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Abstract

Trypanosoma cruzi is a genetically heterogeneous group of organisms that cause Chagas

disease. It has been long suspected that the clinical outcome of the disease and response

to therapeutic agents are, at least in part, related to the genetic characteristics of the para-

site. Herein, we sought to validate the significance of the genotype of T. cruzi isolates recov-

ered from patients with different clinical forms of Chagas disease living in Argentina on their

biological behaviour and susceptibility to drugs. Genotype identification of the newly estab-

lished isolates confirmed the reported predominance of TcV, with a minor frequency of TcI.

Epimastigote sensitivity assays demonstrated marked dissimilar responses to benznida-

zole, nifurtimox, pentamidine and dihydroartemisinin in vitro. Two TcV isolates exhibiting

divergent response to benznidazole in epimastigote assays were further tested for the

expression of anti-oxidant proteins. Benznidazole-resistant BOL-FC10A epimastigotes had

decreased expression of Old Yellow Enzyme and cytosolic superoxide dismutase, and over-

expression of mitochondrial superoxide dismutase and tryparedoxin- 1, compared to benz-

nidazole-susceptible AR-SE23C parasites. Drug sensitivity assays on intracellular

amastigotes and trypomastigotes reproduced the higher susceptibility of AR-SE23C over

BOL-FC10A parasites to benznidazole observed in epimastigotes assays. However, the

susceptibility/resistance profile of amastigotes and trypomastigotes to nifurtimox, pentami-

dine and dihydroartemisinin varied markedly with respect to that of epimastigotes. C3H/He

mice infected with AR-SE23C trypomastigotes had higher levels of parasitemia and mortal-

ity rate during the acute phase of infection compared to mice infected with BOL-FC10A try-

pomastigotes. Treatment of infected mice with benznidazole or nifurtimox was efficient to

reduce patent parasitemia induced by either isolate. Nevertheless, qPCR performed at 70

dpi revealed parasite DNA in the blood of mice infected with AR-SE23C but not in BOL-

FC10A infected mice. These results demonstrate high level of intra-type diversity which

may represent an important obstacle for the testing of chemotherapeutic agents.

PLOS ONE | https://doi.org/10.1371/journal.pone.0203462 September 5, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Quebrada Palacio LP, González MN,
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Introduction

It is estimated that over 7–8 million people are currently infected with Trypanosoma cruzi, the

causative agent of Chagas disease [1]. Infection by this parasite results in a broad spectrum of

clinical outcomes, ranging from a mild, self-resolving acute illness with low mortality rate to a

potentially life-threatening cardiomyopathy, digestive and/or neurological abnormalities in up

to 30% of chronically infected individuals. Chagas disease causes approximately 12,000 deaths

per year [2]. Current therapy against T. cruzi relies on the nitroimidazole benznidazole (BZ)

and the nitrofuran nifurtimox (NX), which are efficient to control parasitism during the acute

phase of infection; however, studies on their effectiveness in the chronic phase have yielded

inconsistent results [3,4].

T. cruzi is a genetically heterogeneous species of protozoan parasites transmitted by triato-

mine bugs distributed throughout the Americas. The large variety of host and vector species

involved in the natural transmission of trypanosomes and their circulation in different eco-

epidemiological settings have been held responsible for the generation of structurally different

populations of parasites [5]. Following the introduction of a consensus nomenclature system

for T. cruzi, namely discrete typing units (DTUs I-VI) [6,7], numerous studies have aimed to

characterize the geographical distribution of T. cruzi lineages in humans and other mammals

as well as their association with clinical manifestations of Chagas disease [8–11]. A substantial

amount of experimental data relating the genotype of the parasite with biological and bio-

chemical parameters such as parasitemia levels, tissue tropism, immune response and suscepti-

bility to drugs have also become available, mostly for stocks collected decades ago from

different sources and countries [12–17]. In this study, we sought to assess the genotype of clini-

cally relevant T. cruzi isolates obtained from infected humans of Argentina and evaluate their

biological characteristics and susceptibility to conventional and investigational drugs. The

results of parasite DTU identification analysis reproduced the predominant circulation of TcV

reported by studies genotyping whole blood, with a minor frequency of TcI [11]. By testing

drug susceptibility in vitro, we succeeded in documenting high intra-type diversity among

TcV isolates, with some of them being resistant to the compounds tested. Our observations of

large disparities in drug susceptibility responses are not supported by the current DTU phylo-

genetics classification and highlight the importance of investigating intra-type diversity in eco-

epidemiological, clinical and pharmacological studies of T. cruzi.

Results

In this study, we first established a collection of T. cruzi isolates with parasites recovered from

the peripheral blood of 5 chronically infected adult Chagas disease patients and 2 acutely

infected children living in Argentina (2 male and 5 female). The geographic origin, age and

clinical status of the subjects from whom the parasite isolates were derived are summarized in

Table 1. Amplification of the non-transcribed spacer of the mini-exon genes in epimastigotes

generated products of 350 bp (TcI) in 1/7 isolates (14.28%) and 300 bp (TcII, TcV and TcVI)

in 6/7 (85.71%) [18,19]. Amplification of 24Sα rRNA was used to resolve the genotype of the

six isolates with 300 bp amplicons in the first PCR as TcV (Table 1 and Fig 1). The occurrence

of TcV isolates originated in acute and chronic infections of different severities challenges the

notion that clinical outcome of Chagas disease is related to lineage-specific parasites [20].

Then, we assessed the behavior of the clinical isolates in axenic cultures. A typical exponen-

tial curve that reached the stationary phase at 8–12 days of culture was obtained for TcV iso-

lates; the growth curve of TcI BOL-FC5C isolate was atypical in that the exponential growth

phase was followed by a rapid decline in parasite density (Fig 2). The estimated doubling time

of TcI BOL-FC5C (90.85 h) was significantly higher compared to that of TcV isolates (range
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35.56–52.34 h; p<0.05); no significant differences in doubling time between TcV isolates were

observed. The density of parasites attained by TcI BOL-FC5C cultures at the end of the expo-

nential phase was significantly lower than that of TcV isolates cultures (p<0.05). There were

also significant differences in maximum parasite density among TcV cultures (p<0.05). No

correlation between doubling time and maximum parasite density was found.

Afterward, we tested the sensitivity of epimastigotes to conventional drugs BZ and NX, and

investigational compounds pentamidine (PENT) and dihidroartemisinin (DHA). The refer-

ence strain TcI Sylvio-X10/4, originated from a human infection, was included as susceptibility

Table 1. Characteristics of the Chagas disease patients with Trypanosoma cruzi positive hemoculture and parasite genotype identification.

Isolate Geographic origina Ageb Clinical status DTU

BOL-FC5C Potosi, Bolivia 42 y Abnormal ECG TcI

BOL-FC10A Villazón, Bolivia 31 y Asymptomatic TcV

AR-FC19A Buenos Aires, Argentina 51 y Asymptomatic TcV

AR-SE23C Santiago del Estero, Argentina 57 y Chagas cardiomyopathy TcV

AR-FC553 Entre Rı́os, Argentina 64 y Asymptomatic TcV

AR-FC202113 Buenos Aires, Argentinac 19 mo Acute, congenital TcV

AR-FC195205 Buenos Aires, Argentinac 7 mo Acute, congenital TcV

aLocality and Country of birth.
bExpressed in years (y) and months (mo).
cChildren born to T. cruzi-infected mothers from Province Chaco, Argentina

https://doi.org/10.1371/journal.pone.0203462.t001

Fig 1. Genotyping of Trypanosoma cruzi isolates obtained from Chagas disease patients. (A) PCR amplification

products of the non-transcribed spacer of the mini-exon genes with primers TC, TC1 and TC2 that identify TcI (350

bp), TcII, TcV and TcVI (300 bp) and TcIII and TcIV (no amplification). (B) PCR amplification products of the D7

divergent domain of S24α rRNA with primers D71 and D72 that identify TcI, TcIII and TcV (110 bp), TcIV (120, 125

or 130 bp), TcII and TcVI (125bp). Trypanosoma cruzi strains Colombiana, CL Brener, Y, and CanIII were included as

genotyping controls.

https://doi.org/10.1371/journal.pone.0203462.g001
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control to BZ [21] and for comparison with our newly established TcI isolate. Epimastigote

sensitivity assays revealed remarkable dissimilar intra-DTU V and intra-DTU I susceptibility

to each drug (p<0.05; Table 2 and S1 Fig). To establish the susceptibility/resistance phenotype,

we applied the hit selection criteria for Chagas disease proposed by Katsuno et al (IC50<

10 μM) [22] and found that AR-FC195205 and BOL-FC10A epimastigotes were resistant to

BZ; these isolates were also resistant to NX or PENT, respectively. None of the isolates was

found to be susceptible to DHA in epimastigote sensitivity assays.

Fig 2. Growth curves of Trypanosoma cruzi isolates recovered from humans. Epimastigote cultures were set up in

LIT media at initial concentration of 106 epimastigotes/mL and incubated at 28˚C. Parasite density was estimated daily

with a Neubauer’s chamber during 3 weeks.

https://doi.org/10.1371/journal.pone.0203462.g002

Table 2. Susceptibility of Trypanosoma cruzi epimastigotes to conventional chemotherapeutic agents and investigational compounds.

DTU T.cruzi isolate Benznidazole Nifurtimox Pentamidine Dihydroartemisinin

TcI Sylvio-X10/4 1.09±0.2

(4.2±1.0)

0.13±0,0

(0.47±0.1)

1.60±1.0

(2.68±1.7)

10.25±1.9

(35.96±6.8) a

BOL-FC5C 2.49±0.4

(9.56±1.8)

2.33±0.6

(8.13±2.3)

3.86±1.1

(6.49±1.8)

17.03±3.4

(59.77±12.1) a

P (t-test) = 0.0002 0.0001 0.0053 0.0018

TcV BOL-FC10A 19.03±2.1

(70.6±8.1) a
1.51±0.1

(5.25±0.6)

6.26±1.1

(10.5±1.8) a
17.64±1.8

(61.93±6.6) a

AR-FC19A 1.24±0.2

(4.79±0.9)

0.94±0.1

(3.27±0.6)

2.13±0.3

(3.59±0.5)

13.39±1.6

(47.02±5.6) a

AR-SE23C 0.87±0.2

(3.35±1.0)

1.45±0.2

(5.06±0.8)

1.63±1.0

(2.74±1.7)

8.17±2.8

(28.70±9.9) a

AR -FC553 1.99±0.2

(7.66±0.8)

1.59±0.1

(5.54±0.3)

1.89±0.8

(3.18±1.4)

8.21±1.7

(28.85±5.9) a

AR-FC202113 0.62±0.2

(2.39±1.0)

0.34±0.1

(1.21±0.1)

2.19±1.4

(3.68±2.5)

6.87±2.1

(24.14±7.4) a

AR-FC195205 10.57±1.1

(40.62±4.3) a
4.05±0.6

(14.11±2.4) a
2.43±0.4

(4.09±0.7)

13.41±0.7

(47.08±2.7) a

P (ANOVA) = 0.0001 0.0001 0.0001 0.0001

Data represent mean ± SD IC50 values, expressed as μg/mL (μM). Epimastigote cultures were treated with anti-T. cruzi compounds (0.1–80 μg/mL) during 72 h. P values

were determined by means of t-test for comparing TcI isolates and One-way ANOVA followed by Bonferroni for TcV isolates.
aCut-off for resistance was set at IC50 >10μM [22].

https://doi.org/10.1371/journal.pone.0203462.t002
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To identify possible morphological changes induced by the compounds on epimastigotes,

two TcV isolates derived from chronically infected adult patients exhibiting divergent sensitiv-

ity to BZ in epimastigote assays (AR-SE23C susceptible and BOL-FC10A resistant) were

treated with the respective IC50 doses of each compound during 72 h at 28˚C and evaluated at

TEM (Fig 3). The most frequently observed changes include swelling of the mitochondrion

with membrane damage and kDNA degradation, disruption of the nuclear membrane with

disorganization of the chromatin, abnormal-shape reservosomes and acidocalcisomes, vacuole

formation and large vesicles in the matrix, common to both isolates and the four compounds

tested. Enlargement of Golgi cisternae and rare myelin-like structures were observed in para-

sites treated with BZ, NX and PENT, and autophagolysosomes in BZ and PENT- treated para-

sites. Rare abnormal kinetoplastic DNA replication was detected in PENT-treated AR-SE23C

epimastigotes; spherical epimastigotes with rare swelling of the mitochondrion were observed

in parasites treated with DHA.

We also measured the expression of enzymes involved in oxidant detoxification of T. cruzi
in BZ-susceptible AR-SE23C and BZ-resistant BOL-FC10A epimastigotes. The expression of

TcOYE and SODB, reportedly associated with susceptibility to BZ [23,24], were 1.25 and 1.36

-fold increased in AR-SE23C parasites, respectively, compared to that of BOL-FC10A para-

sites. In contrast, the expression of SODA and TXN 1, associated with resistance to BZ [12,25]

were 2.23 -fold and 6.84 -fold higher in BOL-FC10A parasites, respectively, compared to

AR-SE23C parasites (Fig 4; S2 Fig). These results support a possible relationship between drug

susceptibility/resistance phenotype and T. cruzi epimastigote anti-oxidant protein expression

profile.

We next tested the in vitro susceptibility/resistance profile of AR-SE23C and BOL-FC10A

intracellular forms to the compounds. Drug sensitivity assays using infected peritoneal mouse

macrophages (PMØ) cultures showed that the IC50 of BZ for AR-SE23C amastigotes was sig-

nificantly lower than that for BOL-FC10A amastigotes (p<0.05; Table 3). Conversely, the IC50

of NX and PENT for AR-SE23C amastigotes were significantly higher compared to that of

BOL-FC10A (p<0.05); no differences between IC50 values of DHA for the two isolates were

found. Considering the Katsuno hit criteria [22], AR-SE23C amastigotes were susceptible to

BZ, NX and PENT while BOL-FC10A amastigotes were resistant to BZ; amastigote forms of

both isolates were resistant to DHA.

Cytotoxicity assays performed on uninfected PMØ cultures showed that the concentrations

of BZ, NX, DHA and PENT required to reduce 50% of viable cells (CC50) were 4.84 mM (1.26

mg/mL), 4.84 mM (1.39 mg/mL), 3.30 mM (0.94 mg/mL) and 0.14 mM (0.087mg/mL), respec-

tively. While the Selectivity Index (SI) of BZ, NX and DHA resulted >50 for AR-SE23C and

BOL-FC10A amastigotes, the SI of PENT was >50 for BOL-FC10A but<50 for AR-SE23C

amastigotes (SI = 35.6).

Drug sensitivity assays performed on trypomastigotes released from Vero cell cultures

showed significantly higher IC50 values of BZ, NX, PENT and DHA against BOL-FC10A com-

pared to that for AR-SE23C trypomastigotes (Table 3). While IC50 values against AR-SE23C

trypomastigotes were below 10μM, IC50s against BOL-FC10A were all above that concentra-

tion. Thus, AR-SE23C trypomastigotes were considered susceptible and BOL-FC10A trypo-

mastigotes resistant to the compounds. The four compounds had a SI >50 against AR-SE23C

trypomastigotes, as well as BZ and NX against BOL-FC10A trypomastigotes; the SI of PENT

and DHA against BOL-FC10A trypomastigotes was much lower (SI = 8.18 and SI = 16.09,

respectively).

In order to determine the virulence of TcV BZ-susceptible AR-SE23C and BZ-resistant

BOL-FC10A isolates in vivo, groups of C3H/He mice were infected with 101 to 106 Vero cell

culture-derived trypomastigotes. All mice infected with AR-SE23C had variable levels of

Trypanosoma cruzi intra-type V diversity
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Fig 3. Ultrastructural changes in epimastigotes treated with conventional and investigational anti- Trypanosoma
cruzi compounds. AR-SE23C and BOL-FC10A epimastigote cultures were incubated with IC50 doses for each

compound and isolate during 72 h at 28˚C; untreated epimastigotes were included as controls. Note the swelling of the

mitochondrion with kDNA degradation (white arrow), myelin-like structures (arrowhead), disorganization of nuclear

chromatin and nuclear membrane disruption (black arrow), the irregular replication of kDNA (curved arrow),

disorganization of Golgi complex cisternae (unfilled black arrow) and autophagosomal structures (short white arrow).

Bars represent 2.5 μm.

https://doi.org/10.1371/journal.pone.0203462.g003
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parasitemia (Fig 5A). The size of the inoculum correlated with the number of circulating para-

sites at the peak of parasitemia (r = 0.9429, P = 0.0167; Spearman correlation test), and higher

inoculums resulted in earlier parasitemia peaks (r = -0.8827, P = 0.0333; Spearman correlation

test). The estimated lethal dose 50 (LD50) of AR-SE23C was 102 parasites (Fig 5B). Circulating

parasites were also detected in mice infected with 104 or 106 BOL-FC10A trypomastigotes (Fig

5C), but the area under curve (AUC) and the number of parasites at the peak of parasitemia

were significantly lower than that of mice infected with the corresponding AR-SE23C inocula

(P = 0.0357 and P = 0.0218, respectively; Fig 5D). No deaths were recorded in the groups of

mice infected with BOL-FC10A trypomastigotes. These data indicates that isolate BOL-FC10A

is significantly less virulent for C3H/He mice than isolate AR-SE23C, reaffirming the notion of

biological intra-type V diversity of T. cruzi.
To investigate the effect of drug treatment in vivo, mice were infected with 102 AR-SE23C

or 106 BOL-FC10A trypomastigotes and treated with BZ, NX or 4 PENT, starting on the day

Fig 4. Expression of anti-oxidant proteins in Trypanosoma cruzi. (A) Western blotting for T. cruzi SODA, SODB,

TXN 1 and TcOYE in BZ-susceptible AR-SE23C and BZ-resistant BOL-FC10A epimastigotes. (B) Densitometric

analysis; bars represent the relative intensity values estimated by densitometry using Scion Imaging Software;

representative assay of 2 independent experiments.

https://doi.org/10.1371/journal.pone.0203462.g004
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circulating parasites were first detected in the blood. BZ and NX, but not PENT prevented the

increase of patent parasitemia irrespective the infecting parasite (Fig 6A and 6B); nevertheless,

PENT was effective to reduce AUC (Fig 6C) and the number of blood parasites at the peak of

parasitemia compared to that of non-treated infected controls (p<0.05). The data on the pro-

portion of mice with positive T. cruzi qPCR and DNA parasite load in blood samples of mice

at 70 dpi are shown in Table 4. Notably, the levels of parasite equivalents in non-treated

BOL-FC10A-infected controls were significantly higher than that of non-treated AR-SE23C-

infected controls with positive qPCR (p<0.05). Treatment of AR-SE23C-infected mice with

PENT, but not BZ and NX significantly reduced the proportion of animals with positive

qPCR; yet, the three drugs prevented mortality of mice infected with this isolate (Fig 6D). Con-

versely, BZ and NX but not PENT were effective to reduce the proportion of mice with positive

qPCR in BOL-FC10A-infected groups.

Discussion

In nature, T. cruzi strains consist of a mixture of parasite subpopulations subjected to selective

pressure by different vectors and hosts [20]. The uncovering of biochemical and molecular

markers that identify distinct subpopulations within T. cruzi has led to a great advance in the

understanding of parasite population dynamics and epidemiology of the infection [26–30].

TcV is the most frequent genotype reported in infected humans of Argentina, followed by

TcVI and TcI [11,31]. In the present study we have established 7 new human-derived T. cruzi
isolates, the majority of which belong to TcV genotype with a minor representation of TcI,

suggestive of them being somehow representative of the overall population currently circulat-

ing in humans of Argentina. By studying the behaviour of the parasites and performing com-

prehensive drug sensitivity testing, we were able to expose substantial intra-DTU phenotypic

diversity within TcV, similar to that described by Mejia et al (and confirmed here) for TcI iso-

lates [32]. In order to maintain the population as close as possible to the natural condition, all

assays were performed with parasites obtained from the first 5 passages in vitro [33,34]. To

favour direct contact between parasites and the drug, we established the parasite drug resis-

tance profile in axenic culture assays. With the purpose of reducing the risk of natural parasite

selection by trypanocidal drugs, we enrolled chronically and acutely infected donors with no

prior anti-T.cruzi treatment. Nevertheless, a few of our isolates displayed a resistant phenotype

to BZ and NX in drug sensitivity assays. It is possible that these parasites have been exposed to

Table 3. Susceptibility of Trypanosoma cruzi AR-SE23C and BOL-FC10A amastigote and trypomastigote forms to conventional and investigational compounds.

T.cruzi isolate Benznidazole Nifurtimox Pentamidine Dihydroartemisinin

Amastigotes AR-SE23C 1.48±0.4

(5.68±1.5)

0.36±0.0

(1.25±0.0)

2.47±0.4

(4.14±0.6)

13.5±3.2

(47.38±11.2)a

BOL-FC10A 3.07±0.7

(11.78±2.6) a
0.05±0.0

(0.17±0.0)

0.68±0.2

(1.14±0.3)

11.9±1.0

(41.76±3.5) a

P (t-test) = 0.0476 0.0021 0.0037 0.5562

Trypomastigotes AR-SE23C 0.40±0.1

(1.53±0.3)

0.03±0.0

(0.10±0.0)

0.43±0.14

(0.72±0.1)

0.31±0.0

(1.08±0.0)

BOL-FC10A 18.02±1.8

(69.19±6.9) a
11.56±1.6

(40.22±5.5) a
10.63±2.4

(17.85±4.0) a
58.42±0.9

(205.05±3.1) a

P (t-test) = < 0.0001 < 0.0001 < 0.0001 < 0.0001

Data represent mean ± SD IC50 values, expressed as μg/mL (μM). Infected macrophage cultures and Vero cell culture- derived trypomastigotes were treated with anti-T.

cruzi compounds (0.01–100 μg/mL) during 72 h. P values represent statistical significance between the compounds IC50 values for each isolate and stage (t-test).
aCut-off for resistance was set at IC50 >10μM [22].

https://doi.org/10.1371/journal.pone.0203462.t003
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these drugs during circulation in domestic cycle, prior infection of the patients from whom

them were retrieved.

The partial effect exerted by the conventional drugs prompted us to extend the study to

investigational compounds with anti-T.cruzi action PENT and DHA, selected on the basis of

their different modes of action. The mechanism of action of BZ and NX involves the reduction

of the nitro groups to amino groups of the compounds by the action of T. cruzi nitroreduc-

tases, with the formation of toxic radical intermediates and electrophilic metabolites [35]. The

activity of BZ against T. cruzi was proposed to be also mediated by reduced metabolites bind-

ing covalently to macromolecules such as lipids, DNA and proteins [36]. Instead, the reduction

Fig 5. Course of infection in mice inoculated with Trypanosoma cruzi AR-SE23C and BOL-FC10A trypomastigotes. (A) Parasitemia levels in C3H/

He mice inoculated ip with 101 to 106 Vero cell culture-derived AR-SE23C trypomastigotes. (B) Mortality was recorded daily and analyzed using log-

rank (Mantel Cox) test; P = 0.0056. (C) Parasitemia levels in mice infected with 104 and 106 Vero cell culture-derived BOL-FC10A trypomastigotes. (D)

Graphical representation of parasitemia AUC in mice infected with 104 or 106 AR-SE23C or 106 BOL-FC10A trypomastigotes. ���p<0.001; t test.

https://doi.org/10.1371/journal.pone.0203462.g005
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of NX leading to formation of an unsaturated open-chain nitrile was proposed as an important

mechanism for its trypanocidal action [37]. Pentamidine is a synthetic aromatic diamidine

widely employed for the treatment of African trypanosomiasis, leishmaniasis and infection by

Pneumocystis carinii [38,39]. Trypanocidal mechanisms of diamidines include DNA binding,

alteration of polyamine transport, inhibition of peptidase activity and interference with normal

topoisomerase II. T. cruzi lacks the enzymes l-arginine decarboxylase and ornithine decarbox-

ylase, required to synthesize putrescine de novo, and incorporates the polyamine from the

medium through the polyamine transporter TcPAT12, which is blocked by pentamidine [40].

Artemisinin, a sesquiterpene trioxan lactone derived from Artemisia annua, and its derivatives

are widely used against P. falciparum and chloroquine-resistant P. vivax. Anti-malarial action

of artemisinins involves the generation of free radicals by cleavage of endoperoxide bonds

Fig 6. Effect of trypanocidal drugs on the infection of mice with Trypanosoma cruzi. Mice were inoculated with 102 AR-SE23C or 106 BOL-FC10A

trypomastigotes and treated with BZ (40 doses of 100 mg/kg/d), NX (40 doses of 100 mg/kg/d) or PENT (20 doses of 4 mg/kg/d). Parasitemia curves in

mice infected with AR-SE23C (A) and BOL-FC10A (B). (C) Parasitemia AUC in infected mice treated with PENT. ��p<0.01 vs. non-treated infected

controls; t-test. (D) Effect of treatment on survival rate of mice infected with AR-SE23C; ��p<0.01 vs. non-treated infected controls; Mantel-Cox test.

https://doi.org/10.1371/journal.pone.0203462.g006
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through the interaction with heme iron, which alter several biochemical pathways within the

parasites including the sarco-endoplasmic reticulum PfATPase6 calcium pump (SERCA) [41].

Several membrane-associated calcium ATPases have been described in T. cruzi and suggested

to be responsible, at least in part, for the inhibitory effect of artemisinins on these parasites

[42]. In agreement with the results reported by other authors [42], a potent action of PENT

against T. cruzi epimastigotes was observed in our axenic culture assays. However, epimasti-

gote sensitivity assays to DHA revealed that none of the human-derived isolates was suscepti-

ble to the compound. Nevertheless, AR-SE23C trypomastigotes resulted susceptible to DHA.

The comparison of the BZ susceptibility/resistance profile between amastigotes and trypo-

mastigotes of the selected isolates reproduced that of epimastigotes (that is, AR-SE23C para-

sites being more susceptible than BOL-FC10A parasites). Noteworthy, BOL-FC10A

epimastigotes and amastigotes were resistant to BZ but susceptible to NX. The higher activity

of NX against intracellular amastigotes compared to BZ was previously noted in cell cultures

infected with other strains of T. cruzi [21,43], and suggested to be related to the different

modes of action of the two drugs. The pattern of drug sensitivity in our mouse model of infec-

tion did not completely translate to that of the parasites in vitro, adding further complexity to

the development of effective treatments against T. cruzi. Studies on the susceptibility of T.

cruzi to drugs in vivo and in vitro carried out by different laboratories have yielded inconsistent

results. An example of this is Colombiana strain, which was reported resistant after 20 doses of

100 mg/kg/d BZ in vivo by Filardi and Brener [44], but susceptible as intracellular amastigotes

in vitro [45]. On the other hand, Neal and van Bueren describe that in vitro drug sensitivity

assays on epimastigotes and intracellular amastigotes did not distinguish between strains of T.

cruzi which were responsive and non-responsive in mice, attributing this phenomenon to the

host immune response against T. cruzi [43]. Conversely, other authors have shown that most

drugs that are active against T. cruzi in the mouse model are also active against epimastigotes

[46] or intracellular amastigotes in vitro [47]. Besides, in vitro sensitivity assays to BZ per-

formed on epimastigotes isolated prior to treatment of patients did not correlate with the clini-

cal therapeutic outcome [48]. The remarkable stage-dependent discrepancies in the sensitivity

to drugs found in our study highlight the importance of analysing different developmental

stages of the parasite in pharmacological studies of clinically relevant isolates. In this regard,

Zingales proposed that natural resistance or sensitivity to drugs can be studied in the three

developmental stages of T. cruzi (epimastigote, trypomastigote and amastigotes) [30].

Finally, we investigated also the possible association of parasite susceptibility/resistance to

BZ with the expression of enzymes involved in the anti-redox machinery. T. cruzi synthesizes

Table 4. Trypanosoma cruzi DNA in blood of mice infected with AR-SE23C or BOL FC10A parasites and treated

with benznidazole, nifurtimox or pentamidine.

Treatment Mice positive/ total (range Eq parasites/mL)

AR-SE23C BOL-FC10A

Non-treated infected control 3/4 (0,15–20,78) 5/5 (90.80–429.0)§

Benznidazole 2/5 (0,29–46,34) 0/5�

Nifurtimox 5/5 (0.77–9.11) 0/5�

Pentamidine 1/5� (22.20) 3/5 (262.20–527.0)

Quantitative T. cruzi DNA amplification was performed at 70 dpi in all groups of mice. Data represent the number of

mice with positive T. cruzi qPCR / total number of mice tested and (range of parasite DNA load in mice with positive

qPCR).

�p<0.05 vs. non-treated infected controls; Fisher’s exact test.
§p<0.05 vs. non-treated AR-SE23C infected controls; Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0203462.t004
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trypanothione and several enzymes that neutralize reactive oxygen and nitrogen species as a

mechanism of defence against oxidative stress generated during the infection and the metabo-

lism of trypanocidal drugs. As reported for other BZ-resistant T. cruzi populations, BOL-FC10A

epimastigotes underexpressed the Old Yellow enzyme that catalyzes prostaglandin PGF2A syn-

thesis [23,49] and SODB [24], and overexpressed SODA [25]. We also investigated the expres-

sion of tryparredoxin 1, known to be involved in oxidative metabolism and protein synthesis

and degradation [50], and found it was markedly increased in BZ-resistant BOL-FC10A para-

sites. Although only 2 isolates were analyzed for anti-redox protein expression, our results sup-

port their association with the susceptibility/resistance phenotype of the parasites to BZ.

In summary, herein we demonstrate that T. cruzi phenotypic diversity levels are particularly

high in infected humans of Argentina. Relatively few isolates were analyzed in the study, but

the large variety of intra-type responses to drugs suggests that the diversity may be even more

extensive than observed here. Such diversity may represent an important difficulty for the

development of chemotherapeutic alternatives against Chagas disease. Assuming the present

study is applicable to other DTUs, the analysis of such strains will be useful in identifying

whether further parasite diversity exist.

Materials and methods

Ethics statement

A signed informed consent was obtained from all adult participants and mothers on behalf of

their children. All the research was conducted in accordance with the Declaration of Helsinki

and the Council for International Organizations of Medical Sciences (CIOMS). The study pro-

tocol was approved by the Review Board of Instituto Nacional de Parasitologı́a “Dr. Mario

Fatala Chaben”, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G.

Malbrán (IRB00006651).

All animals received humane care and study protocols complied with the ARRIVE Guide-

lines for Reporting Animal Research [51]. The procedures were approved by the Institutional

Committee for Care and Use of Laboratory Animals (CICUAL), University of Buenos Aires,

School of Medicine, Secretary of Science and Technology, Buenos Aires, Argentina, Resolution

No. 704/2013.

Patients

Chagas disease patients attending the Clinical Facilities of Instituto Nacional de Parasitologı́a

“Dr. Mario Fatala Chaben”, Buenos Aires, Argentina and individuals living in endemic areas

of Province Santiago del Estero, Argentina, who tested positive for T. cruzi by conventional

serology and had not taken anti- T. cruzi drugs were invited to participate in the study.

Infected individuals with cancer, HIV infection, syphilis, diabetes or autoimmune disorders

were excluded from this study. A total of 36 subjects (mean age ± SD = 46.25 ± 12.49 years; 16

males and 20 females) were recruited during the period November 2009—November 2015.

The medical history and personal information such as the country of birth and current resi-

dency were recorded. The clinical status of participants was assessed by physical examination

and clinical testing including electrocardiogram, echocardiography and chest radiography; 25

patients were asymptomatic, 9 patients had ECG abnormalities associated to Chagas heart dis-

ease and 2 patients had chronic Chagas dilated cardiomyopathy.

Parasite isolation

Approximately 15 mL blood were drawn from T.cruzi- infected patients by venipuncture into

dry tubes (Vacutainer; BD Biosciences, Franklin Lakes, NJ, USA) and distributed in glass tubes
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containing biphasic media (blood-agar with liver infusion tryptose (LIT) as overlay). Samples

were cultured at 28˚C during 3 months and evaluated monthly for the presence of parasites at a

phase microscope (Carl Zeiss, Axiostar plus, Gottingen, Germany). Supernatants from positive

hemocultures were transferred to 15 mL culture tubes containing LIT media supplemented with

20 μg/mL haemin, 10% heat-inactivated foetal bovine serum (FBS), 100 U/mL penicillin, and

100 μg/mL streptomycin (complete LIT). Two additional T. cruzi isolates obtained by hemocul-

ture of children with congenital acute infection during the same period were incorporated in

this study [52]. Parasites obtained from the first 5 passages in vitro were used in all assays.

DTU identification

DNA was extracted from 108 axenic culture-derived epimastigotes with Accuprep Genomic
DNA extraction kit (Bioneer Corporation, Daejeon, Korea) and used for amplification of the

non- transcribed spacer of the miniexon (mini-exon genes) and the D7 divergent domain of

the 24Sα rRNA gene [18]. Amplification of mini-exon with TC, TC1 and TC2 primers gener-

ate products of 300 bp (TcII, TcV and TcVI) and 350 bp (TcI); amplification of the 24Sα
rRNA with D71 and D72 primers generates products of 110 (TcI, TcIII, TcV), 125 (TcII and

TcVI) and 120–130 bp (TcIV). Reference strains Sylvio X10/4, Y, M5631, CanIII, Mncl2 and

CL Brener were used as TcI-TcV controls.

Epimastigotes drug sensitivity testing

Epimastigote cultures were initiated at a concentration of 106 epimastigotes/mL in complete

LIT and exposed to 0.1–80 μg/mL dilutions of BZ, NX, pentamidine isethionate (PENT) or

dihydroartemisinin (DHA) in 96-well-plates and incubated at 28˚C during 72 h. All com-

pounds were obtained from Sigma-Aldrich (Saint Louis, MO, USA). A stock solution was pre-

pared for each compound in dimethylsulphoxide and diluted in complete LIT media

immediately prior to use in the assays; the final concentration of dimethylsulphoxide did not

exceed 0.2% (v/v). At the end of each experiment, motile parasites were quantified in a Neu-

bauer’s chamber at a phase microscope. T. cruzi Sylvio X10/4 epimastigotes were included as

susceptibility controls [21]. IC50 values were estimated by means of nonlinear dose-response

curve analysis using GraphPad Prism 5.0 (GraphPad Software, Inc., La Jolla, CA, USA).

Transmission electron microscopy

Epimastigotes were washed with PBS, fixed in 2.5% glutaraldehyde and 4% paraformaldehyde

in 0.1 M sodium phosphate buffer pH 7.2 and embedded in 2% agarose. Samples were post-

fixed in 1% osmium tetroxide—1% potassium ferrocyanide in 100 mM sodium cacodylate

buffer at room temperature during 30 minutes, dehydrated in acetone and embedded in Epoxi

resin. Ultrathin sections were obtained with an ultramicrotome (Reichert-Jung Ultracut E,

Wien, Austria), stained with 2% uranyl acetate and lead citrate, and examined at a transmis-

sion electron microscope (Carl Zeiss 109T, Oberkochen, Germany).

Western blot

Epimastigotes were lysed using 7 M urea, 2 M thiourea, 4% CHAPS detergent, 40 mM Tris, 60

mM 1,4-Dithiothreitol (DTT) (Sigma-Aldrich, Saint Louis, MO, USA), containing the Com-

plete Mini Protease Inhibitor Cocktail (Roche Applied Science, Indianapolis, USA) and centri-

fuged at 13.000×g for 30 min prior to determination of protein content by the Bradford

method. Proteins were separated on 12% SDS polyacrylamide gels (20 μg/well) and transferred

onto nitrocellulose membranes. To assure equal protein load in each lane, membranes were
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stained with Ponceau S. Blots were blocked with skimmed milk powder (5% w/v) in Tris-buffer

saline containing 0.02% Tween 20 (TBS-Tween 20) for 3 h. The nitrocellulose membrane was

incubated with rabbit polyclonal antibodies anti- mitochondrial superoxide dismutase (SODA;

1:2000), anti- cytosolic superoxide dismutase (SODB; 1:3000), anti- tryparedoxin- 1 (TXN 1;

1:1000) and anti- Old Yellow Enzyme (TcOYE; 1:30000), washed with TBS-Tween 20 and incu-

bated with HRP-conjugated goat-antirabbit IgG diluted 1:2000. Signal was developed using the

Chemiluminescence Detection Kit (Thermo Fisher, Waltham, MA, USA). Polyclonal antibod-

ies against T. cruzi proteins SODA, SODB, and TXN 1 were produced as described [50,53] and

TcOYE was a kind gift of Dr. Carlos Robello (Institut Pasteur, Montevideo, Uruguay).

Amastigote drug sensitivity testing

In preparation for this study, we first tested the infectivity of Vero cell-derived trypomastigotes

of selected T. cruzi isolates for bovine embryo skin and muscle cells (BESM); the poor infectiv-

ity of one of the isolates for these cells prevented us from using them for the intracellular multi-

plication assays (S3 Fig). Then, we tested the infectivity of the parasites for freshly isolated

mouse peritoneal macrophages (PMØ). Macrophages were collected from the peritoneal cavity

of C3H/HeN mice by lavage with 5 mL of ice-cold RPMI medium, and suspended in 10%

FBS-RPMI. Macrophages were seeded onto coverslips (5x105 cells/cover) in 24 well-plates and

cultured at 37˚C in a 5% CO2 incubator during 24 h. Non-adherent cells were removed by

washing with RPMI and the cultures infected with Vero cell-derived AR-SE23C or

BOL-FC10A trypomastigotes at a ratio of 1:1 during 16 h. After removal of non-internalized

parasites, infected cultures were exposed to serial dilutions (0.01–100 μg/mL) of BZ, NX,

PENT and DHA in triplicate wells during 72 h prior fixation with methanol and staining with

Giemsa. The number of infected cells and intracellular amastigotes/cell was quantified in

microphotographs of randomly selected 200x microscopic fields of Giemsa-stained smears

(Leica CTR Mic, Germany), using Image Tool software (http://compdent.uthscsa.edu/dig/

itdesc.html). A total of 600 cells (200 cells per cover) were analyzed for each experimental con-

dition in 2 independent experiments. IC50 values were estimated by means of nonlinear dose-

response curves analysis using GraphPad Prism 5.0 Software.

The effect of BZ, NX, PENT and DHA on the viability of peritoneal macrophages was mea-

sured in uninfected cell cultures using the resazurin method (Sigma-Aldrich, St. Louis, MO).

Briefly, macrophages were plated in 96 well-plates (5×105 cells/well) and incubated with

0.001–5000 μg/mL dilutions of BZ, NX, PENT or DHA at a final volume of 100 μL/well during

72 h at 37 ˚C in a 5% CO2 incubator. Then, 10 μL of resazurin solution (0.01% in PBS) was

added to each well and returned to the incubator for additional 4 h prior to recording of absor-

bance at 578 and 630 nm. Selectivity index of the compounds (SI) was expressed as the ratio

(CC50 for macrophages/IC50 for T. cruzi parasites).

Trypomastigotes drug sensitivity testing

For drug sensitivity assays, Vero cell-derived AR-SE23C and BOL-FC10A trypomastigotes

(1x106/mL) were incubated in 10% SFB-RPMI in the presence of serial dilutions (0.01–100 μg/

mL) of BZ, NX, PENT and DHA for 24 h at 4˚C; untreated parasites were used as controls.

The number of motile parasites was determined in a Neubauer chamber at a phase micro-

scope. IC50 were calculated as describe above.

Mice infection

The aim of this experiment was to establish the virulence of selected isolates in the mouse

model, with the outcomes measures being the course of parasitemia and mortality. A total of
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95 four-week-old female C3H/He mice, obtained from the Animal Breeding Facility of the

Instituto Nacional de Parasitologı́a “Dr. Mario Fatala Chabén”. Mice were selected randomly,

housed in groups of five per cage at a room temperature of 22˚C and provided food and water

ad libitum. The cages were cleaned and sanitized daily. Mice were inoculated with serial num-

bers of AR-SE23C and BOL-FC10A Vero cell culture-derived trypomastigotes (101–106) via

ip. The physical status, behavior and mortality were monitored by the researcher and recorded

daily. The number of circulating parasites was determined in 5 μl of fresh blood samples

obtained from the tail in a Neubauer chamber three times a week. Parasitemia AUC was esti-

mated using GraphPad Prism 5.0. To minimize suffering and distress of experimental animals,

humane endpoints consisting of weakness and paralysis of the posterior limbs and ataxia that

could interfere with eating or drinking [54] were established in the infection protocol at the

beginning of the experiment. These signs were used to decide whether to euthanize the animals

during the study as a surrogate endpoint for mortality. For termination of animal studies, mice

surviving the acute phase of infection were anesthetized by ip administration of a mixture of

Ketamine (85mg/kg) and Xylazine (30mg/kg) and euthanized by cervical dislocation at 70 dpi

(after the acute phase of infection usually subsides).

To evaluate drug susceptibility in vivo, mice were infected with AR-SE23C (102 parasites/

mouse) or BOL-FC10A (106/ parasites/mouse) trypomastigotes as described above and treated

with 100mg/kg/d BZ (Abarax, ELEA, Argentina) or NX (Lampit, BAYER, El Salvador) during

40 consecutive days by oral gavage, or 4mg/kg/d PENT (Pentamidina, RICHET, Argentina)

during 20 consecutive days via intraperitoneal (5 mice/group). Sham-inoculated treated and

non-treated infected mice were used as controls. Parasitemia and mortality were determined

as mentioned above. Additional blood samples (150 μL/ mouse) were obtained by retro-orbital

venipuncture prior euthanasia at 70 dpi for the detection of T. cruzi DNA by means of qPCR.

Real time PCR

Mouse blood samples were mixed with an equal volume of guanidine-HCl 6 M, EDTA 0.1 M,

pH 8 (GEB), kept at room temperature for 3 days and then stored at 4˚C until use. DNA was

isolated from 200 μL of GEB using the High Pure PCR Template preparation Kit (Roche,

Mannheim, Germany), according to the manufacturers’ protocol. Parasite DNA was amplified

using a T. cruzi satellite DNA sequence of 140 bp flanked by the Sat Fw and Sat Rv oligonucleo-

tides [55] and SYBR GreenER qPCR SuperMix Universal Kit with integrated uracil DNA gly-

cosylase (UDG; Invitrogen, Life Technologies, Grand Island, NY, USA). DNA amplification

was performed in an ABI 7500 thermocycler (Applied Biosystems, Carlsbad, CA, USA) in

duplicates using 5 μL of extracted DNA as template (~100 ng) in a final volume of 20 μL. DNA

extracted from non-infected mice and samples without DNA template were included as con-

trols. qPCR conditions and standard parasite curve for data analysis were performed as previ-

ously described [52,56].

Statistical analysis

The results of assays were expressed as the mean ± SD derived from triplicate observation sam-

ples in at least two independent experiments and analyzed using GraphPad Prism. The Kolmo-

gorov-Smirnov normality distribution test was applied to all data. Comparisons between

groups were made using unpaired Student’s t test (equal variance) or Mann-Whitney test

(unequal variance). Comparisons among multiple groups were made using ANOVA followed

by Bonferroni or Kruskal-Wallis followed by Dunns. Values of p<0.05 were considered statis-

tically significant.
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Supporting information

S1 Fig. Dose-response curves of Trypanosoma cruzi epimastigotes. Exponential phase epi-

mastigotes grown in axenic cultures were treated with different dilutions of conventional and

investigational trypanocidal compounds during 72 h. At the end of each experiment, motile

parasites were quantified using a Neubauer’s chamber. Growth inhibition data represents the

mean ± SD of combined results from three independent experiments, each including triplicate

samples per dose. IC50 doses are listed in Results (Table 2).

(TIF)

S2 Fig. Ponceau-S staining. Membranes were stained with Ponceau S to confirm equal load-

ing of epimastigotes samples shown in Fig 4. The molecular size marker (MW) is shown on

the nitrocellulose membrane.

(TIF)

S3 Fig. Trypanosoma cruzi infectivity in mammalian cell cultures. Cultures of peritoneal

macrophages and BESM cells were exposed to Vero cell-derived AR-SE23C and BOL-FC10A

trypomastigotes during 16 h and cultured for additional 72 h. The number of infected cells was

determined using Image Tool Software.

(TIF)
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25. Nogueira FB, Krieger MA, Nirdé P, Goldenberg S, Romanha AJ, Murta SMF. Increased expression of

iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in

vitro-induced resistance to benznidazole. Acta Trop. 2006; 100: 119–132. https://doi.org/10.1016/j.

actatropica.2006.10.004 PMID: 17113553

26. Ready PD, Miles MA. Delimitation of Trypanosoma cruzi zymodemes by numerical taxonomy. Trans R

Soc Trop Med Hyg. 1980; 74: 238–42. Available: http://www.ncbi.nlm.nih.gov/pubmed/6992359 PMID:

6992359

27. Brisse S, Dujardin JC, Tibayrenc M. Identification of six Trypanosoma cruzi lineages by sequence-char-

acterised amplified region markers. Mol Biochem Parasitol. 2000; 111: 95–105. https://doi.org/10.1016/

S0166-6851(00)00302-9 PMID: 11087920

28. Yeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, Acosta N, et al. Multilocus sequence typ-

ing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS

Negl Trop Dis. 2011; 5: e1049. https://doi.org/10.1371/journal.pntd.0001049 PMID: 21713026

29. Tibayrenc M, Ayala FJ. The population genetics of Trypanosoma cruzi revisited in the light of the pre-

dominant clonal evolution model. Acta Trop. Elsevier B.V.; 2015; 151: 156–165. https://doi.org/10.

1016/j.actatropica.2015.05.006 PMID: 26188332

30. Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas

disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. Elsevier B.V.; 2017; https://doi.

org/10.1016/j.actatropica.2017.09.017 PMID: 28941731

31. Monje-Rumi MM, Brandán CP, Ragone PG, Tomasini N, Lauthier JJ, Alberti D’Amato AM, et al. Trypa-

nosoma cruzi diversity in the Gran Chaco: Mixed infections and differential host distribution of TcV and

TcVI. Infect Genet Evol. 2015; 29: 53–59. https://doi.org/10.1016/j.meegid.2014.11.001 PMID:

25445658
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