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Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one
of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to
a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time
according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges
from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that
investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and
intuitively into the nature of immunological processes. NetLogo is a multiagent programming language andmodeling environment
for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and
education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help
in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.

1. Introduction

Complex biological scenarios have been recently investigated
with the synergic union between computational modeling
and high-throughput experimental data. This approach has
helped the generation of novel insights and hypotheses for
further research and development, with a considerable saving
in terms of time and costs. Moreover, it allowed experiments
and/or measurements that cannot be easily achievable in a
laboratory environment [1].

Once developed and validated, models can be adapted in
different ways (e.g., inputs can be altered to mimic different
environments) to enable examination of different qualities.
These in silico (or dry-laboratory) experiments are of course
complementary to traditional wet-laboratory experimental
approaches [2].

During the last decades many mathematical and compu-
tational models have been developed to model and describe

the immune system processes and features. Nevertheless it is
possible to group most models in two large classes according
to the modeling approach used: Top-down and bottom-up
approaches (see [3]).

The Top-down approach works by estimating the mean
behavior at a macroscopic level, thus modeling populations
and not single entities. By using such an approach it is
possible to model and represent a large number of entities.
The oldest and most famous top-down approach has been
represented by the use of ordinary and partial differential
equations- based (ODE and PDE) models. Usually ODE
models ignore the topology of the problem, whereas PDE can
also be used when the space distribution is of importance for
the problem. Both techniques neglect individual interactions.
Models based on these approaches rely on a strong mathe-
matical theory that allows in some cases analytical study and
asymptotic analysis. However complex problems may entitle
intractable models, and approximations of the biological

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 907171, 6 pages
http://dx.doi.org/10.1155/2014/907171

http://dx.doi.org/10.1155/2014/907171


2 BioMed Research International

scenario become a prerogative. Examples of models based
on these approaches are presented in [4–8]. This class of
models also includes stochastic differential equations, which
add to the classical definition of differential equation some
stochastic terms in order to mimic, for example, individual
diversity or environmental fluctuations due to statistical noise
(see, e.g., [9]).

The bottom-up approach works at a microscopic level.
Entities (agents) and interactions are described and followed
individually, and the general behavior of the system arises
from the sum of the local behaviors of the involved entities.
In this way it is possible to describe local immunological pro-
cesses with greater accuracy, avoiding rough approximations
that are typical of top-down approaches. Furthermore spatial
distribution and stochastic behaviors generally are already
inside, since they normally represent two intrinsic features
of the modeling techniques that are based on a bottom-up
approach. Conversely, since entities are followed individually,
such modeling techniques require a bigger computational
effort and there are no strong mathematical instruments
that can permit any analytical study. Cellular automata and
(multi-) agent-based methods are the most used bottom-up
approaches, also in immunology [10–18].

Cellular automata and multiagent-based models have
been initially developed for modeling specific problems by
using general purpose programming languages, mainly C (in
all of its variants) or Fortran. Soon after that the strength
of these modeling techniques became clear to the scientific
community; many agent-based languages and frameworks
that enabled creating agent-based applications were devel-
oped (see [19] for a review).

Among these NetLogo, a programming language and
integrated modeling suite that is totally devoted to ABMs,
has reached a good level of maturity and usability. NetLogo
development was started in 1999 by Uri Wilensky, which
continues to maintain, update, and add new functions ever
since [20, 21].

NetLogo is a functional programming language [22] with
“turtles” that represent the agents and “patches” that represent
a given point into the simulation space. Both of these may
have multiple properties that can be defined by the user such
as age, color, and position.

In practice, the fact that NetLogo uses a functional pro-
gramming language means that many language statements
are almost read as sentences, and this enables even unskilled
and untrained users to understand and learn it through the
examples.

NetLogo can be slower than other tools, but it is very easy
to use, it supports the automatic drawing of agents in 2D or
3D, it gives the possibility to simply build user interfaces, and
it is supplied with a lot of examples and HOWTOs, making
it a suitable platform for beginner programmers. Moreover,
NetLogo models can be effortlessly shared as Java applets,
and this means that such models can be run in almost all
(if not all) computer platforms. It is also possible to perform
better statistical analysis of results thanks to a plug-in that
allows communication between NetLogo and R [23], a very
well-known statistical software. NetLogo has been released
under the GNU General Public License, meaning that it

is free and open-source. NetLogo thus represents a good
choice to realize multiagents models, networks, and complex
dynamical systems.

In this review we will focus on the use of NetLogo to
model the immune system processes and features.

2. Application of NetLogo to Immunology

NetLogo framework has been used extensively to further
our understanding of systems in several different disciplines,
including biology, ecology, economics, and sociology. Here
we will show several applications of NetLogo to model, at
different extent, immune system dynamics.

2.1. Modeling Innate Immunity. Toll-like receptors (TLRs)
represent a class of proteins playing an important function
in the innate immune system. They are receptors usually
expressed in macrophages and dendritic cells that recognize
structurally conserved molecules derived from microbes.
They are fundamental in activating the innate immune
system response. In [24], the authors present spatially
configured stochastic reaction chambers (SCSRC), that is,
an agent-based modeling framework that incorporates an
abstracted molecular “event” rule system with a spatially
explicit representation of the relationship between signaling
and synthetic compounds. They implemented the SCSRC
with NetLogo and applied the model to TLR 4 signaling and
the inflammatory response.

Themodel was able to accurately reproduce the dynamics
of TLR-4 signaling in response to LPS stimulation. In particu-
lar, it was capable of showing that there was a dose dependent
proinflammatory response effect and also the establishment
of tolerance.

Inflammation is part of the first immune response,
typically innate immune response to harmful stimuli, such
as pathogens, damaged cells, or irritants. There are two
main types of inflammation: acute or chronic. The former
is the initial response of the body to dangerous stimuli
and is sustained by the increased movement of plasma and
leukocytes (especially granulocytes) from the blood into the
injured tissues. The former is represented by a protracted
inflammation, characterized by both destruction and healing
of the tissue involved in the inflammatory process.

Brown et al. [25] developed amodel to study the response
of inflammatory cells (macrophages) and cells involved in
remodeling (fibroblasts) to particulates exposure. The NetL-
ogo model, even with clear limitations (varied tissue struc-
tures in the lung, missing full complement of cells, and other
important immune cells that play a role in the inflammatory
process), was able to forecast the existence of biologically rel-
evant aspects, that is, healing and return to baseline, localized
tissue damage andfibrosis, and extensive damage andfibrosis.
It includes interactions among macrophages (that could be
considered along with other lymphocytes and neutrophils,
the leaders of inflammatory response), fibroblasts (that can
lead to fibrosis), proinflammatory cytokine (TNF-a), anti-
inflammatory cytokine (TGF-b1), collagen deposition, and
tissue damage/dysfunction/DAMPs.



BioMed Research International 3

Another example of inflammation modeling is given in
[26]. Here the authors develop an ABM of the epithelium
using results derived from an in vitro model of gut epithelial
permeability. Then, the epithelial ABM was integrated with
the endothelial/inflammatory cell ABM to produce an organ
model of the gut. This is an interesting example where the
model results were then validated against in vivo models of
the inflammatory response of the gut to ischemia.

A particular form of inflammation is characterized from
the acute inflammatory response that arises initially in
response to several biological stressors, including infection,
burns, trauma, and invasive surgery. Under normal cir-
cumstances this kind of inflammation is strictly supervised
by the immune systems and is regulated and self-limited.
However when anti-inflammatory processes fail, one can
observe an amplified inflammatory state that is depicted
by severe, uncontrolled systemic inflammation and multiple
organ dysfunction. In [27], Dong et al. proposed an ABM
framework developed to investigate insight on the stochastic
interactions of the mediators involved in the propagation of
endotoxin signaling at the cellular response level that at the
end triggers acute inflammation.

2.2. Modeling Immunity to Pathogens. Human papillo-
mavirus (HPV) is a DNA virus from the papillomavirus
family that is capable of infecting humans. The main tar-
gets of HPV are the keratinocytes of the skin or mucous
membranes. Some types of infections can trigger benign
papillomas, while others can lead to cancers of the cervix,
vulva, vagina, penis, oropharynx, and anus [28]. NetLogo
can interact with other modeling strategies and in [29]
the authors combined cellular automata and agent-based
modeling techniques (implemented in NetLogo) to simulate
the growth and the HPV life cycle, allowing the observations
at different stages.

In the adaptive immune response to a virus of an
intracellular bacterium, the presentation of the antigen on
the surface of the infected cell is of extreme importance. One
way to perform this communication strategy is represented
by the displaying of viral antigen onmajor histocompatibility
complex of class I of the infected cell. Recently, another
mode of communication has been revealed, namely, the
transport of antigen from one cell to another through gap
junctions [30]. Gap junctions are small channels that can
form between two cells to permit the transfer of small
molecules [31]. One of the advantages of NetLogo is to
have available a graphical support without worrying about
programming it.This permits having one of themain features
of ABM ready to use: spatiality. A work that models gap
junctions both with ABM and ODE techniques can be found
in [32]. Here the authors showed by an ODE model that gap
junction-mediated antigen transport is not a good strategy
for the immune response in the situation where the infection
dynamics can be explained by a well-mixed model (this can
apply to organs, e.g., the spleen). In different situations, that
is, where target cells are sparse and unmoving (this can
represent, e.g., the case of epithelial cells that are targeted
by many viruses), gap junction-mediated antigen transport
might drive to a phenomenon similar to firebreaks, which

impedes virus diffusion and can therefore establish a useful
immune response scheme. This was modeled using NetLogo
to implement a localized infection of a patch of epithelial
tissue containingmore than 10000 target cells on a grid of size
101× 101. It is worthmentioning that in this case spatiality was
of main importance.

2.3. Modeling Immune System Dynamics. Developing and
using mathematical and simulation strategies cover also an
important role in the analysis of the dynamics of infectious
diseases in populations. Recently, suchmodels integrate pop-
ulation structure and viewed differences between individuals
in traits that impact transmission [33]. In this scenario,
there are several cases in which the interaction between
trait and infection dynamics plays an important role. Think,
for example, about the systems where the heterogeneity
between individuals affects implicit trait, that is, “infection
history,” and the more explicit trait, that is, “immune status.”
Patterns of such systems are mostly host-parasite systems
with protozoan parasites or worm parasites. In [34], the
authors use NetLogo to implement a model to analyze the
host dynamics of a protozoan parasite infecting chickens,
including acquired immunity and repeated infection through
a spatially structured environment. The choice to use an
individual-based model allowed the authors to investigate
stochastically emerging heterogeneity. Main emerging results
were the possibility to examine the variation in the immune
response, transmission, and movement of individuals.

Understanding the role of leukocyte trafficking through
the microcirculation and into tissues is of fundamental
importance in vascular-associated pathologies like athero-
sclerosis, stroke, chronic wounds, and peripheral vascular
diseases. In particular, methodologies that explore leukocyte
adhesion and its dynamics are central. A computational
framework that combines agent-based modeling (ABM)
with a network flow analysis to study monocyte homing
is presented in [35]. Here the authors show an important
feature of NetLogo environment, that is, to import a specific
map or network in which the agents are free to move. This
can be of any type and can contain constraints (densities,
barriers, one way paths, etc.). The paper describes a network
blood flowmodel that computes fluid flow velocities, pressure
distributions, and WSS values in a simulated microvascular
network, taking the inputs from the ABM drawing program
in NetLogo. The computational model was able to capture
the multicell tissue-level dynamics of monocyte trafficking
within a microvascular network bed. Thanks to the spatial
representation ability of ABM, one of the interesting features
of the model implemented in this paper is the possibility to
follow the cells simulated both in space and time, which is
currently not possible in experimental models.

2.4. Modeling Diseases. Multiple sclerosis (MS) is an inflam-
matory disease that affects the brain and spinal cord. MS is
considered a CD4+ Th1-mediated autoimmune disease [36].
A NetLogo framework, that describes the typical scenario
observed in relapsing-remitting multiple sclerosis (the most
relevant type of MS), is presented in [37]. The main hypoth-
esis of the model is given by the fact that the arising of the
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Table 1: NetLogo applications in immune system modeling.

Modeling innate immunity
Spatially configured stochastic reaction chambers (SCSRC) [24]
Agent-based model of inflammation and fibrosis [25]
Agent-based multiscale modular architecture for dynamic representation of acute inflammation [26]
Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes [27]

Modeling immunity to pathogens
Control of human papillomavirus [28]
Model of human papillomavirus type 16 [29]
Intercellular peptide transfer through gap junctions [30]
Connexin hemichannels enter the signalling limelight [31]
Antigen transport and firebreaks In immune responses [32]

Modeling immune system dynamic
Mathematical epidemiology of infectious diseases [33]
Heterogeneity in infection-exposure history and immunity of a protozoan parasite [34]
Multicell agent-based simulation of the microvasculature [35]

Modeling diseases
Immunology of multiple sclerosis [36]
Agent-based modeling of Treg-Teff cross regulation in relapsing-remitting multiple sclerosis [37]
Molecular bases of virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigates [38]
Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi [39]

Tumor immunology
Mathematical and computational models in tumor immunology [40]
An agent-based model of solid tumor progression [41]

pathology is due to a breakdown in the peripheral immune
tolerance mechanisms. This breakdown allows the activation
of myelin-based protein (MBP) specific CD8 lymphocytes,
which cause the disease. Other hypotheses that the model
takes into account are represented by a genetic predisposition
of the host in developing the pathology, the presence of an
external trigger that drives the starting the disease through
antigen mimicry, and the effects caused by the malfunction
(neural damage due to myelin loss). The model takes into
account two populations representing specific CD8 lympho-
cytes that are the cause of neural damage and specific T
regulatory lymphocytes, which may fail to suppress CD8
expansion. The model showed ability to capture the essential
dynamics of relapsing-remitting MS by simulating both the
absence and presence of malfunctions of the CD8-CD4-Treg
crossbalancing mechanisms at a local level. In particular it
suggested that the presence of a genetic predisposition is not
always a sufficient condition for developing the disease. This
model represents, up to now, the sole ABM model which
models and reproduces the typical behavior of relapsing-
remitting MS.

Several diseases like, for example, human immunodefi-
ciency virus (HIV) or during some kind of medical inter-
ventions leave the immune system debilitated and not more
able to fight properly against pathogens. Some opportunistic
agents could invade the host with a damaged immune system
and could lead to dangerous situations, and, in some cases,
to the death of the patient. One class of these opportunist
pathogens is represented by human pathogenic fungi like
the ubiquitous fungus Aspergillus fumigatus that leads to

mortality rates of 60–90% [38]. It is of great importance, then,
to comprehend the infection dynamics and the response of
the immune system to invading fungi: this clearly represents
a crucial step on the way to stop the opportunistic pathogens
from taking over.

Tokarski et al. [39] settled anABM to investigate the influ-
ence of different tactics of neutrophils on their phagocytosis
efficiency. The work focuses in particular on the question
of whether chemical communication and chemotaxis of
neutrophils improve the clearing efficiency.The authors used
an important feature of NetLogo, that is, its capacity to run
different simulations with different parameters settings. This
characteristic is referred to as behavior space.

2.5. Tumor Immunology. The immune system is able to
protect the host from tumor onset, and immune deficiencies
are accompanied by an increased risk of cancer. The immune
surveillance of tumors is not 100% effective. Tumors arise
in hosts with a severe and stable immune deficiency. The
study of tumor immunology has led to the development
of approaches to further stimulate antitumor immunity.
Immunological strategies for the cure of established tumor
masses (immunotherapy) have given poor results suggesting
that successful antitumor strategies should be addressed to
adequately stimulate immune system before tumor onset
(immunoprevention), to protect the organism from specific
cancers, and to prevent tumor which is more effective than
cure in the tumor immunology field [40].

In [41] the authors present a computer simulation model
that uses an agent-based system developed with NetLogo to
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mimic the development and progression of solid tumors.The
model includes tumor’s own characteristics, the host immune
response, and level of tumor vascularization. Simulations
conducted indicate the key importance of the nutrient needs
of the tumor cells and of the initial responsiveness of the
immune system in the tumor progression.

Table 1 gives a brief overview of the NetLogo applications
in immune system modeling.

3. Conclusions

In the last decades many mathematical and computational
models have been developed to model and describe the
immune system processes and features. Immune system is a
complex biological system and has been recently investigated
with the synergic union between computational modeling
and high-throughput experimental data. There are several
modeling techniques, each of them having both pros and
cons. Among these, NetLogo may represent a mature choice
for a number of reasons, spanning from its flexibility and its
suitability for unskilled researchers and developers.

For multiscale or natural scale simulations the use of
a high performance computing infrastructure, including
machines and parallel code, is imperative. An evolution on
this direction for such kind of tools would be important.

In this paper, we critically reviewed a large collection of
works dealing with immune system modeling that success-
fully used NetLogo framework.
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