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Background
Breast cancer is a disease that affects women’s health [1]. The statistical results of the 
American Cancer Association on female breast cancer in the United States show that 
the incidence rate of breast cancer increased by 0.3% per year from 2012 to 2016 [2]. 
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In addition, breast cancer was predicted to be the most common cancer in the United 
States in 2022 through open source data [3]. Fortunately, with the development of medi-
cal technology, the mortality rate of breast cancer continues to decline [2]. The thera-
peutic effect will be further improved through subtype specific-treatment. Breast cancer 
is commonly categorized into four main subtypes: Luminal A (LA), Luminal B (LB), 
HER2-Enriched (H2), and Basal-Like (BL) [4]. LA is the most common subtype of breast 
cancer, which accounted for 64% in all white patients and 48% in all African Americans 
patients in the study of [5]. Generally speaking, the prognosis of luminal subtypes is 
good, but LB is significantly worse than LA [6]. The prognosis of H2 and BL is poor. The 
BL tumor is larger than other subtypes and grows faster, which is the worst prognosis 
[5, 6]. Without losing generality, the normal sample can be regarded as the fifth subtype, 
i.e., control subtype.

More and more evidence shows that there are biological differences between subtypes 
of breast cancer [6, 7]. The mortality rate of 4 subtypes varies with time, and the response 
to specific treatment is different [7]. For example, LA can be adequately treated by endo-
crine therapy, while LB can be treated by a combination of chemotherapy and hormone 
therapy [6]. At present, many machine learning methods have been successfully applied 
to distinguish breast cancer patients from normal people, such as hierarchical cluster-
ing, random forest (RF), and Light Gradient Boosting Machine [8–10]. However, the key 
to improving the survival rate is to accurately judge the subtype of patients and provide 
appropriate treatment. Recent studies have shown that expression values of miRNA dif-
fer among the intrinsic subtypes of breast cancer and have great potential in diagnosing 
and treating breast cancer [11, 12].

MicroRNAs (miRNAs) are a 21-25 long class of small non-protein coding RNA that 
regulate an estimated 30% of all human genes and play an inhibitory or promoting role 
in cancer [12]. MiRNAs are considered promising breast cancer biomarkers because 
they can be easily detected in tumor biopsy [13]. Although data availability continues to 
increase, not all miRNAs are available in every study. Therefore, it is meaningful to find 
a small miRNA subset as feature set to classify breast cancer subtypes [14–16]. Lopez-
Rincon et al. selected 100 features by integrating the results of 3 classification tree-based 
and 5 linear model-based machine learning methods [14]. Rehman et al. screened fea-
tures and ranked importance through Information Gain, Chi-Squared, and Lasso [15]. 
Sarkar et al. believed that the features selected simultaneously by eight feature selection 
methods based on mutual information were important [16].

As successful feature selection methods based on ensemble learning, different classi-
fiers on the same dataset are integrated to improve the performance of feature selection 
in [14, 16]. An alternative ensemble learning method is to integrate the same classifier 
(with different parameters) on different datasets. Motivated by this idea, we proposed 
a new identification method of miRNA biomarkers for breast cancer by combining 
ensemble regularized multinomial logistic regression and Cox regression. An overview 
of the method was presented in Fig 1.

Different from [14, 16], we adopted stratified sampling and bootstrap sampling to 
ensemble 100 multinomial logistic regression models with elastic net penalty (MLR-
EN) in order to determine the most suitable sample subset for feature screening. 
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Based on this, 124 miRNA were screened as features. In order to verify that the 
proposed feature set is not only applicable to a specific classifier, 6 machine learn-
ing methods were implemented, including multinomial logistic regression(MLR), 
multinomial logistic regression with ridge regression penalty (MLR-R), multinomial 
logistic regression with lasso penalty (MLR-L), RF, support vector machine (SVM) 
and naive Bayes (NB). Further, we identified 22 miRNAs as biomarkers through Cox 
regression based on survival analysis. The results of 7 biological analyses illustrate the 
rationality of the identified biomarkers.

Fig. 1  Overview of identifying miRNAs biomarkers
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Results
Feature screening

In order to avoid the influence of data division on feature selection, we first determined 
the sample subset that was most suitable for miRNA feature screening. To this end, we 
set up a random seed, and stratified sampling the miRNA-seq dataset containing 5 sub-
types and obtained 80% (185) samples containing the total samples as the training set 
Qtrain and 20% (46) samples as the test set Qtest . Using this sampling method, 80% of each 
subtype was randomly selected to form the training set Qtrain , i.e., 69 LA, 31 LB, 19 H2, 33 
BL, and 33 control subtypes. Further, we conducted bootstrap sampling on the training 
set of each subtype and constructed 100 MLR-EN models. Following the idea on param-
eter selection in [17, 18], we specified a sequence value α = {0.05, 0.2, 0.4, 0.6, 0.8, 0.95} 
in advance, determined the parameter � for each prespecified α via the 10 fold cross-
validation, and then determined the optimal parameter pair (α0, �0) for each MLR-EN 
model. Subsequently, we ensembled 100 MLR-EN models and predicted 5 subtypes on 
the test set Qtest (17 LA, 8 LB, 5 H2, 8 BL, and 8 control subtypes) by voting strategy 
(see Algorithm 1 in the Methods). The above process was repeated 50 times. Both pre-
diction accuracy and cross entropy loss [19] were used to evaluate the performance of 
multi-classification, and then the optimal data division was determined. In the calcula-
tion of cross entropy loss, we calculated the ratio of the number of votes obtained by 
the specified subtype to 100, and then took it as the prediction probability of belonging 
to the specified subtype (0.001 was adopted for making subsequent logarithmic opera-
tions meaningful if the obtained probability is 0). After calculation, the highest predic-
tion accuracy of 91.30% and the lowest cross entropy loss of 0.4777 in 50 experiments 
were obtained on the test set when the random seed was set to 28. Results of accuracy 
and cross entropy loss for 50 experiments were shown in Additional file 1: Table S1. The 
training set Qtrain corresponding to random seed 28 was considered the most suitable 
sample subset for miRNA feature screening.

The number of miRNAs that participated in the classification of each subtype was 
shown in Fig.  2. According to the rationale of the voting strategy, only miRNAs that 
appeared more than 50 times in the 100 MLR-EN models on the division of seed 28 were 
reserved. A few miRNAs may participate in different subtypes and play different regu-
latory roles. Especially, miRNAs that participated in at least half of the subtypes were 
considered very important. Following this idea, 124 miRNAs that participated in at least 
3 subtypes were further selected as features, and the specific names were shown in Addi-
tional file 1: Table S2.

MLR-R was performed to evaluate the performance of 5 feature sets participating in 
the different number of subtypes. Set random seeds 1–100 to randomly divide 80% of 
the samples as the training set and the remaining 20% as the test set 100 times. The aver-
age classification accuracy (ACA) and variance (Var) of MLR-R on the test set in 100 
data division experiments were shown in Table 1. MLR-R achieved the highest ACA of 
79.41% (95% confidence interval of 0.7839–0.8043) on the proposed feature set.

Subtype classification

Table 2 showed the ACA and Var of 6 methods in 100 random data division experiments 
on the proposed feature set, 8∗ feature set and whole feature set. 8∗ feature set was first 
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Fig. 2  Number of miRNAs that participated in classification of each subtype

Table 1  The ACA and Var of MLR-R on 5 feature sets

The highest average classification accuracy obtained by each method on different feature sets was shown in bold

No. of participating subtypes MiRNA size ACA(Var)

At least 1 282 0.7385 (0.0019)

At least 2 238 0.7417 (0.0015)

At least 3 124 0.7941 (0.0026)

At least 4 46 0.7733 (0.0026)

At least 5 5 0.5965 (0.0029)

Table 2  ACA of 6 methods on different datasets

The highest average classification accuracy obtained by each method on different feature sets was shown in bold

124 miRNA[proposed] 8
∗ feature set [16] The whole feature set

MLR-R 0.7941 (0.0026) 0.7715 (0.0025) 0.7361 (0.0018)

MLR-L 0.7274 (0.0030) 0.7185 (0.0027) 0.7167 (0.0023)

MLR 0.6574 (0.0037) 0.6257 (0.0037) 0.6361 (0.0041)

RF 0.7504 (0.0020) 0.7680 (0.0024) 0.7491 (0.0020)

SVM 0.7657 (0.0021) 0.7554 (0.0019) 0.7415 (0.0024)

NB 0.7565 (0.0028) 0.7285 (0.0033) 0.7198 (0.0039)
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proposed in [16]. MIM, mRMR, CMIM, JMI, DISR, ICAP, CIFE, and CONDRED were 
used to obtain 8 subsets of miRNAs. Each subset was considered to make an ensem-
ble by further categorizing the miRNAs as 1∗–8∗ . If a miRNA was present in all the 8 
miRNA subsets, then it was categorized as 8∗ . The reliability of comparative classifica-
tion accuracy was ensured under the same data division. MLR-R, MLR-L, and MLR were 
solved via the R package glmnet. SVM and NB were solved via the R package e1071. RF 
was solved via the R package randomForest. Compared with the 8∗ feature set in [16] 
and whole feature set, 5 of the 6 methods achieved higher ACA on the proposed feature 
set, except RF. Although RF achieved the highest ACA of 76.80% on the 8∗ feature set, 
2.61% lower than MLR-R on the proposed feature set. We tested the hypothesis “there 
is no significant difference between the two results” with t-test. The obtained p-value 
was 1.711e−08, much less than 0.05. Therefore, the original hypothesis was rejected, i.e., 
the improvement in ACA from 76.8 to 79.41% was statistically significant. Furthermore, 
MLR-R achieved ACA of 77.15% higher than RF by 0.35% on the same 8∗ feature set.

Identification of miRNA biomarkers

Cox regression based survival analysis was performed via R package survival on the pro-
posed feature set. In the survival data, the censored data and the sample status still alive 
at the end of the follow-up time were recorded as 0, and the death status was recorded 
as 1. The 22 miRNAs corresponding to the conditions that the absolute value of the 
Cox regression coefficient was greater than 0.2 and the p-value was less than 0.05 were 
identified as breast cancer biomarkers. The identified miRNA biomarkers were listed in 
Table 3 according to the absolute value of the Cox regression coefficient. MiRNA cor-
responding to hazard ratio greater (less) than 1 will increase (reduce) the risk of death. 
For example, hsa-miR-130b-3p with high expression will increase the risk of death since 
its corresponding hazard ratio was 1.2479. On the contrary, hsa-miR-495-3p, hsa-miR-
29a-3p, and hsa-miR-452-5p with high expression will reduce the risk of death due to the 
relatively small hazard ratio. The regulatory role of these miRNAs was also confirmed in 
the following section K–M survival analysis and expression analysis .

Biological analysis

Kaplan–Meier (K–M) survival analysis [20], expression analysis, regulatory network 
analysis [21], Protein–Protein Interaction (PPI) analysis [22], Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis [23], Gene Ontology (GO) enrichment 
analysis [24], and miRNA–protein–drug interaction network were performed to ana-
lyze the rationality of the identified 22 miRNA. The detailed process and results were 
described in the following section.

K–M survival analysis and expression analysis

We screened the subset of the identified miRNAs that simultaneously participate in 
the control subtype and another subtype and performed K–M survival analysis and 
expression analysis. K–M survival analysis was implemented via R package survival 
and survminer, and the log-rank test was performed to obtain p-values. For LA, LB, 



Page 7 of 23Li et al. BMC Bioinformatics          (2022) 23:434 	

H2, and BL, only one of the analysis results of each subtype were listed in Fig. 3. The 
remaining 34 analysis results were shown in Additional file 1: Figs. S1–S6.

Figure 3 showed that the identified miRNA could significantly distinguish the survival 
probability of the low and high expression group, which can be used as a factor for prog-
nosis inference. In addition, the expression value of miRNA was shown through the box 
plot, and the p-value reflected the significant difference between the control subtype and 
another subtype. These analyses confirmed the facts published in the references. For 
example, hsa-miR-130b-3p was found to have crucial relevance for breast cancer biol-
ogy, and its expression was up-regulated [25]. Hsa-miR-452-5p had a tumor suppressive 
role, and its declining expression level will promote the metastasis of breast cancer [26]. 
Moreover, the low expression of miR-29a-3p was associated with lower overall breast 
cancer survival [27]. Hsa-miR-495-3p was also down-regulated in the early stages of 
breast cancer [28].

Regulatory network analysis

Transcription factors (TFs) and target genes related to 22 miRNA were found through 
miRTarbase [29], TRRUST [30], and TransmiR [31] databases. Fig 4 visualized the fol-
lowing detailed steps. 

1.	 Identify 312 target genes associated with identified 22 miRNAs.
2.	 Identify 58 TFs that target 22 miRNAs.
3.	 Verify that all 22 miRNAs were targeted by 58 TFs.

Table 3  The identified miRNA biomarkers

MiRNA Cox coefficient Hazard ratio p-value

hsa-miR-30e-3p −0.3138 0.7307 0.0381

hsa-miR-1266-5p 0.3046 1.3561 0.0007

hsa-miR-99b-5p 0.2803 1.3235 0.0083

hsa-miR-629-5p 0.2759 1.3177 0.0073

hsa-let-7e-5p 0.2713 1.3117 0.0233

hsa-miR-27b-5p 0.2526 1.2873 0.0177

hsa-let-7g-3p 0.2497 1.2836 0.0032

hsa-miR-125a-3p 0.2457 1.2785 0.0237

hsa-miR-193b-5p 0.2344 1.2642 0.0035

hsa-miR-99b-3p 0.2322 1.2614 0.0069

hsa-miR-744-5p 0.2248 1.2521 0.0202

hsa-miR-29a-3p −0.2247 0.7988 0.0249

hsa-miR-107 0.2225 1.2492 0.0493

hsa-miR-130b-3p 0.2215 1.2479 0.0015

hsa-miR-495-3p −0.2202 0.8024 0.0031

hsa-miR-331-3p 0.2149 1.2397 0.0157

hsa-miR-340-5p 0.2145 1.2392 0.0306

hsa-miR-127-3p −0.2130 0.8082 0.0017

hsa-miR-671-5p 0.2089 1.2323 0.0114

hsa-miR-30a-5p −0.2062 0.8137 0.0013

hsa-miR-452-5p −0.2025 0.8167 3.09E−05

hsa-miR-889-3p −0.2013 0.8177 0.0052
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Fig. 3  K–M survival analysis and expression analysis
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4.	 Identify 207 key TFs through 312 genes obtained from step 1.
5.	 Verify that all 22 miRNAs were targeted by 30 TFs obtained from steps 2 and 4.
6.	 Identify 991 genes targeted by 30 TFs obtained from steps 2 and 4.
7.	 Identify 20 miRNAs that target 106 genes obtained from steps 1 and 6.

Subsequently, the regulatory networks of miRNA, TFs, and genes were constructed 
via the Cytoscape tool. Figure  5 showed the global regulatory network. The size of 
the node area in the Fig. 5 represents the degree of the node. For larger nodes, hsa-
miR-107, hsa-miR-30a-5p, hsa-miR-29a-3p, and hsa-miR-130b-3p have been proved 
to suppress or drive the occurrence of breast cancer [25, 27, 32, 33]. In order to more 
clearly show the regulatory relationship between miRNAs, TFs, and genes, those 
genes and TFs with the same name were selected to construct subnetworks. It was 
observed in Fig 6 that MYC and TP53 had more connections with miRNA and were 
considered oncogenes for breast cancer with poor prognosis [34, 35].

PPI network analysis

Proteins cannot independently perform their unique biological significance, and they 
rely on interactions to achieve their significant impact [36]. PPI networks of 30 TFs 
targeting 22 miRNA were constructed through STRING database [22]. Details of the 
interaction between TFs were shown in Fig.  7. Each edge of the network indicates 
both functional and physical protein associations, and the line thickness indicates 
the strength of data support. In addition, the p-value of this PPI network was less 
than 1.0E−16 and the average degree node was 15.2. The TFs in the top 5 degrees 
were listed in Table 4. EP300 was a tumor suppressor, down-regulated in metaplastic 
breast cancer [37]. Moreover, BRCA1 was considered a tumor suppressor gene. When 
BRCA1 mutates, it is associated with the occurrence of hereditary breast cancer [38]. 
Similarly, the expression of MYC, TP53, and JUN was also closely related to breast 
cancer [34, 35, 39]. These evidences illustrated that the identified 22 miRNAs belong 
to the breast cancer pathway.

Fig. 4  Illustration of the steps of refining the miRNAs, gene and TF sets
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KEGG pathway analysis

The 106 genes targeted by 20 miRNAs were subjected to KEGG pathway analysis 
through ConsensusPathDB [40] database. The parts of pathway name in which genes 
participate and the p-value were listed in Table 5. The pathways in Table 5 have been 
annotated by many documents [41–43]. PI3K-Akt signaling pathway played an essential 
role in the pathogenesis of breast cancer, regulating cell proliferation, metabolism, and 
other vital functions [41]. FoxO signaling pathway can be used as a cancer treatment 
target to find and develop some effective drugs for cancer [42]. Molecular pathological 
analysis of the p53 signaling pathway was considered valuable in the diagnosis, prog-
nosis evaluation, and final treatment of breast cancer [43]. In addition, it was observed 
from the Table 5 that Pathways in cancer, MicroRNAs in cancer, and Breast cancer were 
significantly correlated with breast cancer. These results demonstrated that the identi-
fied miRNA sets could be potential biomarkers.

GO enrichment analysis

Further, GO enrichment analysis was performed by bioinformatics online tool (http://​
www.​bioin​forma​tics.​com.​cn/?p=1) for the 106 genes. GO includes 3 ontologies, bio-
logical process (BP), cellular component (CC), and molecular function (MF), which can 

Fig. 5  Global regulatory networks of miRNAs (yellow), genes (green) and TFs (blue)

http://www.bioinformatics.com.cn/?p=1
http://www.bioinformatics.com.cn/?p=1
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Fig. 6  Subnetwork of containing the loops between miRNAs and same-named genes and TFs

Fig. 7  PPI network analysis
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comprehensively describe the attributes of genes and gene products in organisms [24]. 
Figure  8 showed that the 10 terms in each type of ontology. The horizontal axis rep-
resents the enrichment fraction taken as −log10(p-value), and the vertical axis repre-
sents the functional description of the GO term. It was observed from the figure that 
some significant GO terms related to BP mainly enriched in response to oxygen lev-
els (GO:0070482, p =  1.11E−19), muscle cell proliferation (GO:0033002, p =  2.27E−
19), and cell cycle G1/S phase transition (GO:0044843, p  =  1.88E−18). Meanwhile, 
cyclin-dependent protein kinase holoenzyme complex (GO:0000307, p  =  6.53E−11), 
transcription regulator complex (GO:0005667, p = 6.59E−10), and protein kinase com-
plex (GO:1902911, p = 4.70E−09) were significantly enriched in CC. Similarly, among 

Table 4  TFs in the top 5 degrees of nodes

Node EP300 MYC TP53 JUN BRCA1

Node-degree 27 27 25 24 23

Table 5  KEGG pathway analysis

Pathway p-value

Pathways in cancer 1.7E−29

PI3K-Akt signaling pathway 3.7E−22

MicroRNAs in cancer 2.7E−21

FoxO signaling pathway 6.3E−18

p53 signaling pathway 2.9E−16

Breast cancer 6.4E−12

Fig. 8  GO results of three ontologies
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MF, the important enriched GO terms were promoter-specific chromatin binding 
(GO:1990841, p = 3.91E−11), DNA-binding transcription factor binding (GO:0140297, 
p = 1.12E−08), and cyclin-dependent protein serine/threonine kinase regulator activity 
(GO:0016538, p = 1.34E−08).

MiRNA–protein–drug interaction network analysis

MiRNAs are closely associated with diseases [44]. In order to make the identified 22 
miRNAs more clinically significant, we studied potential drugs that regulate them. 
However, treating diseases based on drugs directly targeting miRNA still faces many 
challenges and may lead to unpreventable consequences [45, 46]. Fortunately, drugs tar-
geting proteins involved in this miRNA pathway can regulate the function of miRNA 
[45]. Motivated by this idea, we constructed the miRNA–protein–drug interaction net-
work through BioGRID database [47]. Figure 9 showed that the details of the interaction 
between miRNA (yellow), protein (blue), and drug (red).

Drug samples {GARCINOL}, {LOBAPLATIN, AMINOPTERIN, ACIVICIN, 
MITOGUAZONE, ADOZELESIN}, {APR-246, NUTLIN-3, AVASTIN, YONDELIS}, 
{SERGEOLIDE, BRUCEANTIN, HOLACANTHONE}, and {OLAPARIB, DENO-
SUMAB} target significant proteins EP300, MYC, TP53, JUN, and BRCA1. It has been 
found to be related to the treatment of breast cancer [48–53]. For example, GARCINOL 
achieves anticancer activity against breast cancer cells by regulating epithelial-to-mes-
enchymal transition and Wnt signaling pathways [48]. Oral OLAPARIB has shown clini-
cal efficacy in phase III clinical trials for treating mutant BRCA-positive HER2 negative 

Fig. 9  MiRNA–protein–drug interaction network
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metastatic breast cancer [51]. In addition, although there is no direct evidence that SAR-
405838 and BIZELESIN can be used in the treatment of breast cancer, they can be used 
in the phase I study of patients with advanced malignant tumors [54, 55].

Discussion
For the identified 22 miRNAs, we performed a bibliographic meta-analysis of specialized 
literature. Among them, hsa-miR-495-3p [28], hsa-miR-30a-5p [33], hsa-let-7e-5p [56], 
hsa-let-7g-3p [57], hsa-miR-127-3p [58], hsa-miR-30e-3p [59], hsa-miR-340-5p [60], 
hsa-miR-193b-5p [61], and hsa-miR-744-5p [62] have been considered biomarkers for 
breast cancer by previous literature. In addition, LINC0092 was considered a therapeutic 
marker for breast cancer and was regulated by hsa-miR-452-5p [26]. Hsa-miR-130b-3p 
[25], hsa-miR-29a-3p [27], hsa-miR-107 [32], hsa-miR-99b-5p [63], hsa-miR-99b-3p [64], 
hsa-miR-27b-5p [65], hsa-miR-125a-3p [66], hsa-miR-331-3p [67], hsa-miR-629-5p [68], 
hsa-miR-671-5p [69], hsa-miR-889-3p [70], and hsa-miR-1266-5p [71] have been proved 
to be highly related to breast cancer. These 12 miRNAs may be considered potential bio-
markers for breast cancer, providing a new idea for related research.

We selected the most suitable sample subset to reduce data division’s impact on 
miRNA feature screening. In addition, we also performed Algorithm  1 on all sam-
ple sets and obtained 122 miRNA as a feature set. MLR-R achieved ACA of 79.93% on 
this feature set, which was 0.52% higher than that on the proposed feature set. From 
the perspective of subtype classification, feature screening should be based on the train-
ing dataset, and a test set should be reserved in advance to verify the prediction ability. 
This is why we do not use all sample information to screen features. After considering 
the classification accuracy, algorithm execution time, and sample size, we set the num-
ber of integrations of learners (MLR-EN) to 100. As for the comparison of classifica-
tion results of 6 methods on 3 different feature sets, we set 1–100 continuous random 
seeds to ensure that each method was tested under the same data division. Although 
10-fold cross-validation can accurately obtain the error estimation of the model to a cer-
tain extent, the results change with the change of random seeds. The proposed ACA of 6 
methods in 100 experiments showed the actual results more fairly.

We considered the normal samples as the control subtype, i.e., the fifth subtype. 
According to the non-zero regression coefficients that appeared more than 50 times in 
100 MLR-EN models, 128 miRNAs that participated in control subtype classification 
were identified. Among the 128 miRNAs, 8 miRNAs only participated in the classifica-
tion of control subtypes. Therefore, genes regulated by 8 miRNAs were thought to par-
ticipate in the classification of the control group. These genes can be identified through 
miRTarbase database. As this is not the paper’s focus, we do not present detailed results.

We combined the survival information of the sample to perform Cox regression anal-
ysis on the proposed feature set. From the perspective of statistics, the miRNAs cor-
responding to p < 0.05 were significantly correlated with survival. Moreover, we set 
the threshold of the absolute value of the regression coefficient to be 0.2. The choice 
of thresholds was derived from the analysis of experimental results. 18 miRNAs were 
selected if the threshold was 0.21. Compared with the results of the proposed threshold, 
hsa-miR-30a-5p, hsa-miR-452-5p, hsa-miR-671-5p, and hsa-miR-889-3p were excluded. 
However, hsa-miR-889-3p has been proved to be a biomarker for breast cancer. In 
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particular, LINC0092 was considered a therapeutic marker for breast cancer and was 
regulated by hsa-miR-452-5p. This indicates that hsa-miR-452-5p has a great possibil-
ity of being a breast cancer biomarker. Conversely, 7 miRNAs would be increased if the 
threshold was set to 0.19. Through a literature search, there was no evidence showing 
that these 7 miRNAs were closely associated with breast cancer. Combined with the con-
dition p < 0.05 and threshold limit, 22 miRNA were identified. For these 22 miRNAs, 
we analyzed the miRNA, the targeted genes, the TFs, and the related drugs to determine 
the rationality of the identified 22 miRNAs as potential biomarkers of breast cancer from 
multiple perspectives.

The excellent performance of this article could be attributed to five factors:

•	 Based on stratified sampling and bootstrap sampling, the most suitable sample sub-
set for miRNA feature screening was determined via ensemble MLR-EN.

•	 In the screening process of 124 features, both the number of subtypes that miRNA 
participates in classification and the frequency of miRNA that appeared in 100 inte-
grations were fully considered.

•	 22 miRNAs from the proposed feature set were further identified as breast cancer 
biomarkers by using Cox regression based on survival analysis.

•	 The identified 22 miRNAs were analyzed from multiple perspectives to the rational-
ity.

•	 The subtype classification performance of the 6 methods was measured fairly and 
objectively through the proposed comparison method.

Undeniably, the coefficient threshold of Cox regression are empirical values in our 
method, and different data may have different suitable values. Moreover, our proposed 
method is based on ensemble learning, whose execution time will be significantly longer 
than traditional machine learning methods. In addition, we only use one dataset without 
looking for external datasets for verification. In future work, we will collect more data to 
verify our results.

Conclusions
In this paper, we combined ensemble regularized multinomial logistic regression and 
Cox regression to identify miRNA biomarkers in breast cancer. 124 miRNAs meeting 
specific conditions were screened as feature set. 6 methods on 3 different feature sets 
were fairly compared, and the proposed features can significantly improve the subtype 
classification accuracy of 5 methods. Based on this feature set, 22 miRNA biomark-
ers were identified by performing Cox regression analysis. Subsequently, K–M survival 
analysis, expression analysis, regulatory network analysis, PPI analysis, KEGG path-
way analysis, GO enrichment analysis, and miRNA–protein–drug interaction network 
were performed to analyze the rationality of the identified biomarkers from multiple 
perspectives.

In particular, possible drugs were suggested through miRNA–protein–drug interaction 
network. Of course, these drugs must be further studied for solid clinical evidence. All rele-
vant drugs were not fully shown in Fig. 9 to make the results more observable. In this event, 
15 drug samples targeting 5 significant proteins have been found to have the function of 
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treating breast cancer. This evidence provides more support for 22 miRNAs as potential 
biomarkers of breast cancer. In a word, the results of this paper included well-known and 
underestimated miRNAs, which may provide clues for some related studies.

Methods
Data preparation

The high throughput next-generation sequencing data of miRNA expression of Breast 
Invasive Carcinoma were downloaded from The Cancer Genome Atlas [72]. This dataset 
includes 231 samples and 587 miRNAs, including 86 LA, 39 LB, 24 H2, 41 BL, and 41 con-
trol subtypes. Accordingly, each sample has clinical information such as survival time and 
status. However, many miRNAs in the data have no expression values in some samples. 
Sarkar et al. cleared miRNA with the non-expression value of more than 1% and normal-
ized the remaining miRNA expression value by taking the logarithm of base 2. Based on 
this, 296 miRNAs were obtained [16]. In order to make the dataset look clearer, we listed 
the information of 5 subtypes in Table 6.

Method description

Given miRNA expression profiling data {(x1, y1), . . . , (xi, yi), . . . , (x231, y231)} , where 
xi = (xi1, xi2, . . . , xi296)

T denotes the expression levels of 296 miRNAs for the ith sample, 
yi represents a subtype label corresponding to xi . If the ith sample comes from LA, LB, H2, 
BL, or control, yi takes 1, 2, 3, 4, or 5 accordingly. We randomly selected 4/5 (185) of the 
samples to train the model, the rest to test the model. Stratified sampling was performed to 
avoid a small number of subtypes not being selected for the training set.

Multinomial logistic regression

Logistic regression is a classical binary machine learning method that has achieved many 
results in cancer diagnosis [73, 74]. When the sample category exceeds two classes, the 
logistic regression can be generalized to the multinomial logistic regression [75]. Distin-
guishing breast cancer subtypes is considered a 5 classification task in this paper. The maxi-
mum log-likelihood of multinomial logistic regression is written as the following function:

where I(·) is the indicator function, yi ∈ {1, 2, 3, 4, 5} denotes subtype label, 
w = (w1,w2, . . . ,w296)

T is the regression coefficient vector and b is the offset.

(1)l(w, b) =

231

i=1

5

j=1

I(yi = j)(wTxi + b)− log

5

j=1

ew
T xi+b ,

Table 6  The information of 5 subtypes

Sample Sample size No. of miRNA

LA 86 296

LB 39 296

H2 24 296

BL 41 296

Control 41 296
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Model building

By combining multinomial log-likelihood loss and elastic net penalty, we proposed the fol-
lowing multinomial logistic regression with elastic net penalty model:

where � is the regularization parameter, Pα(w) = (1− α) 12

∑296
k=1 w

2
k + α

∑296
k=1 |wk | is 

elastic net penalty, α ∈ [0, 1] denotes the regularization parameter, and wk represents the 
regression coefficient corresponding to the kth miRNA. Elastic net penalty is a popular 
feature selection method in bioinformatics [76, 77]. When α = 0 , (2) is MLR-R. When 
0 < α < 1 , (2) is MLR-EN. When α = 1 , (2) is MLR-L.

Bootstrap sampling was performed 100 times on the training set, and learners (MLR-EN) 
were ensembled. MiRNAs that appeared at least 50 times in 100 integrations were screened 
to ensure the rationale of the voting strategy. The selected miRNA subset corresponding to 
the jth subtype is defined as follows:

where qk represents the kth miRNA, w̄m
k ,j represents the regression coefficient corre-

sponding to the kth miRNA in the jth subtype obtained by the mth learner, and D con-
tains the results of 5 subtypes.

In addition, we consider that miRNA participation in at least half of the subtypes is more 
important. Therefore, we further process the miRNA subset obtained by (3) and select fea-
tures that participated in at least 3 subtypes:

where w̄k ,j represents the regression coefficient corresponding to the kth miRNA partici-
pating in the jth subtype in D, qk is the same as described in (3).

Cox regression

Cox proportional hazard model can study the relationship between risk factors and patient 
survival. The formula of Cox regression is as follows:

where h(t) is the risk function, h0(t) is the baseline risk function, h(t)h0(t)
 represents the haz-

ard ratio, and (β1, . . . ,β124)T is the regression coefficient vector corresponding to 124 
miRNAs in D∗.

(2)< w̄, b̄ >= arg min
w,b

{

−
1

231
l(w, b)+ �Pα(w)

}

,

(3)Dj =

{

qk |

100
∑

m=1

I(w̄m
k ,j �= 0) ≥ 50

}

,

(4)D ={D1,D2,D3,D4,D5},

(5)D∗ =







qk |

5
�

j=1

I(w̄k ,j �= 0) ≥ 3







,

(6)
h(t)

h0(t)
= e

β1x1+···+β124 x124 ,
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Algorithm

The steps of determining the most suitable sample subset for miRNA feature screening 
were shown in Algorithm 1. Moreover, the algorithm steps of solving ensemble regular-
ized multinomial logistic regression  were shown in Algorithm 2:
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