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Dystroglycan is a central component of the dystrophin-glycoprotein complex (DGC) that links extracellular matrix with
cytoskeleton, expressed in a variety of fetal and adult tissues. Dystroglycan plays diverse roles in development and homeostasis
including basement membrane formation, epithelial morphogenesis, membrane stability, cell polarization, and cell migration.
In this paper, we will focus on biological role of dystroglycan in Schwann cell function, especially myelination. First, we review
the molecular architecture of DGC in Schwann cell abaxonal membrane. Then, we will review the loss-of-function studies using
targeted mutagenesis, which have revealed biological functions of each component of DGC in Schwann cells. Based on these
findings, roles of dystroglycan in Schwann cell function, in myelination in particular, and its implications in diseases will be
discussed in detail. Finally, in view of the fact that understanding the role of dystroglycan in Schwann cells is just beginning, future
perspectives will be discussed.

1. Introduction

Dystroglycan was originally isolated from skeletal muscle as
one of dystrophin-associated proteins, and found to be a
main component of the dystrophin-glycoprotein complex
(DGC), a multimeric transmembrane protein complex [1,
2]. In skeletal muscle, α- and β-dystroglycan constitute a
membrane-spanning complex and interact with various sub-
sarcolemmal and transmembrane proteins and components
of basement membrane. Thus, DGC provides the physi-
cal link between extracellular matrix and subsarcolemmal
cytoskeleton, indicating its role in structural stability of
sarcolemma during contraction and extension of skeletal
muscles [3]. In fact, mutations in DGC components lead to
progressive muscle fiber degeneration, causing various types
of muscular dystrophies [4].

Dystroglycan is also expressed in many other cell types
and it plays a variety of roles in nonmuscle tissues. It has

been implicated in basal lamina development in mouse
embryo [5], epithelial development [6], somitegenesis [7],
cell polarization [8–10], carcinogenesis [11, 12], infective
pathogen targeting [13–15], and development of the central
nervous system (CNS) [16, 17].

In this paper, we review current understanding of dys-
troglycan function in Schwann cells such as ensheathment,
myelination as well as maintenance of other Schwann cell
structures, and the implications of these findings to periph-
eral nervous diseases. In broad sense, “myelination” may
include entire developmental process of myelin formation
from radial sorting of axons to membrane wrapping forming
compact myelin as well as assembly of the nodes of Ranvier
and growth of internodes, which are inextricably linked with
each other [18]. However, in this paper, we will use “myelina-
tion” mainly in a rather narrow sense, as a membrane wrap-
ping process forming compact myelin after radial sorting is
completed.
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2. Molecular Architecture of
Dystrophin-Glycoprotein Complex (DGC)
in Schwann Cells

Molecular architecture of DGC in Schwann cells has been
extensively studied by our group and others ([19–29],
Figure 1). The biochemical analysis revealed the similarities
of the fundamental molecular architecture of DGC between
Schwann cells and muscle cells as well as several critical
differences between them. In peripheral nerve, dystroglycan
is mainly present in abaxonal membrane of both myelinating
Schwann cells and nonmyelinating Schwann cells [19, 22, 24,
30, 31], while it is also expressed in perineurial cells as well as
satellite cells of dorsal root ganglia [32]. As in skeletal muscle,
dystroglycan in Schwann cells consists of two subunits (α and
β), which are translated from a single mRNA as a propeptide
that is proteolytically cleaved into two noncovalently associ-
ated proteins [2, 19, 33]. In Schwann cells, α-dystroglycan is
known to bind to two of the extracellular ligands, laminin-2
(α2β1γ1), major laminin isoform in Schwann cell basement
membrane, and agrin [19, 21–23]. Each of these has laminin
G (LG)-like domains that mediate their high-affinity Ca2+-
dependent binding to α-dystroglycan [34, 35]. While small
amount of laminin-8 (α4β1γ1) is also present in mature
Schwann cell basement membrane, LG domains of laminin-
8 showed only a low affinity for the α-dystroglycan receptor
[36]. Apparent molecular mass of α-dystroglycan in Schwann
cells is 120 kDa [19], which is smaller than that of skeletal
muscle (156 kDa), probably due to the difference of tissue-
specific O-glycosylation within the mucin domain [4]. While
the removal of N-linked glycans alters the molecular weight
of α-dystroglycan by only 4 kDa [1], and does not effect
on its activity as an extracellular matrix receptor [37], full
deglycosylation of α-dystroglycan results in the complete
loss of ligand-binding activity [37]. Thus, the sugar chains
on the mucin-like domain are supposed to mediate these
interactions. Actually, structural analysis of the sialylated
O-linked oligosaccharides of bovine peripheral nerve α-
dystroglycan revealed a high abundance of a novel O-
mannosyl-type oligosaccharide, Siaα2-3Galβ1-4GlcNAcβ1-
2Man-Ser/Thr (where Sia is sialic acid), and this tetrasac-
charide was involved in the interaction of the α-dystroglycan
with laminin [38]. In other cell types, there are evidences that
α-dystroglycan binds to laminin-1 via sugar moieties other
than the tetrasaccharide [39], while this is not confirmed in
Schwann cells. Also, it was reported that nonglyosylated N-
terminal fragment of α-dystroglycan bound to laminin-2/-4,
laminin-1, fibronectin and fibrinogen [40].

On the other hand, α-dystroglycan is noncovalently
anchored to β-dystroglycan in the Schwann cell membrane.
β-dystroglycan is a type I transmembrane protein with a
single transmembrane domain and a 120 amino acid long C-
terminal cytoplasmic tail. The cytoplasmic tail is anchored
to the cytoskeletal proteins, Dp116, Schwann cell-specific
isoform of dystrophin, and utrophin, an autosomal homolog
of dystrophin [19, 20, 24, 26, 41–43]. β-dystroglycan is
supposed to interact with cytoskeleton via interaction with
these submembranous proteins [42], while direct interaction
of β-dystroglycan with f-actin was also reported [44]. α1-

dystrobrevin and four syntrophin isoforms (α1, β1, β2,
and γ2), which interact with dystrophin and utrophin, are
also expressed in Schwann cells [25, 29]. These proteins
are crucial for the formation of DGC-associated signaling
scaffolds in membrane of many cell types including Schwann
cell abaxonal membrane [45]. As for binding between β-
dystroglycan and Dp116, 15 C-terminal amino acids of
the cytoplasmic domain of β-dystroglycan are involved in
the high affinity binding of Dp116, while 26 N-terminal
amino acids of the cytoplasmic domain are also involved
in the low affinity binding of Dp116 [24]. In Schwann
cells, MMP2 and MMP9 are suggested to be involved in β-
dystroglycan processing, and produce a 30 kDa fragment of
β-dystroglycan [46–49].

As other membrane protein members of DGC, β-, δ-,
ε-, and ζ-sarcoglycans are expressed in Schwann cells. The
four isoforms of sarcoglycans in Schwann cells seem to form
stable tetrameric sarcoglycan complex that associates with
dystrogycan and Dp116 to constitute larger DGC complex,
as in the case of skeletal muscle [25, 26, 50]. Also, sarcospan
is expressed in Schwann cells as a member of DGC [25].

Recently Albrecht et al. [29] reported that molecular
architecture of DGC is different between the two dis-
tinctive Schwann cell abaxonal membrane compartments,
membrane covering Cajal cytoplasmic band and membrane
directly apposed to myelin sheath (DRP2/periaxin rich
plaque). In the former compartment, β-dystroglycan forms
a complex with Dp116, utrophin, α1-dystrobrevin, α1-,
β1-, β2-, and γ-syntrophins, and ABCA1 (traditional type,
Figure 1(a)), and in the latter, β-dystroglycan forms a
complex with L-Periaxin and DRP2 (Figure 1(b)), which was
originally characterized by Sherman et al. [27, 51] and Court
et al. [52]. Also, Occhi et al. found expression of DGC in
node of Ranvier, and the DGC in node of Ranvier seems to
be compatible with the traditional type, comprising Dp116
and utrophin, but not periaxin and DRP2 [28]. They also
found that laminin-2 (α2β1γ1) and laminin-10 (α5β1γ1) are
expressed in the nodal region [28].

Among these DGC components, only laminin-2 and
periaxin do not depend on dystroglycan for their localization
in Schwann cell abaxonal membrane [25]. Recently, a giant
protein, AHNAK was reported to modify laminin binding
capacity of Schwann cell abaxonal membrane probably via
interaction with DGC [53], while precise molecular interac-
tion between AHNAK and DGC remain to be elucidated.

3. Loss-of-Function Studies for
DGC Components

Functions of DGC components including core compo-
nents such as dystroglycans in Schwann cells were mainly
revealed by loss-of-function studies in animals by targeting
mutagenesis as well as gene mutation survey for human
and mouse muscular dystrophies (Table 1). In particular,
double knockout of two functionally related genes as well as
Schwann cell-selective gene ablation system such as Cre/loxP
contributed to these studies (Table 1). Therefore, the findings
obtained from these studies will be described in detail.
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Figure 1: (a) Molecular structure of DGC (traditional type), present in Cajal cytoplasmic band of myelinated Schwann cells. a- and b-
dystroglycan form membrane-spanning complex in Schwann cell abaxonal membrane. Mucin-like domain of a-dystroglycan is involved in
the interaction with laminin via laminin G-like domains. a-dystroglycan is noncovalently anchored to b-dystroglycan. The cytoplasmic tail
of b-dystrogylcan is anchored to the cytoskeletal proteins, Dp116, Schwann cell-specific isoform of dystrophin, or utrophin, an autosomal
homolog of dystrophin. Utrophin interact with f-actin at the N-teminus. Utrophin or Dp116 interacts with syntrophins (a1, b1, b2, g2)
and a-dystrobrevin-1. Also at least four isoforms of sarcoglycan (b, d, e, z) form sarcoglycan complex in abaxonal membrane and interact
with dystroglycan complex. Sarcospan is supposed to interact with sarcoglycan complex. Thus DGC provides the physical link between
extracellular matrix and submembranous cytoskeleton in Schwann cells. (b) Molecular framework of DGC present in membrane portion
directly apposed to myelin sheath (DRP2/periaxin rich plaque) of myelinated Schwann cells. In DRP2/periaxin rich plaques, dystroglycan
complex intracellularly interact with DRP2, third member of dystrophin family, and periaxin, homodimeric PDZ domain-containing
protein, via cytoplasmic domain of b-dystroglycan. This type of DGC lacks syntrophins and dystrobrevin.

3.1. Dystroglycan-Null Mice. The mutant mice showed
a variety of morphological and functional abnormalities
including redundant myelin loops, polyaxonal myelination
at postnatal day 3–14, abnormal myelin sheath folding at
12 months, and axonal loss with aging [25]. The mice also

showed nodal changes such as reduced sodium channel den-
sity, disorganized microvilli as well as axonal abnormalities
in this region. However, because of the redundancy caused by
other genes/proteins with similar biological functions such as
α6β4 integrin, this loss-of-function study did not fully reveal
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Table 1: Loss-of-function studies for DGC components.

Disrupted genes
(animal)

Expression level and
modification of Schwann cell
proteins

Nerve pathology and functional deficits References

Schwann cell-selective
Dag1 null mouse
(P0-DG null mouse)

No expression of DG
Reduced expressions of other
DGC components except
periaxin, laminin-2

Mild radial sorting defect in spinal roots
Myelin folding/polyaxonal myelination
Mild loss of myelinated axons in sciatic nerve
Intact BM
Lower conduction
Disruption of nodes
Disrupted Cajal bands
Shortening of internodes

[25, 52, 54]

Unknown (dy mouse)
No expression of laminin α2
Upregulation of laminin α4

Radial sorting defect in nerve roots and cranial
nerves
Mild radial sorting defect in peripheral nerves
Disrupted BM
Shortening of internodes
Lower conduction
Widened nodes of Ranvier

[55–61]

Lama2/point
mutation of LN
domain/CxxC motif
(dynm f 417mouse)

Normal expression of the
mutated laminin α2 chain

Radial sorting defect in nerve roots
Intact BM

[62]

Lama2/splicing skip
of exon2 (dy2J
mouse)

Normal expression of truncated
laminin α2 chain (domain IV
deleted)
Upregulation of laminin α4

Radial sorting defect in nerve roots and cranial
nerves
Mild radial sorting defect in peripheral nerves
Multiple axons myelinated by one Sc
Disrupted BM
Disrupted Cajal bands
Shortening of internodes

[52, 55, 57, 60,
63–65]

Lama2 (dy3k mouse)
No expression of laminin α2
Upregulation of laminin α4

A few solitary unmyelinated axons
Thin myelin sheath
Decreased nodal gap
Lower conduction
Disrupted BM

[66]

Lama4 (mouse) No expression of laminin α4
Radial sorting defect in peripheral nerves
Polyaxonal myelination
Intact BM

[67]

Lama2/Lama4
(dy2J/α4 null mouse)

Normal expression of truncated
laminin α2 chain
No expression of laminin α4

Severe radial sorting defect of peripheral nerves
Mild radial sorting defect in spinal roots
Disrupted BM

[67]

Schwann cell selective
Lamg1-null mouse

Severely reduced expression of all
known laminin isoforms in
Schwann cells

Radial sorting defect in spinal roots and
peripheral nerves

[68]

L-Periaxin (mouse) No expression of L-periaxin

Demyelination in sciatic nerve
Myelin folding
Disrupted S-L incisure
Lower conduction
Impaired regeneration
Hyperalgesia, allodynia
Disrupted Cajal bands
Shortening of internodes

[51, 69]
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Table 1: Continued.

Disrupted genes
(animal)

Expression level and
modification of Schwann cell
proteins

Nerve pathology and functional deficits References

Utrophin (mouse) No expression of utrophin
Disrupted Cajal bands
Shortening of internodes

[52]

Sarcoglycans
(BIO14.6 hamster)

No expression of sarcoglycans
Reduced expression of α-DG and
Dp116

Myelin folding
Disrupted S-L incisure

[50]

Large null mouse
(enr, myd)

Very low expression of Large
Hypoglycosylation of α-DG

Radial sorting defect in sciatic nerve and spinal
roots
Intact BM
Lower conduction
Disrupted Cajal bands
Impaired regeneration

[52, 70]

Fukutin chimera
mouse

Deficiency of fukutin
Hypoglycosylation of α-DG

Radial sorting defect in sciatic nerve and spinal
roots
Loss of myelinated axons in nerve roots and
sciatic nerve at P15–30
Multiple axons myelinated by one Sc
Intact BM
Disruption of NMJ

[71]

Schwann cell-selective
β1 integrin null
mouse

No expression of β1 integrin
Radial sorting defect in sciatic nerve
Disrupted BM

[72]

Schwann cell-selective
β4 integrin null
mouse

No expression of β4 integrin Myelin folding [54]

Schwann cell-selective
β4 integrin/Dag1 null
mouse

No expression of DG and β4
integrin

Radial sorting defect in spinal ventral roots
Severe myelin folding
Demyelination
Disrupted BM

[54]

BM: basement membrane, DG: dystroglycan, S-L: Schmidt-Lanterman, NMJ: neuromuscular junction, Sc: Schwann cell.

the roles of dystroglycan in Schwann cell function including
myelination, which will be discussed in detail later.

3.2. Laminin α Chain-Null Mice. As typically observed
in dy/dy mice and dy2J/dy2J mice, loss of laminin α2
chain expression in mice constantly resulted in not only
congenital muscular dystrophy but also radial sorting defect
in peripheral nerve characterized by the presence of bundles
of naked axons (unmyelinated axons) more evident in the
proximal part of the PNS [55–60, 62–64, 67]. Moreover,
transgenic rescue of laminin defect in muscle of dy/dy
mice revealed that the neuropathy significantly contributes
to the disease phenotype [73]. Recently, Yu et al. [65]
reported that laminin is necessary for Schwann cell mor-
phogenesis, especially during radial sorting, and suggest
that laminin signaling is a central regulator coordinating
the processes of proliferation and morphogenesis in radial
sorting.

In the spinal roots of laminin α2 chain-deficient mice,
expression of laminin α4 chain was increased and expression
of laminin α5 chain was preserved [61, 66, 67]. Interestingly,
loss of laminin α4 chain showed bundles of naked axons
more evident in distal part of the PNS [67]. Double knockout
of α2 and α4 chains led to most numerous naked axons in
tibial nerve, but paradoxically improved the radial sorting
in spinal root [67]. Also, transgenic laminin α5 chain
expression promoted myelination [67]. Laminin α1 chain is
also suggested to compensate the deficiency of laminin α2
chain, and actually transgenic expression of laminin α1 chain
rescued radial sorting defect of spinal roots of dy3K/dy3K
mice [74, 75]. In addition, inactivation of all known laminin
isoforms in Schwann cells led to radial sorting defect in both
spinal roots and sciatic nerve [68]. These results indicated
the complicated functional redundancy of the four kinds of
laminin α chain isoforms (α1, α2, α4, and α5), or even other
unrecognized proteins with similar function.
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Another important finding in dy mice is the abnormal
sodium channel clusters in nodes of Ranvier [28], which
was identical in quality but less severe than those observed
in dystroglycan-null mice [25]. This nodal abnormality was
supposed to be caused by laminin-2 deficiency because
laminin-2 and laminin-10 are expressed in normal nodes and
paranodes [28]. Notably, laminin-α1 chain was upregulated
in dy mice nodes [28].

3.3. Integrin-Null Mice. While integrin is not supposed to
be a member of DGC, α6β4 and α6β1 integrins are another
important laminin receptors in Schwann cells, and have been
suggested to be involved in Schwann cell myelination [76–
78]. Dissecting functions of those integrins is critical for
delineating exact role of dystroglycan, and therefore, the
studies for integrin-null mice will be reviewed in this paper.

Schwann cell specific disruption of β1 integrin showed
large bundle of naked axons in both spinal roots and sciatic
nerves suggesting severe impairment of radial sorting process
[72]. Notably, myelinated Schwann cells never expressed β1
integrin, suggesting that β1 integrin is not always necessary
for myelination process once Schwann cells have achieved
1 : 1 relationship with large axons [72].

In contrast, Schwann cell specific disruption of β4
integrin did not affect peripheral nerve development, myelin
formation, maturation, or regeneration except abnormal
myelin folding with ageing [54]. However, disruption of both
β4 integrin and dystroglycan showed severer hypomyeli-
nation in spinal roots than dystroglycan-null mice, with
acute sign of demyelination such as myelin degeneration,
macrophage infiltration and remyelination [54]. It also
showed major folding abnormalities in sciatic nerve myelin,
suggesting a role of dystroglycan in myelin stabilization with
the cooperation of β4 integrin.

3.4. Mice with α-Dystroglycan Glycosylation Defects. Recent
advances have highlighted the importance of α-dystroglycan
glycosylation in dystroglycan functions. Actually, muta-
tion in the genes encoding LARGE, POMGnT1, POMT
and fukutin cause defects in α-dystroglycan glycosylation,
and altered capacity for binding to laminin, agrin, and
neurexin [79, 80]. As a result, the glycosylation defects
lead to the human disorders, congenital muscular dys-
trophy 1D (MDC1D), muscle-eye-brain disease (MEB),
Walker-Warburg disease (WWS), and Fukuyama congen-
ital muscular dystrophy (FCMD), which are collectively
called α-dystroglycanopathy [81–83]. Because defects in
α-dystroglycan glycosylation should reduce the laminin-2
binding capacity of α-dystroglycan in not only muscle cells
but also Schwann cells, Schwann cell functions associated
with dystroglycan-laminin-2 interaction should be impaired
in α-dystroglycanopathy. However, peripheral nerve involve-
ment in α-dysroglycanopathy has not been extensively stud-
ied. Therefore, we embarked on the investigation whether
peripheral nerve development, especially myelination, is
defective or not in fukutin-deficient chimeric mice, a mouse
model of FCMD [71]. As a result, we demonstrated that
the sugar chain moiety and laminin-binding activity of α-
dystroglycan were severely reduced, while the expression

level of laminin-2 seemed to be unaffected. The fukutin
chimeric mice showed cluster of naked axons and loss of
myelinated fibers in both sciatic nerve and spinal roots at
P30. After 20 months of age, some spinal roots showed
striking loss of myelinated axons as well as degenerated
axons suggesting the progressive neuropathy with aging.
Also, occasionally multiple axons were myelinated by single
Schwann cell, which was also found in dy2J/dy2J mice [59].
These results suggest that α-dystroglycan glycosylation plays
roles in Schwann cell differentiation including ensheathment
and myelination, as well as maintenance of myelin in adult
mice [71].

Similar to fukutin chimeric mice, Large-null mice (enr
and myd mice) showed cluster of naked axons in sciatic
nerve, while the sodium channel clustering in nodes of
Ranvier was unaffected [70].

Altogether, Schwann cell myelination is disturbed
in α-dystroglycanopathy mice. Therefore, scrutinization
of peripheral nerve involvement in human α-dystrogly-
canopathy will reveal more detailed characterization of those
diseases.

3.5. Periaxin-Null Mice. Studies of periaxin-null mice
revealed a unique aspect of DGC biological function in
Schwann cells. Periaxin-null mice did not show defect in
peripheral nerve development, instead they showed pro-
gressive demyelination as well as abnormal myelin sheath
foldings in sciatic nerve, suggesting unstable myelin sheath
[69]. Also periaxin-null mice showed abnormal Schwann cell
compartmentalization, disruption of protoplasmic bands of
Cajal, and impaired Schwann cell internodal growth [51,
52]. Recently, Court et al. [52] demonstrated that laminin-
2, dystroglycan, utrophin axis is also required for proper
Schwann cell compartmentalization, and correct internodal
length.

3.6. Sarcoglycan-Null Hamster. Sarcoglycan-null hamster
(BIO14.6) showed that δ-sarcoglycan induced age-
dependent myelin disruption or abnormal foldings and
perturbed Schmidt-Lanterman incisures [50]. Together
with loss of sarcoglycan complex and reduced expression
of α-dystroglycan and Dp116, these findings suggested
that sarcoglycans in Schwann cells stabilize DGC-mediated
transmembrane extracellular matrix-cytoskeleton linkage,
and thus play a role in myelin stability.

4. Detailed Role of Dystroglycan in
Schwann Cell Function

Based on the findings derived from loss-of-function studies
described above and other previous studies, detailed role of
dystroglycan in Schwann cell function will be discussed in
detail in this section.

4.1. Role of Dystroglycan in Myelination and Myelin Main-
tenance. It is well known that basement membrane plays
an important role in Schwann cell ensheathment and
myelination [84, 85]. Therefore, the discovery in early 1990s
that congenital muscular dystrophy as well as dysmyelination
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of nerve roots in dy/dy mice are due to lack of laminin-
2 prompted us to investigate whether dystroglycan, a high
affinity receptor for laminin-2, plays a role in myelination
[86].

In order to address this issue, we analyzed Schwann cell
expression of β-dystroglycan and laminin α2 chain during rat
peripheral nerve regeneration and development. As a result,
β-dystroglycan protein was present most densely in early
myelinating Schwann cells, intermediately in promyelinating
Schwann cells, and most faintly in the Schwann cells in
the transient stage between immature Schwann cells and
promyelinating Schwann cells in rats at the age of P3 [87].
Another group also reported that β-dystroglycan appear as
a protein peinataly, just before myelination, exclusively in
outer surface of mouse Schwann cells [74], which was con-
sistant with our results derived from rat peripheral nerves.
Also, the expression of β-dystroglycan protein dramatically
increased during first week after birth of rats, and was
maintained until adulthood. The expression of laminin α2
chain also increased during the first week, and continued
to increase until adulthood [87]. The expression of β-
dystroglycan was down-regulated by axonal degeneration
in adult rats, and was induced again by axon contact
during axonal regeneration [30]. These results indicate that
dystroglycan is associated with myelination as well as myelin
maintenance rather than radial sorting. Second, Schwann
cell-specific dystroglycan-null mice showed abnormally thin
myelinated fibers as well as abnormal myelin folding in
which Schwann cell established 1 : 1 relationship with axon,
suggesting that dystroglycan plays a role in myelination after
radial sorting is completed [25, 54]. Also the dystroglycan-
null mice showed mild loss of myelinated axons with aging.
Third, double knockout of β4 integrin and dystroglycan
revealed far severer hypomyelination than respective knock-
out of each of the two genes, as well as signs of acute
demyelination [54]. Notably the hypomyelination caused
by disruption of dystroglycan was most severe in spinal
ventral roots [54]. Fourth, fukutin chimeric mice and Large-
null mice showed hypomyelination as well as signs of
progressive demyelinating neuropathy [70, 71]. Considering
these evidences, dystroglycan no doubt plays a role in
myelination as well as in myelin maintenance.

While α6β4 integrin was also suggested to play a role in
myelination and myelin maintenance [76, 78], single disrup-
tion of β4 integrin unexpectedly did not show any abnormal-
ities of peripheral nerve myelin except age-dependent myelin
folding [54]. However double knockout of dystroglycan and
β4 integrin described above showed cooperative role of
β4 integrin with dystroglycan in myelination and myelin
maintenance [54].

It is interesting to note that α-dystroglycan serves as
a receptor for several pathogens such as Mycobacterium
leprae (M.leprae), lymphocytic choriomeningitis virus and
the Lassa fever virus [13–15, 88–90]. In particular, M.leprae
cause acute nonimmune-mediated demyelination in mouse
peripheral nerve [91], and the demyelination is at least partly
mediated by ErbB2 receptor tyrosine kinase signaling [92].
However, it remains to be elucidated whether M.leprae cause
demyelination via perturbation of dystroglycan function as

well as whether dystroglycan has some interaction with the
ErbB2 signaling, while it was reported that Lassa fever virus
efficiently competes with laminin α1 and α2 chains for α-
dystroglycan binding [90].

Dystroglycan is also expressed in oligodendrocyte as a
laminin receptor along with β1 integrins, and may play a role
in myelination by oligodendrocyte [93]. This study offered
new insight into α-dystroglycanopathies that cause brain
dysmyelination, as well as into the mechanism that underlies
CNS myelin abnormalities caused by laminin deficiencies
[93]. While structural myelin abnormalities are usually not
very clear in CNS of laminin deficient human and mice
[94], meticulous quantitative and morphological analysis
suggested the presence of defects of CNS myelin in dy/dy
mice, in particular in small-sized axons [95].

4.2. Role of Dystroglycan in Radial Sorting. It was unclear
whether dystroglycan played a role in radial sorting process
from the loss-of-function studies of dystroglycan [25].
However the possibility cannot be denied because radial
sorting defect in spinal roots was observed in both Large-
null mice and fukutin chimeric mice [70, 71]. This suggests
glycosylation of α-dystroglycan may be necessary for radial
sorting, although the possibility that unidentified substrate
proteins of these glycosylating enzymes play a role in radial
sorting cannot be denied.

On the other hand, β1 integrin null mice showed a
major abnormality in radial sorting [72]. β1 integrin binds
to LG domains of laminin-2 different from α-dystroglycan
binding sites. Taken together, there is still a possibility that
dystroglycan may cooperate with β1 integrin in radial sorting
process.

4.3. Role of Dystroglycan in Development and Maintenance
of Schwann Cell Structures such as Cajal Cytoplasmic Band,
Internode and Node of Ranvier. The loss-of-function studies
provided evidences that dystroglycan plays roles in devel-
opment and maintenance of Schwann cell structures such
as Cajal cytoplasmic band, internode and node of Ranvier.
First, Schwann cell-specific dystroglycan null mice showed
nodal changes including reduced sodium channel density
and disorganized microvilli [25, 28]. Second, dystroglycan
along with periaxin, utrophin and laminin-2, is necessary
for compartmentalization including Cajal cytoplasmic band
formation and elongation of myelin segments [52]. These
studies offered new aspects of dystroglycan function in
Schwann cells, and will stimulate further studies of DGC
concerning internode growth as well as nodal functions.

5. Molecular Mechanisms of Dystroglycan in
Schwann Cell Myelin Formation

Molecular mechanisms of how dystroglycan regulates
Schwann cell myelination remain to be elucidated. One
possibility is that the link between dystroglycan and laminin-
2 provide anchorage between Schwann cell abaxonal mem-
brane and basal lamina on which progression of inner lip of
Schwann cells over the axonal surface is based during myelin
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formation [96]. Evidences that dystroglycan has binding
capacities between Schwann cell abaxonal membrane and
basement membrane or laminin support this idea [25, 97,
98]. Notably, basement membrane is not always necessary
for myelination [60, 99]. Probably it is just because less orga-
nized extracellular matrix components, which are not visible
as electron dense basement membrane, are enough for myeli-
nation. In support of this idea, Podratz et al. [99] showed
abundant laminin deposition on Schwann cell abaxonal
surface in spite of the lack of visible basement membrane.

Another possibility is that dystroglycan plays a role
in myelination by regulating signaling from extracellular
matrix, especially laminin-2, to intracellular signaling path-
ways or cytoskeleton. Actually, laminin signaling seems
to play an essential role in Schwann cell proliferation
and survival as well as cytoskeletal regulation-associated
ensheathment and myelination [60, 100]. While dystroglycan
is a major laminin receptor in Schwann cells along with
integrins such as α6β1, α6β4, and α7β1, the receptor
function of dystroglycan mediating laminin signaling has
been less extensively studied compared with that of integrins.
Recently, however, ample evidences are accumulating that
dystroglycan is associated with cell signaling.

First, β-dystroglycan can interact with a variety
of signaling proteins, at least partly via SH2 and SH3
binding sites in the C-terminus. While dephosphorylation
of Y892 (pY892) in β-dystroglycan enables binding to
utrophin/dystrophin[101, 102], phosphorylation of β-
dystroglycan enhances recruitment of SH2/SH3 domain
containing signaling-associated proteins like c-Src, Fyn,
Csk, Nck, Shc, and Grb-2 [103–106]. Grb-2 is known to
be involved in ERK-MAP kinase cascade and cytoskeletal
organization [103]. Also β-dystroglycan can interact with
FAK [104]. In addition, DAMAGE was reported to be a new
member of DGC as a protein associated with α-dytrobrevin
[43]. DAMAGE has a potential nuclear localization signal, 30
contiguous 12-aminoacid repeats and two MAGE homology
domains, suggesting it is involved in membrane signaling
[43].

Moreover, in nonperipheral nerve tissues, dystroglycan
has been shown to be involved in several signaling path-
ways. Association of dystroglycan with MAPK/ERK cascade
and GTPase signaling was reported [107–109]. Filopodia
formation is often governed by Cdc42, a GTPase signaling-
associated protein playing diverse roles in cell polarity,
cytoskeletal regulation as well as cell cycle [109]. Dystro-
glycan plays a role in filopodia formation via forming a
complex with ezrin and Dbl, and activating Cdc42 [107–
109]. Fibronectin or biglycan may induce signaling via
dystroglycan leading to calcium flux and alteration of
cytoskeletal architecture [110]. Syntrophin contains two
pleckstrin homology (PH) domains and one PDZ domain
[111]. Binding of laminin to DGC induced heterotrimeric
G protein binding to α-syntrophin’s PDZ domain, which
leads to activation of PI3K/Act signaling and alteration of
intracellular Ca2+ in muscle [111–114]. Laminin-1 induced
Grb binding to syntrophin, recruited Sos1/Rac1/PAK1/JNK,
and eventually led to c-jun phosphorylation [115]. Recently,
genetic modifier screens using Drosophila melanogaster

revealed that DGC interacts with genes involved in Notch,
TGF-β and EGFR signaling pathways as well as those associ-
ated with muscle function and cellular or axonal migration
[116]. In Schwann cells also, laminin assembly initiated
dystroglycan-dependent Src/Fyn activation and utrophin
recruitment that contributed to their survival [117]. Taken
together, these evidences strongly suggest that dystroglycan
signaling plays diverse roles in Schwann cell functions
including myelination. The hypothetical role of dystroglycan
signaling in Schwann cell myelination will be discussed in
detail in the section of future perspectives.

6. Human Peripheral Nervous System (PNS)
Diseases Associated with DGC

Among the human diseases caused by mutation of DGC
components, there are only two diseases in which periph-
eral nerve involvement was clearly demonstrated, MDC1A
(LAMA2 mutation) and neuropathy caused by PRX muta-
tion, which will be described in detail below. In general,
peripheral nerve involvement caused by mutation of DGC
components has not been studied as extensively as muscular
dystrophies. Therefore, there is still a possibility that further
study in the future will reveal new evidences that other
DGC components play roles in the pathogenesis of human
peripheral neuropathies.

6.1. MDC1A (Merosin (Laminin-2)-Deficient Congenital
Muscular Dystrophy). MDC1A is the most frequent congen-
ital muscular dystrophy in Europe with autosomal recessive
inheritance caused by LAMA2 mutation [94, 118]. Complete
laminin-2 deficiency causes early-onset muscular dystrophy,
peripheral neuropathy and white matter lesions in CNS. Par-
tial laminin-2 deficiency presents variant phenotypes with
later onset muscular dystrophy, or even predominant PNS
or CNS abnormalities. While peripheral nerve involvement
is not extensively studied in MDC1A, nerve conduction
velocity is reduced in most of the patients [119–123]. As a
basis for the slowed conduction velocity, abnormal sodium
channel clusters were found in these patients [28]. The
neuropathy is predominantly motor or sensory-motor [120–
123]. Sural nerve biopsy showed mild loss of myelinated
fibers, globular thickening of myelin sheath at paranodal
region, myelin foldings, shortened internodes, widened
nodes of Ranvier [121, 124], and compartmentalization
defects [52]. Unfortunately, radial sorting defect in spinal
roots in human has not been confirmed because of the
absence of autopsy study.

Patients with MDC1A show striking white matter
changes in T2 weighted brain magnetic resonance imaging
[125], which is diffuse, bilateral, and symmetrical. It appears
after the first 6 months of life, and nonprogressive [126].
However, morphological changes of cerebral white matter are
not clearly demonstrated in human patients. Rather, main
pathological findings in CNS are developmental anomalies
such as abnormal cerebral cortical gyration, hypoplasia of
vermis, hemisphere, or pons. At least, part of these abnor-
malities is supposed to be caused by neuronal migration
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defects associated with laminin-2-α-dystroglycan interac-
tion, which are also demonstrated in α-dystroglycanopathies.
The full aspects of dystroglycan roles in CNS are beyond the
scope of this review, and other comprehensive reviews deal
in detail with these issues [81, 127–130].

6.2. Charcot-Marie-Tooth Neuropathy Type 4F and Dejerine
Sottas Neuropathy Caused by PRX (Periaxin) Mutations.
Periaxin is the only one gene of members of DGC reported
to be associated with human hereditary demyelinating
neuropathy. Mutation of PRX causing loss of L-periaxin
expression induces sensory-motor demyelinating neuropa-
thy consistent with Charcot-Marie-Tooth neuropathy or
Dejerine Sottas neuropathy [131–133]. Homozygous PRX
mutation C715X causing expression of truncated form of
L-periaxin showed relatively milder phenotype of Charcot-
Marie-Tooth neuropathy with sensory dominant involve-
ment [134]. Nerve biopsy showed loss of myelinated fibers,
onion bulbs, focal thickening of myelin sheath, and myelin
folding, which were similar to the nerve pathology of Prx-/-
mice [131–134].

7. Future Perspectives

Schwann cell is one of the somatic cell types with robust
regenerative capacity. The regenerative capacity of Schwann
cell depends on its property of plasticity, which enables
Schwann cell to change its phenotype between differenti-
ated Schwann cell (myelinating type and nonmyelinating
type) and denervated (dedifferentiated) Schwann cell [135,
136]. Recent advances have highlighted the importance
of gene/protein network maintaining the identity of cell
phenotype, especially from the study of embryonic stem
cells [137, 138]. Then, there must be molecular network
specific to each of the Schwann cell phenotypes. Definitely
dystroglycan and other DGC components belong to the
molecular network specific to myelinating Schwann cell
phenotype, and now it is important to understand the role
of dystroglycan in the context how this protein contributes
to the gene/protein network. Cutting edge technologies such
as DNA microarray, ultra-high-throughput sequencing and
mass spectroscopy-based proteomics have made it possible
to study epigenome, transcriptome, and proteome as a whole
[137, 139]. Analyzing gene/protein network maintaining
identity of myelinating Schwann cell phenotype, and com-
paring with that of dedifferentiated Schwann cell phenotype
will reveal a whole framework of molecular mechanisms of
myelination.

At the same time, it is important to study dystroglycan
function focusing on specific molecular aspects such as pro-
tein interaction, signaling, transcriptional regulation includ-
ing chromatin modifications, post-transcriptional modi-
fication, post-translational modification, and intracellular
transport and degradation. In addition, anatomical aspects
should be taken into consideration. Myelinating Schwann
cell has four distint domains: internode, juxtaparanode,
paranode, and node [140, 141]. Moreover, internode domain
is divided into two compartments; Cajal cytoplasmic band,
and compartment occupied by myelin sheath [51]. Each

domain is playing a specific role in maintaining myelinating
Schwann cells, and DGC is likely to play different role
in each of the domain. In many of these specific aspects,
dystroglycan function is just beginning to be revealed, and
so many questions must be answered. A few of the mutually
nonexclusive topics with high priority will be discussed
below.

(1) Protein Interaction. various proteins have been and are
beginning to be revealed to interact with DGC in non-
peripheral nerve tissues. Examples are extracellular matrix
proteins such as fibronectin/biglycan [110, 142], perlecan
[143–145], pikachurin [146], membrane proteins/receptors
such as integrins [147, 148], AHNAK [53], aquaporins [149,
150], MLC1 [151], caveolins [147], Na and K channels [141,
149, 152–154], and submembranous or cytoskeletal proteins
such as G proteins or other signaling-associated proteins
[103, 106, 111, 113, 115], nitric-oxide synthase [147], actins
[43], tubulins [155], ERMs (ezrin-radixin-moesin) [108,
109], and Par1 [10]. Dissecting their interactions with DGC
in Schwann cells one by one will reveal more comprehensive
molecular architecture, and specific functions associated
with it.

(2) Signaling. Myelinating Schwann cell phenotype is
supposed to be maintained by signaling from both
abaxonal membrane contacting extracellular matrix and
adaxonal membrane apposing to axon. And the inte-
grated signaling from both directions is supposed to
maintain transcriptome or cytoskeletal structures specific
to myelinating Schwann cells. Dystroglycan may play
a role in signaling from abaxonal membrane via the
interaction with other proteins present in extracellular
matrix /abaxonal membrane/cytoskeleton, especially with
laminin-2 and α6β4 integrin. Then dystroglycan-associated
signaling is supposed to activate positive regulators of myeli-
nation, and inactivate negative regulators of myelination.
Evidences accumulated by studies of nonperipheral nerve
tissues suggest a number of hypotheses in this issue. As
examples, several hypotheses will be described below.

First is about the association of dystroglycan or syn-
trophin with signaling-associated proteins such as Src,
Fyn, Csk, Nck, Shc, and Grb2 [103–106, 108, 109, 115].
Interaction of DGC with these adaptor proteins implies that
DGC may regulate Rho family GTPase signaling as well as
MAPK signaling cascade [103–106, 108, 109, 115, 156]. Or
yeast two hybrid screens suggested that dystroglycan can
directly activate MEK or ERK, members of MAPK cascade
[107]. Because it was reported that Ras signaling promotes
differentiation of Schwann cells [157], dystroglycan may
promote myelination through Ras signaling. However, it is
controversial whether Ras/Raf/ERK signaling is promoting
Schwann cell differentiation because there is a report that
Ras/Raf/ERK signaling drives Schwann cell dedifferentiation
[158]. On the other hand, Cdc42, one of the Rho family
GTPases, was suggested to promote radial sorting and
myelination [65]. So Cdc42 may be another mediator of
dystroglycan signaling.

Second, genetic modifier screens suggested the associa-
tion of dystroglycan with Notch signaling [116]. In Schwann
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cells, Notch acts as a negative regulator of myelination [135,
159]. Dystroglycan, therefore, can promote myelination via
regulating Notch signaling. Notably, Notch signaling and
WNT signaling seem to prevent oligodendrocyte differen-
tiation (myelination). Notch signaling and WNT signaling
respectively can induce HES5 and ID2/4, repressors of
myelin genes, via transcription factor activity of NICD
(Notch1 intracellular domain)/CBF1 and β-catenin/TCF7L2,
and then HES5 or ID2/4 represses the transcription of myelin
genes [160, 161]. Moreover, HDACs (histone deacetylases)
can relieve these repressions by competing with the NICD
to bind to CBF1 and competing with β-catenin to bind
to TCF7L2. At the same time, the HDACs might increase
the state of chromatin compaction around genes such as
HES5, ID2, and ID4 that encode repressors of oligoden-
drocyte differentiation, thus preventing their transcription
and providing permissive conditions for oligodendrocyte
differentiation [160, 161].

Third, Krox20, one of the key myelin-associated tran-
scription factors [162], might be another candidate medi-
ator of dystroglycan signaling, because laminin signaling
increases Krox-20 expression [163]. Krox 20 can inhibit c-Jun
activity [164]. Also Krox 20 can suppress Notch signaling by
reducing NICD post-translationally [159].

Fourth, DGC can interact with FAK [104]. FAK is an
ECM-associated signaling protein and is at the crossroad of
multiple signaling pathways, interacting with Rho GTPase
signaling as well as MAPK signaling [165]. Effects of FAK
on cytoskeletal organization were well demonstrated [165].
Moreover, FAK was recently reported to be required for
radial sorting [166]. FAK can interact also with Erb2/Erb3
receptor [167], and then Erb2/Erb3 receptor can promote
myelination [100]. Notably, laminin deficiency caused dra-
matic decrease of Erb2/Erb3 receptor phosphorylation [100].
Therefore, DGC may regulate radial sorting or myelination
via interaction with FAK.

(3) Transcriptional Regulation. little is known about tran-
scriptional regulation of dystroglycan or other DGC compo-
nents in Schwann cells. Recently, Rettino et al. [168] reported
that the expression of dystroglycan was regulated by SP1
transcription factor in muscle cells, and DNA methylation
as well as histone acetylation may be involved in the
regulation. In addition, Miura et al. [169] reported that
PPARβ/δ agonist stimulated the transcription of utrophin,
which restored the expression of α1 syntrophin and β-
dystroglycan at the sarcolemma of the mdx mice. However,
so many issues still remain to be answered considering
the extremely complicated mechanisms of transcriptional
regulation exerted by various transcriptional regulators as
well as chromatin modifications including DNA methylation
and all kinds of histone modifications [170].

(4) Node of Ranvier. While dystroglycan-null mice showed
variety of nodal abnormalities including disorganized
microvilli and reduced sodium channel density, the molec-
ular mechanism remains to be unknown. In order to address
this issue, it will be important to study the interaction of
dystroglycan with node-associated proteins. For example,
ERMs are expressed in the microvilli of many cell types

including those of Schwann cells [171]. In nonperipheral
nervous tissues, it is known that dystroglycan plays a
role in filopodia formation via interaction with ezrin, and
subsequent activation of Cdc42 [108, 109]. Then Cdc42
is supposed to induce cytoskeletal changes necessary for
filopodia formation [108, 109]. Therefore, dystroglycan
may be associated with Schwann cell microvilli formation
through interaction with ERMs.

(5) Cell Polarity. While Schwann cells do not belong to
epithelial cells, Schwann cells have many molecular and
structural properties similar to epithelial cells [140, 172]. In
particular, cell polarity is a central feature shared by Schwann
cells with epithelial cells [140, 172]. Several lines of evidences
suggest that dystroglycan plays a role in maintaining cell
polarity of not only epithelial cells but also Schwann cells [8–
10, 30, 172]. First, in Wallerian degeneration, Schwann cell
phenotype changes from myelinating type to dedifferentiated
type [135]. During this process, the cell polarity specific
to myelinating Schwann cells is lost along with the disso-
ciation of basement membrane from abaxonal membrane
as well as downregulation of dystroglycan and laminin-
2 [30]. This finding suggests that dystroglycan-laminin-
2 interaction is involved in cell polarity maintenance of
myelinating Schwann cells. Second, Cdc42, which seems to
have several links with dystroglycan signaling, is one of the
cental regulators of cell polarity in epithelial cells as well as
glial cells [172]. Third, cell polarity protein Par-1 not only
regulates the basolateral localization of DGC, but also is
required for the formation of a functional DGC in epithelial
cells [10]. Analyzing molecular interactions of DGC with
cell polarity-associated proteins will reveal further detailed
function of dystroglycan.

8. Conclusion

Dystroglycan plays diverse roles in Schwann cells such
as myelination and maintenance of myelin and nodal
structures. However, the molecular mechanisms on which
dystroglycan functions are based are just beginning to be
revealed. Analyzing gene/protein network as a whole system
using cutting edge technologies as well as individual studies
focusing on a variety of biological aspects specific to Schwann
cells hold promise for elucidating molecular mechanism
of dystroglycan functions, and eventual development of
effective treatments for human peripheral neuropathies.
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