
of hearing in noise, predicting that the neural measures would
relate to speech-in-noise performance, providing at least a partial
explanation for the middle-aged musician advantage for hearing
in noise.

METHODS

PARTICIPANTS

Forty-eight middle-aged adults (45-65 years, mean age 56 £ 5
years) participated. All subjects had normal hearing for octave
frequencies from 0.125-4 kHz bilaterally <20 dB HL, pure-tone
average <10dB HL. Participants had no history of neurolog-
ical or learning disorders, did not have asymmetric pure-tone
thresholds (defined as >15dB difference at two or more fre-
quencies between ears) and demonstrated normal click-evoked
ABRs (wave V latency <6.8ms at 80dB SPL). No partici-
pant reported a history of chemotherapy, taking ototoxic med-
ications, major surgeries, or head trauma. In addition, all
participants were native English speakers and had normal non-
verbal 1Q: Abbreviated Wechsler’s Adult Scale of Intelligence’s
matrix reasoning subtest, (Wechsler, 1999). All experimen-
tal procedures were approved by the Northwestern University

Institutional Review Board and participants provided informed
consent.

Twenty-three subjects were categorized as musicians, having
started musical training before the age of nine and consistently
engaged in musical activities a minimum of three times a week
throughout their lifetimes. For information relating to partici-
pants’ music practice histories, see Table 1. Twenty-five subjects
were categorized as nonmusicians with 17 having had no musical
training and eight having fewer than 4 years of musical expe-
rience. The groups did not differ in age, hearing thresholds,
sex, or non-verbal IQ (all P > 0.1; Table 2). Participants were
also matched on measures of physical activity [F(;, 47y = 0.032,
p = 0.858], assessed by asking participants to describe the type
and quantity of physical activity they engaged in each week. To
account for varying types of physical activity, “walking” and “bik-
ing” were given half values while “running,” “weight training,”
and other more vigorous activities were given full values. From
these values, the total hours of physical activity per week was
calculated for each participant. Participants were then assigned
a value based on their overall activity level: 0 (<1 h/week), 1
(1-2 h/week), 2 (2-3 h/week), 3 (3—4 h/week), or 4 (>4 h/week);
Table 2. Two musicians and three nonmusicians were left-handed.
In terms of alcohol consumption, 4 musicians and 6 nonmusi-
cians reported never drinking.

Table 1 | Participants’ musical practice history.

Musicians Years of musical Age onset, Instrument
experience years

1 56 5 Violin

2 49 6 Violin

3 43 8 Violin

4 38 9 Violin

5 48 9 Violin

6 54 6 Piano/Violin

7 46 4 Piano/Violin

8 46 6 Piano/French Horn

9 50 7 Piano/French Horn

10 52 6 Piano/Cello

1 51 9 Piano/Viola

12 57 6 Saxophone/Clarinet

13 50 6 Piano/Trombone

14 57 5 Piano

15 45 6 Piano

16 50 6 Piano

17 51 9 Piano

18 49 5 Piano

19 58 5 Piano

20 45 8 Piano

21 52 6 Violin

22 39 6 Piano

23 42 7 Piano

Mean 49 6.5 -

Age at which musical training began, years of musical training and major
instrument(s) are indicated for all musician participants.
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ELECTROPHYSIOLOGY

Stimulus

The speech stimulus was a 170 ms six-formant speech syllable
/da/ synthesized at a 20 kHz sampling rate. This syllable has a
steady fundamental frequency (Fy = 100 Hz) except for an ini-
tial 5ms (onset) burst. During the first 50 ms (transition from
the stop burst /d/ to the vowel /a/) the lower three formants
change over time (F;, 400-720 Hz; F,, 1700-1240 Hz; F3, 2580—
2500 Hz) but stabilize for the 120 ms steady-state vowel. The
upper three formants are constant throughout (Fs, 3300 Hz; Fs,
3750 Hz; Fg, 4900 Hz; See Figure 1). The /da/ was chosen because
it combines a transient (the /d/) and periodic (the /a/) segment,
two acoustic features which have been extensively studied using
auditory brainstem responses (ABRs) (Skoe and Kraus, 2010).
Additionally, stop consonants pose perceptual challenges to both
young and older listeners (Miller and Nicely, 1955; Ohde and
Abou-Khalil, 2001).

Electrophysiologic recording parameters and procedure. ABRs
were differentially recorded at a 20kHz sampling rate using
Ag-AgCl electrodes in a vertical montage (Cz active, FPz

Table 2 | Participant characteristics: means (with SDs) for the
musician and nonmusician groups are listed for age, pure-tone
averages (0.5-4 kHz HL), click wave V latencies, non-verbal IQ
percentiles (WASI Matrix Reasoning Subtest), and physical activity.

Musicians (N = 23) Nonmusicians (N = 25)

Age (years) 55.2 (4.97) 57.3 (5.39)
PTA (dB HL) 8.97 (2.10) 9.60 (3.85)
Click (ms) — wave V 5.32 (1.70) 5.41 (1.32)
1Q (percentile) 81.00 (20.51) 81.89 (20.93)
Physical activity 2.13(1.29) 2.20(1.38)
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FIGURE 1 | Stimulus waveform (A), spectrogram (B), and group
average response (C) for the speech syllable /da/. The group average
response plotted is the older musician response in quiet.

ground and linked-earlobe references) in Neuroscan Acquire 4.3
(Compumedics, Inc., Charlotte, NC). Contact impedance was
2Kk or less across all electrodes. Stimuli were presented bin-
aurally in alternating polarities at 80dB SPL with an 83 ms
inter-stimulus interval (Scan 2, Compumedics, Inc.) through ER-
3 insert earphones (Etymotic Research, Inc., Elk Grove Village,
IL). During the recording session (26 4= 2 min) subjects watched
a silent, captioned movie of their choice to facilitate a restful
state.

Data reduction. Responses were band-pass filtered offline from
70 to 2000 Hz in MATLAB (12 dB/octave, zero phase-shift; The
Mathworks, Inc., Natick, MA) and epoched using a —40 to
213 ms time window referenced to stimulus onset. Any sweep
with an amplitude beyond £35 LV was considered artifact and
rejected, resulting in a total of 6000 response trials for each sub-
ject. The responses of the two polarities were added to minimize
the influence of cochlear microphonic and stimulus artifact on
the response (Aiken and Picton, 2008). Response amplitudes were
baseline corrected to the prestimulus period.

Timing
We manually identified peaks in the subcortical responses gener-
ated by synchronous neural firing to the speech syllable /da/. The
identification provides each peak’s latency and amplitude. Peaks
were labeled according to stimulus onset at time 0 ms such that a
peak occurring at ~33—-34 ms after onset would be called Peak 33.
The first major peak, in response to the onset of the sound, was
identified as Peak 9, those that correspond to the transition were
peaks 33, 43, and 53, and to the vowel were peaks 63-163 at
10 ms intervals (Figure2). Two individuals who were blind to
participant group independently identified each peak. An addi-
tional peak-picker confirmed peak identification and resolved
disagreement between the two.

All participants had distinct transition and vowel peaks
for both the quiet and noise conditions, but onsets were
absent for one participant (a nonmusician) in the quiet

A Quiet Hekk N.S.
05}
0L
305, . ; ; . ;
) 0 20 40 60 80 100 120 140 160 180
El
s .
E B Noise ok ~
05+
0
-05 C 1 1 1 1 1 L i J
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FIGURE 2 | Average brainstem responses to /da/ in musician (red) and
nonmusician (black) middle-aged adults in quiet (A) and noise (B). In
quiet, musicians had earlier neural response timing for the onset and
transition portion; in noise, musicians had earlier neural responses for the
onset and transition, with a marginally significant trend for the vowel.

~p < 0.1, *p < 0.05, *p < 0.01, **p < 0.001.
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condition and for four participants (1 musician, 3 nonmusicians)
in noise. Statistical analyses for onset peak latencies only
included participants with discernible peaks in both quiet and
noise (n = 44). For correlational analyses between peak tim-
ing and speech-in-noise perception, composite peak timing
scores were created for the transition and the vowel regions.
These composite scores were calculated by taking the average
latency of peaks 33-53 for the transition and 63-163 for the
vowel which when reported are denoted as transitionmean and
vowelmean.

Spectral representation: fundamental frequency and harmonics
The neural encoding of the stimulus spectrum was calculated
using a fast Fourier transform in MATLAB. The average spec-
tral amplitudes relating to the transition (20-60ms) and the
vowel (60-170 ms) regions were determined by using 20-Hz bins
centered around the frequencies of interest which included the
fundamental frequency (Fp) and its subsequent integer harmon-
ics Hy—Hjo (200-1000 Hz, whole integer multiples of the Fy).
These values were used for all statistical analyses except for cor-
relations for which we created a composite harmonic score by
averaging the H,—H;¢ bins, representing the strength of overall
harmonic encoding.

Stimulus-to-response—envelope analyses and waveform
correlation

To measure the effect of noise on the neural response we
employed two types of stimulus-to-response correlations. The
first was to assess the effect of noise on the global envelope encod-
ing by calculating the degree of correlation between the envelope
of the stimulus and each participant’s neural envelope encoding in
the quiet and noise conditions. The second was to assess the effect
of noise on neural response morphology by calculating the degree
of similarity between the stimulus waveform and each partici-
pant’s neural response in both the quiet and noise conditions. For
this second analysis, two time ranges were chosen corresponding
to the transition and the vowel. In both cases, we band-pass fil-
tered the stimulus to match the brainstem response characteristics
(70-2000 Hz). For the envelope analyses we obtained the broad-
band amplitude envelopes by performing a Hilbert transform on
the stimulus and response waveforms and low-pass filtering at
200 Hz. To calculate the correlations between the stimulus and
the responses we used the xcorr function in MATLAB (Skoe and
Kraus, 2010). In both cases, the degree of similarity was calculated
by shifting the stimulus waveform over 7-12 ms range relative to
the regions of interest until a maximum correlation value was
found. The 7-12 ms time lag was chosen because it encompasses
the stimulus transmission delay (from the ER-3 transducer and
ear insert ~1.1 ms) and the neural lag between the cochlea and
the rostral brainstem. Average r-values were Fisher transformed
for statistical analysis. Higher r-values indicate greater degrees of
correlation.

Response consistency. Response consistency was calculated
across trials over the length of the recording period (i.e., 6000
sweeps) by creating a composite response consistency score for
each subject. Specifically, we created 300 randomly selected pairs

of 3000, non-overlapping sweep sub-averages. To determine the
degree of similarity between the individual pair sets, each pair
of sub-averages was cross-correlated in MATLAB to generate
a Pearson’s correlation coefficient. This process was performed
for each of the 300 pairs and the final value represents the
average of the 300 correlation values. Response consistency was
computed for the two time regions of interest: the transition
and the vowel. Average r-values were Fisher transformed for
statistical analysis. Higher r-values indicate greater degrees of
correlation.

Hearing in noise ability. We used the Hearing in Noise Test
(HINT; Bio-logic Systems Corp; Mundelein, IL) (Nilsson et al.,
1994) to assess speech perception in noise. HINT is an adaptive
test of speech recognition that measures speech perception ability
in noise. During this test participants repeated short and seman-
tically and syntactically simple sentences (e.g., she stood near the
window) that were presented in speech-shaped background noise.
Speech stimuli consisted of Bamford-Kowal-Bench (Bench et al.,
1979) sentences (12 lists of 20 sentences) spoken by a male and
were presented in free field. Participants sat one meter from the
loudspeaker from which the target sentences and the noise orig-
inated at a 0° azimuth. The noise presentation level was fixed
at 65dB SPL and the program adjusted perceptual difficulty by
increasing or decreasing the intensity level of the target sentences
until the threshold signal-to-noise ratio (SNR) was determined.
Perceptual speech-in-noise thresholds were defined as the level
difference (in dB) between the speech and the noise presentation
levels at which 50% of sentences are correctly repeated. A lower
SNR indicates better performance.

Self-reported hearing in noise ability. We administered
the Speech subscale of the Speech, Spatial, and Qualities
Questionnaire (Gatehouse and Noble, 2004) to gauge an indi-
vidual’s perception of their hearing in noise. This questionnaire
consists of 14 questions about hearing performance in various
environments using a 10-point Likert scale. See Table 3 for a
complete list of the questions.

STATISTICAL ANALYSES

All statistical analyses were conducted in SPSS Version 18.0
(SPSS Inc., Chicago, IL). Repeated measure analyses of vari-
ance (RMANOVA) were used for group (musician vs. nonmu-
sician) x condition (quiet vs. noise) comparisons for latency,
spectral representation, stimulus-to-response correlations, enve-
lope encoding, and response consistency. Univariate analyses of
variance were used for behavioral measures. Post-hoc tests were
used when appropriate. To assess relationships among variables,
Pearson r correlations were used. Levene’s test was used to ensure
homogeneity of variance for all measures and the Shapiro-Wilk
test was used to ensure that all variables were normally dis-
tributed. Bonferroni corrections for multiple comparisons were
applied as appropriate; p-values reflect two-tailed tests. The SSQ
(self-reported hearing in noise ability) was the only test that vio-
lated the assumption of normality. Neither log nor reciprocal
transforms rendered these data normal. As such, we only used
these data to quantify group differences using the non-parametric
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Table 3 | Means, standard deviations, and significance values for the musician and nonmusicians groups’ self-assessment of their speech

perception and speech-in-noise abilities.

Questions Musicians Nonmusicians p-value
You are talking with one other person and there is a TV on in the same room. Without turning 9.03 (1.4) 7.92 (1.91) 0.010
the TV down, can you follow what the person you're talking to says?

You are talking with one other person in a quiet, carpeted lounge-room. Can you follow what 9.75 (0.39) 9.56 (0.92) 0.970
the other person says?

You are in a group of about five people, sitting round a table. It is an otherwise quiet place. 9.70 (0.67) 9.32 (0.75) 0.047
You can see everyone else in the group. Can you follow the conversation?

You are in a group of about five people in a busy restaurant. You can see everyone else in the 8.81 (1.12) 8.04 (1.59) 0.099
group. Can you follow the conversation?

You are talking with one other person. There is continuous background noise, such as a fan or 9.48 (0.82) 8.52 (1.62) 0.01
running water. Can you follow what the person says?

You are in a group of about five people in a busy restaurant. You cannot see everyone else in 8.28 (1.6) 7.04 (2.09) 0.029
the group. Can you follow the conversation?

You are talking to someone in a place where there are a lot of echoes, such as a church or 8.90 (1.49) 7.92 (1.15) 0.005
railway terminus building. Can you follow what the other person says?

Can you have a conversation with someone when another person is speaking whose voice is 8.94 (1.00) 7.88 (1.71) 0.029
the same pitch as the person you're talking to?

Can you have a conversation with someone when another person is speaking whose voice is 9.11 (1.01) 6.6 (1.76) 0.017
different in pitch from the person you're talking to?

You are listening to someone talking to you, while at the same time trying to follow the news 7.71 (2.26) 7.4 (2.00) 0.033
on TV. Can you follow what both people are saying?

You are in conversation with one person in a room where there are many other people 8.35 (1.72) 8.2 (1.67) 0.041
talking. Can you follow what the person you are talking to is saying?

You are with a group and the conversation switches from one person to another. Can you 8.97 (1.55) 9.32 (1.66) 0.059
easily follow the conversation without missing the start of what each new speaker is saying?

Can you easily have a conversation on the telephone? 9.71 (0.59) 9.32 (0.80) 0.051
You are listening to someone on the telephone and someone next to you starts talking. Can 7.36 (2.08) 6.76 (1.33) 0.133

you follow what's being said by both speakers?

These questions are part of the Speech, Spatial, and Qualities Assessment questionnaire. Note that not all of the above questions relate to hearing in noise.

Mann-Whitney test; correlations with other variables were not
explored.

RESULTS

SUMMARY OF RESULTS

Musicians demonstrated greater speech-in-noise perception
[HINT: F(1, 47y = 20.276, p < 0.005; musicians mean: —3.16, SD
0.61; nonmusicians mean: —2.34, SD 0.63] and rated themselves
as having less difficulty hearing in noise than nonmusicians as
assessed by the SSQ (Table 3). Musicians exhibited more robust
neural encoding of speech in both quiet and noise. Musicians had
earlier neural response timing, greater neural representation of
the stimulus harmonics as well as more precise phase-locking to
the stimulus both in terms of temporal envelope and stimulus-
to-response correlations. Musicians also demonstrated less neural
response degradation in noise evidenced by smaller neural tim-
ing shifts and smaller decreases in neural response consistency.
We also found that specific neural measures such as earlier neural
response timing and more robust brainstem responses to speech
correlated with better speech-in-noise performance as measured
by HINT.

TIMING

Musicians demonstrated enhanced onset and transition tim-
ing in quiet and limited degradative effects of background
noise for all aspects of neural timing. To quantify effects of
musicianship and noise on neural response timing, we divided
the neural response into three time regions: onset, transition,
and vowel. We performed a mixed-model repeated-measures
ANOVA (RMANOVA) 2 group (musician/nonmusician) x 2
condition (quiet/noise) with latencies in the three distinct time
regions entered as dependent variables. Noise delayed peak tim-
ing across all time regions [onset: F(j, 42y = 98.008, p < 0.001;
transition: F(1, 46) = 19.113, p < 0.001; vowel F(1, 46) = 2.375,
p = 0.025]. Musicians demonstrated earlier neural response
timing for both the onset [F(i, 42y = 11.080, p = 0.002] and
the transition [F(1, 46) = 13.219, p < 0.001] but not for the
vowel [F(1, 46y = 1.471, p =0.185]. A significant group-by-
condition interaction was found for all three time regions
[onset: F(1, 42) = 4.822, p = 0.034; transition: F(;, 46) = 3.668,
p < 0.019; vowel F(j, 46) =2.053, p=0.050]. Post-hoc tests
revealed that musicians had significantly earlier responses in
both quiet and noise conditions for the onset and transition
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[Onsetquiet: F, 42y =4.521, p =0.039; Onsetyoise: F1, 42) =
12.720, p = 0.001; Transitionguier: F1, 46) = 10.459, p < 0.001;
Transitionpeise: F(1, 46) = 11.786, p < 0.001], whereas for the
steady-state musicians and nonmusicians were equated in quiet
but musicians were earlier in noise [Vowelgyier: F1, 46) = 1.423,
p = 0.205; Vowelypise: F(1, 46) = 1.912, p = 0.071]. In summary,
musicians demonstrate earlier response timing in quiet for the
onset and the transition but not the vowel. We also find that the
addition of background noise delays neural responses for both
groups, but that musicians’ responses shifted less than those of
nonmusicians (Figure 2).

SPECTRAL REPRESENTATION

Harmonics

For the vowel, in both quiet and noise, musicians demon-
strated more robust auditory brainstem representation of the
harmonics than nonmusicians; no musician advantage was found
for the neural encoding of the harmonics in the transition.
A 2 (musician/nonmusician) X 2 condition (quiet/noise) x 9
harmonicsy_H19 RMANOVA revealed a main effect of noise
and musicianship on responses to the vowel, with noise reduc-
ing spectral amplitudes, [F(i, 46) = 4.655, p < 0.001] and musi-
cians having greater spectral amplitudes than the nonmusi-
cians [F(1, 46) = 2.831, p = 0.012] but no noise x musician-
ship interaction [F(1, 46) = 1.476, p = 0.192]. For the transition,
again noise resulted in a reduction in harmonic ampli-
tude [F(1, 46) = 7.418, p < 0.001] but there was no musi-
cian advantage [F(1, 46) = 1.046, p = 0.423] nor a significant
noise x musicianship interaction [F(j, 46) = 1.001, p = 0.456;
Figure 3].

Fundamental frequency (Fy)

For the vowel, in both quiet and noise, musicians demonstrated
a trend toward a greater representation of the fundamental fre-
quency. This was not observed for responses to the transition.
A 2 group (musician/nonmusician) x 2 condition (quiet/noise)

RMANOVA revealed a weak trend for musicianship [F(i, 4¢) =
2.900, p = 0.095] but no main effect of noise [F(;, 46y = 0.089,
p = 0.767] nor noise x musicianship interaction [F(j, 46) =
1.404, p = 0.242]. For the transition, there was a main effect of
noise [F(1, 46) = 48.977, p < 0.001], no main effect of musician-
ship [F(1, 46) = 0.004, p = 0.300] but a significant interaction
[F(1, 46) = 7.063, p = 0.011]. Post-hoc tests revealed that nonmu-
sicians had greater representation of the Fo in quiet [F(1, 46) =
4.103, p = 0.049] but not in noise [F(;, 46) = 0.070, p = 0.792;
Figure 3].

STIMULUS TO RESPONSE

Envelope analyses

In both quiet and noise, musicians had better neural repre-
sentation of the stimulus envelope [Figure4; F(1 ) = 23.893,
p < 0.001; Table 4]. Noise had a significant effect on envelope
encoding, in that for both groups, envelope encoding got stronger
in noise [F(, 46) = 4.665, p = 0.036; Table5]. No significant
noise x musicianship interaction was found [F(, 4) = 0.071,
p=0.792].

Waveform correlation

Musicians demonstrated more precise neural representation of
the vowel in both quiet and noise [F(1, 46y = 20.290, p < 0.001;
Table 4]. The addition of background noise degraded neural
response morphology [F(1, 46) = 5.492, p = 0.023], but no sig-
nificant interaction was present [F(1, 46) = 0.504, p = 0.481]. For
the transition, no effect of noise, [F(1, 46) = 5.492, p = 0.429],
musicianship, [F(1, 46) = 1.584, p = 0.215], or a significant inter-
action [F(1, 46) = 0.504, p = 0.522] was found, suggesting that
this particular analytical measure did not capture the degradation
caused by noise in this time region.

Response consistency
Musicians had greater neural response consistency in both quiet
and noise for the vowel [F(i, 46) = 13.488, p = 0.001], despite

Transition Vowel
Quiet: A * B
?% N.S. -
§ 0.1 ’ N.S. 01 . .
%
£
<
0 N : o 0 . A B R
0 200 400 600 800 1000 0 200 400 600 800 1000
Noise: c D
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= 1
E N.S. NS, . S
g 01 - , 0.1 r )
2
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<
0 . . 0
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Frequency (Hz) Frequency (Hz)
Musicians Nonmusicians
FIGURE 3 | Spectral encoding for the transition (A and C) and vowel (B and D) in quiet (A and B) and noise (C and D). Musicians (red) demonstrated
enhanced spectral encoding for the vowelin both quiet and noise; nonmusicians (black) had greater fy encoding in the transition in quiet only. *p < 0.05, **p < 0.01.
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FIGURE 4 | Envelope correlations between the stimulus (A) and the responses from the two conditions: quiet (B and C) and noise (D and E). The
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Table 4 | Stimulus-to-response (envelope and waveform) correlation
values (Pearson r): means (with SDs) for the musicians and
nonmusicians across the relevant time regions.

Time-range Musicians Nonmusicians p-value
Stimulus-to-response
envelope correlations
Quiet
Entire (6-180ms) 0.66 (0.14) 0.42(0.20) <0.001
Noise
Entire (6-180ms) 0.69 (0.14) 0.47 (0.15) <0.001
Stimulus-to-response
waveform correlations
Quiet
Transition (20-60 ms) 0.244 (0.08) 0.21 (0.078) 0.167
Vowel (60-170 ms) 0.33(0.39) 0.24 (0.083) <0.001
Noise
Transition (20-60 ms) 0.24 (0.08) 0.22 (0.08) 0.401
Vowel (60-170 ms) 0.32 (0.04) 0.23 (0.11) <0.001

the addition of noise resulting in a decline in response consis-
tency for both groups [F(1, 46) = 5.795, p < 0.020]. No signif-
icant noise x group interaction was present [F(j 46y = 0.022,
p =0.882]. For the transition, noise reduced response con-
sistency [F(1, 46) = 67.884, p < 0.001]; yet musicians did not
demonstrate an overall enhancement in both quiet and noise con-
ditions [F(1, 46) = 0.803, p = 0.375]. Rather, there was a trend-
ing interaction [F(;, 46) = 3.072, p = 0.086] with musicians and

Table 5 | Response consistency scores (Pearson r-values): means
(with SDs) for the musicians and nonmusicians across the transition
and the vowel.

Time Range Response consistency p-value
Musicians Nonmusicians

Quiet

Transition (20-60 ms) 0.84 (0.08) 0.82 (0.14) 0.856
Vowel (60-170 ms) 0.86 (0.07) 0.73 (0.15) 0.001
Noise

Transition (20-60 ms) 0.74 (0.18) 0.66 (0.19) 0.083
Vowel (60-170 ms) 0.83 (0.11) 0.68 (0.17) 0.001

Consistency measures are derived by correlating 300 randomly-selected pairs of
3000 sweeps from an individual’s response.

nonmusicians having equivalent response consistency in quiet
[F(1, 46) = 0.033, p = 0.856] but musicians having marginally
greater response consistency in noise [F(;, 46) = 3.133,p = 0.083;
Table 5].

Brainstem-hearing in noise relationships

Brainstem measures in both quiet and noise related to
speech-in-noise perception as measured by HINT. The accu-
racy with which the ABR represented the envelope of the
speech sound related to HINT (envelopeguier: r= — 0.278,
p=0.05 envelopepoise: 7= —0.346, p=0.016). In all
cases, earlier neural response latencies (Figure5, Table 6)
and greater SRyowe correlations (Figure6) were associated
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with better HINT scores. SRiransition cOrrelations in quiet
and noise were not related to speech-in-noise perception
(allp > 0.1).

Response consistency also related to HINT. In quiet, the
RCyowel related with speech-in-noise perception (r = —0.307,
p = 0.034) but not the RCyapnsition (r = —0.202, p = 0.169). In
noise, the RCyapsition related with hearing in noise (r = —0.291,
p = 0.045) but not the vowel (r = —0.185, p = 0.208). Lastly,
neither the representation of the Fy nor the harmonics directly
related to speech-in-noise performance (all p > 0.1).

DISCUSSION

Here we show that middle-aged musicians have greater neural
fidelity of the stimulus with faster neural response timing, better
envelope encoding, greater neural representation of the stimulus
harmonics as well as less neural degradation with the addition of
background noise. These subcortical measures are all associated
with better speech perception in noise. Furthermore, we reveal
that middle-aged musicians rate their speech-in-noises abilities
higher than nonmusicians, suggesting that musicians’ communi-
cation skills are higher than nonmusicians in real-world listening
environments. Taken together, these results indicate that musical
experience in an older adult population is associated with more
precise neural responses and greater resistance to the deleterious
effects of background noise.

MORE PRECISE NEURAL ENCODING RELATES WITH SPEECH-IN-NOISE
PERCEPTION

Hearing in noise relies on the ability to distinguish and track
the target voice from the background noise, and recognizing the
distinct timbral signature of a person is a key way to achieve this.
Envelope and harmonic cues contribute to timbre (Krimphoff
et al., 1994; McAdams et al., 1995), making them an important
component of the neural code.

Envelope encoding, like stimulus-to-response correlations, is
thought to represent the neural encoding of mid-to-high fre-
quency neurons (Dau, 2003; Parbery-Clark et al., 2009a; Ruggles
etal., 2012), thus providing a direct link between envelope encod-
ing, the neural representation of higher harmonics and timbre.
Furthermore, robust envelope and stimulus-to-response correla-
tions are behaviorally relevant in that they facilitate listening in
complex environments such as in background noise (Parbery-
Clark et al., 2009a; Swaminathan and Heinz, 2012) or reverberant
environments (Ruggles et al., 2012). Our results indicate that
middle-aged musicians have stronger representation of envelope,
stimulus-to-response and harmonic encoding than nonmusicians
and we believe that the strengthened encoding of these spec-
tral features may afford musicians the ability to better discern
and segregate voices, giving them an advantage for speech-in-
noise perception (Parbery-Clark et al., 2009a,b, 2011a; Zendel
and Alain, 2011; Strait et al., in press). Throughout their training
and subsequent musical experience, musicians spend countless
hours attending to spectrally rich musical sounds, learning to
use subtle differences in acoustic cues to discriminate instru-
ments. Spectral information is of great behavioral relevance for
musicians, with young adult musicians detecting slight harmonic
differences as well as having a greater neural representation of
harmonics (Koelsch et al., 1999; Shahin et al., 2005; Musacchia
et al., 2008; Lee et al., 2009; Parbery-Clark et al., 2009a; Zendel
and Alain, 2009). Our results indicate that older musicians also
have a greater neural representation of the harmonics than
nonmusicians suggesting that musical experience maintains spec-
tral encoding despite the general trajectory of decline in the ability
of the nervous system to represent spectral cues across the lifespan
(Clinard et al., 2010; Ruggles et al., 2011, 2012; Anderson et al.,
2012).

Middle-aged musicians demonstrate enhanced neural timing
of speech in both quiet and noise—as has been found in child

A S Quiet

Speech-in-Noise Performance (dB SNR)
b

4 P
5 r =0.420
p = 0.003
5 " L s
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Transition Timing (ms)
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FIGURE 5 | Relationships between speech-in-noise performance
and brainstem response timing. Earlier neural response timing
in the transition for both the quiet (A) and noise (B) conditions
is associated with better hearing in noise. Similar relationships

3+
.

-4 o o

. r =0.426

p = 0.003
5 n . n
42 43 44 45
Transition Timing (ms)
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(not plotted here) were found for the neural response timing

to the onset and the vowel; see text for more details. A lower,
more negative speech-in-noise score is indicative of better
performance.
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Table 6 | Correlations (with significance levels) between peak latency for the onset, transition, and vowel peaks for the two conditions

(i.e., Quiet and Noise) and HINT.

Quiet Noise
Onset Transitionmean Vowelmean Onset Transitionmean Vowelmean
HINT 0.356 (0.014) 0.420 (0.003) 0.378 (0.008) 0.315 (0.038) 0.426 (0.003) 0.335 (0.020)
In all cases earlier response timing related to better speech-in-noise perception.
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FIGURE 6 | Relationships between speech-in-noise performance

and stimulus-to-response waveform (i.e., vowel) correlations.

Better hearing in noise was associated with higher stimulus-to-response
correlations in quiet (A) and noise (B), suggesting that greater

Stimulus to Response

o Nonmusicians

precision in the brainstem’s ability to represent the stimulus in both
conditions is important for understanding speech in noise. A lower,
more negative speech-in-noise score is indicative of better
performance.

musicians (Strait et al., in press), whereas young adult musi-
cians (Parbery-Clark et al., 2009a) only exhibit these enhance-
ments in the more challenging of the two conditions—in noise.
In explaining the developmental trajectory between child musi-
cians to young adults, we propose that musical training dur-
ing childhood accelerates the developmental trajectory of neural
mechanisms underpinning the neural encoding of sound, as
demonstrated by earlier neural response timing in child musi-
cians, whether it be in the presence or absence of background
noise (Strait et al., in press). By young adulthood, we sug-
gest that nonmusicians have “caught up” with the musicians
in that both groups are equated for response timing in quiet,
even though musicians are still earlier in noise (Parbery-Clark
et al., 2009a; Strait et al., in press). Here we extend this pro-
posal to suggest that on the other side of the life cycle—that of
aging—musical experience prevents declines in neural mecha-
nisms that underlie neural encoding irrespective of the listening
environment.

Our results highlight faster response timing in middle-aged
musicians for the onset and transition—two parts of the response
that decline with both age (Anderson et al., 2012; Parbery-Clark
et al., 2012) and the introduction of noise (Cunningham et al.,
2002; Parbery-Clark et al., 2009a; Anderson et al., 2010), are
the most challenging in terms of perception (Miller and Nicely,

1955) and neural encoding (Anderson et al., 2010). Importantly,
in quiet, there were no group differences for the vowel, indi-
cating that the middle-aged nonmusician’s neural responses are
not globally delayed for response timing; rather, these effects
were exclusively found in the response to the most complex
portions of the sound (Parbery-Clark et al., 2012). The addi-
tion of background noise did result in a general delay for both
groups; still, musicians’ responses were delayed to a lesser extent.
Musicians’ decreased neural response degradation in noise was
further evidenced by more consistent neural responses. Taken
together, our results provide evidence for musical training across
the life span having a pervasive effect on sensory and neural
processing, maintaining neural function both in quiet and noisy
conditions.

MUSICIANS: MODEL OF AGING

To date, the majority of research supporting the use of musicians
as a model of plasticity has focused on child or young adult pop-
ulations (for review see: Miinte et al., 2002; Zatorre and McGill,
2005; Habib and Besson, 2009; Kraus and Chandrasekaran,
2010). While this work has increased our understanding of the
effects of music on the nervous system, the role of musical
training in the older normal hearing adult population remains
largely unexplored. Given that musical training strengthens
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those skills that decline with age, we argue that the musician’s
brain provides an optimal model for studying the effects of age
on the nervous system. Aging declines are thought to start as early
as middle age (Salthouse et al., 1996; Helfer and Vargo, 2009;
Ruggles et al., 2011, 2012; Parbery-Clark et al., 2012) and are
accompanied by a decrease in central nervous system function,
which holds important implications for perceptual and cognitive
skills (Craik and Salthouse, 2000). Given that aging musicians
maintain an advantage over nonmusicians in terms of neu-
ral processing (Parbery-Clark et al., 2012), auditory perception
(Parbery-Clark et al., 2011a; Zendel and Alain, 2011) and cog-
nitive abilities (Hanna-Pladdy and MacKay, 2011; Parbery-Clark
etal., 2011a; Hanna-Pladdy and Gajewski, 2012), older musicians
may provide a means to better understand what contributes to
successful aging.

The application of musical experience to the study of aging
requires knowledge of the effects of aging on the nervous system.
One of the major neurophysiological hallmarks of aging is delayed
neural timing and decreased temporal processing (Walton et al.,
1998; Burkard and Sims, 2001; Frisina, 2001; Finlayson, 2002;
Tremblay et al., 2003; Frisina and Walton, 2006; Lister et al,,
2011; Parthasarathy and Bartlett, 2011; Recanzone et al., 2011;
Vander Werff and Burns, 2011; Wang et al., 2011; Anderson
et al., 2012; Konrad-Martin et al., 2012; Parbery-Clark et al,,
2012). These age-related deficits are caused, at least in part, by
a decrease in inhibitory mechanisms. With aging, the inhibitory
neurotransmitters that facilitate the accurate neural encoding
of temporally dynamic and complex sounds (Walton et al,
1998; Caspary et al., 2002, 2008) as well as response consistency
(Pichora-Fuller and Schneider, 1992) are reduced throughout
the auditory pathway (Caspary et al., 1995, 2005; Wang et al,,
2009; de Villers-Sidani et al., 2010; Hughes et al., 2010; Juarez-
Salinas et al., 2010). Because the ABR requires a high-degree of
neural synchronicity (Kraus et al., 2000), decreased neural con-
sistency such as that caused by temporal jitter (Pichora-Fuller
et al., 2007) or neural response variability (Turner et al., 2005;
Yang et al., 2009) associated with aging can also contribute to

delayed neural response timing and reduced spectral encoding
(Anderson et al., 2012). Here we present musician advantages for
neural response timing, spectral encoding, and neural response
consistency—all factors known to decline with age. For these
reasons, we propose that the study of the older musician may
be beneficial in elucidating the specific neural components that
are enhanced relative to nonmusicians or impervious to age-
related declines—highlighting which aspects may be amenable to
rehabilititation.

FUTURE DIRECTIONS

We document enhanced neural encoding in a normal hear-
ing, middle-aged adult musician population. Because aging also
results in a higher prevalence of hearing loss, it will be important
to define how musical experience interacts in an older adult pop-
ulation with sensory hearing loss. Additionally, our earlier work
demonstrated that young adult musicians (19-30 years) had min-
imal neural differences in quiet (Parbery-Clark et al., 2009a), yet
the present results show striking group differences in a middle-
aged group (45-65 years) for the same condition. Determining
the time course of the neural changes that occur between these
two age groups (i.e., young and middle-aged adults) will further
our understanding of the effects of aging on the nervous system,
as well as the role musicianship plays to offset these declines.

CONCLUSIONS

We reveal strengthened neural encoding of the important acoustic
ingredients for speech perception in noise for middle-aged musi-
cians, potentially providing a neural basis for their behavioral
advantage for hearing in noise.
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