LETTER TO THE EDITOR

Severe acute respiratory syndrome-2 encodes hemagglutinin esterase?

Dear Editor

I read with interest the article by AL-Eitan et al.¹ of Pharmacogenomics of genetic polymorphism within the genes responsible for severe acute respiratory syndrome-2 (SARS-CoV-2) susceptibility and the drug-metabolising genes used in treatment. I appreciate their article, however, the authors reported that "Structural proteins in SARS-CoV-2 particles, include spike glycoprotein (S), envelope protein (E), membrane protein (M), nucleocapsid protein (N) and hemagglutinin-esterase protein (HE)"; in addition, the authors presented HE as a structural protein of SARS-CoV-2 in fig. 1a.¹ But based on scientific evidence, the genome of SARS-CoV-2 as a *Betacoronavirus* of *Sarbecovirus* (lineage B) lacks HE gene²⁻⁴; thus, SARS-CoV-2 encodes four structural proteins: S, E, M and N.^{5,6}

Phylogenetic analysis showed that the SARS-CoV-2 fell within the subgenus *Sarbecovirus* (lineage B) of the genus *Betacoronavirus*.⁷ Viruses in subgenus *Sarbecovirus* such as SARS-CoV-2 and SARS-CoV cannot encode HE; however, HKU1-CoV, OC43-CoV, murine hepatitis virus and Bovine-CoV as subgenus *Embecovirus* (lineage A) of genus *Betacoronavirus* encode five structural proteins: S, E, M, and N and HE.^{8,9}

In conclusion, SARS-CoV-2, the causative agent of the Covid-19, lacks HE protein.

ACKNOWLEDGEMENT

None.

AUTHOR CONTRIBUTION

Conceptualisation, supervision, writing-original draft, visualisation, writing-review and editing: Milad Zandi.

Milad Zandi^{1,2}

¹Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ²Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran

Correspondence

WILEY

Milad Zandi, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Email: miladzandi416@gmail.com

REFERENCES

- AL-Eitan LN, Alahmad SZ. Pharmacogenomics of genetic polymorphism within the genes responsible for SARS-CoV-2 susceptibility and the drug-metabolising genes used in treatment. *Rev Med Virol.* 2021;31(4):e2194.
- Crawford KH, Eguia R, Dingens AS, et al. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. *Viruses.* 2020;12(5):513.
- Zhang L-P, Wang M, Wang Y, Zhu J, Zhang N. Focus on the 2019 novel coronavirus (SARS-CoV-2). *Future Microbiol.* 2020;15(10): 905-918.
- Zandi M, Soltani S, Feyzi K. SARS-CoV-2 as a betacoronavirus comprises five structural proteins? *Infect Genet Evol.* 2021;94: 105011.
- Can H, Köseoğlu AE, Alak SE, et al. In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19. *Sci Rep.* 2020;10(1):1-16.
- Potdar V, Cherian SS, Deshpande GR, et al. Genomic analysis of SARS-CoV-2 strains among Indians returning from Italy, Iran & China, & Italian tourists in India. *Indian J Med Res.* 2020;151(2-3):255-260.
- Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. *Cureus*. 2020; 12(3):e7423.
- Zandi M, Soltani S. Hemagglutinin-esterase cannot be considered as a candidate for designing drug against COVID-19. *Mol Divers.* 2021;25(3):1999-2000.
- Kim C-H. SARS-CoV-2 evolutionary adaptation toward host entry and recognition of receptor O-Acetyl sialylation in virus-host interaction. *Int J Mol Sci.* 2020;21(12):4549.

Abbreviations: SARS-CoV, severe acute respiratory syndrome; SARS-CoV-2, severe acute respiratory syndrome-2.