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Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal
dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from
which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and
possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent
source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task
frequency (2–4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a
beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction
and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the
comparison of each of the modalities separately to that of the combined approach. We found the identified network of
coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG
whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent
rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone.
The functional connectivity analysis revealed that the combined approach had more active connections compared to either
of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep
coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the
volume conduction effect in the case of EEG.
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Introduction

EEG and MEG are two non-invasive techniques with a high

temporal resolution for imaging the neuronal activity in the brain.

The integration of both these modalities have been shown to be

more advantageous than using them separately in previous studies

[1–10]. The differences in SNR and sensitivity for MEG and/or

EEG have been examined [11–14] either in pure simulations or

simulated data from real recordings. Especially in MEG, the

sensitivity is different for systems with only magnetometers or

gradiometers (planar or axial) [15,16]. It is well established that

MEG recordings yield higher signal-to-noise ratios than EEG

recordings whereas its sensitivity to more radially oriented dipoles

is minimal which could be a disadvantage especially for detecting

deep sub-cortical sources [17,18]. However, in coherent source

analysis approaches it has been clearly shown that MEG is able to

detect oscillatory network components even in the thalamic region

[19,20]. In previous studies direct comparisons between MEG,

EEG and the combination of the two are lacking for such coherent

source analysis. Thus, it is not clear if the better SNR of MEG data

improves the lack of sensitivity to the more radially oriented

dipoles in deep brain structures. We chose a voluntary task like the

finger tapping task, a well-defined task in which the central

networks that are involved are well described [21–24]. This

allowed us to assess the quality of the source analyses performed

on MEG, EEG and the combination of the two modalities. In

order to detect the oscillatory central networks involved in this

task, we computed coherence between simultaneously recorded

128-channel EEG with 306 MEG and forearm electromyography

(EMG) and performed coherent source analysis using DICS [19].

In the next step, we analysed the direction of information flow

between the source signals using the RPDC [25]. Both methods

are well established and have been extensively applied on EEG

and MEG data [19,20,24–28].

Subjects and Methods

2.1 Subjects
Eight male and seven female healthy volunteers participated in

this study. All gave written informed consent. The study was
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approved by the Ethics Committee, Medical Faculty, University of

Kiel. Age ranged from 23 to 39 yr. (mean: 29.8165.25). All were

right handed. Subjects were seated in a comfortable chair in a

slightly reclined position. Both forearms were supported by firm

armrests up to the wrist joints. The hands were held outstretched

against gravity, and the subjects were asked to keep their eyes open

and fixed on a point about 2 m away.

Muscle activity was recorded by surface electromyography from

the right hand forearm flexors and extensors using silver chloride

electrodes. MEG and EEG were recorded simultaneously using an

Elekta Neuromag system. The EEG data was recorded with 128

electrodes, the MEG data from 306 sensors containing a triple

sensor array, which optimally combines the focal sensitivity of 204

planar gradiometers and the widespread sensitivity of 102

magnetometers. Data were stored in a computer and analyzed

off-line. Individual recordings were of 4 to 5 minutes duration.

The subjects were asked to perform a rhythmic right index finger

tapping movement in a self-paced manner. The rhythmic

movements were checked for each subject by looking at the

EMG activity online to have at least 2–4 bursts per second.

2.2 Data Pre-processing
The simultaneous recording of MEG, EEG and EMG were

sampled at 1000 Hz and band-pass filtered (EMG 30–200 Hz;

MEG and EEG 0.05–200 Hz). EMG was full-wave rectified; the

combination of band-pass filtering and rectification is the common

demodulation procedure for tremor EMG [29]. Due to some

recent differences in opinion about the rectification of the EMG

signals as mentioned in [30–32], we estimated the EMG power

spectrum with and without rectification and also cortico-muscular

coherence with a single EEG/MEG channel on the contralateral

motor cortex (e.g., C3/MEG 0231). Each record was segmented

into a number of 1 s - long high-quality epochs (L) discarding all

those data sections with visible artifacts. For each task, depending

on the length (N) of the recording and the quality of the data,

between 250 to 260 1-s segments (M) were used for analysis such

that N = LM.

2.3 Realistic Head Models
The approach used here is the piece-wise homogeneous

approximation which can be solved by using the boundary

element method (BEM) [8,17,33–36]. In the BEM model the

conductivity is assumed to be isotropic for each compartment of

the head. The lead field matrix(L) estimated here contains the

information about the six parameters (source locations(x,y,z),
orientations(h, w), and amplitudes(A)) that specify a dipole which

models the current sources that can generate the electric or

magnetic field pattern at the surface of the head. The surfaces of

the compartments like the scalp, skull and brain were extracted

from the individual magnetic resonance images (MRI) of each

subject. The individual electrode locations for the MEG sensors

were recorded automatically from the Neuromag system and the

EEG sensor positions were measured by a Polhemus system. The

realistic head models were constructed based on the linear-

collocation 3-layer BEM model. The main idea of this approach is

developed on the basis of the integrated analysis of MEG and EEG

simultaneously. The MEG in which the conductivity is a minor

concern [17] is used first to find the accurate source location

information for the tangential components. Subsequently, this is

integrated to obtain the radial component from the EEG data by

adjusting the conductivity profile of the EEG model [8]. The

conductivity values for the scalp ( = brain) varied from 0.12 to

0.98 S/m and for the skull varied from 0.004 to 0.0013 S/m. The

open source software OpenMEEG [37] was used to build the

realistic head models. The constructed realistic head model is

shown for a representative subject in Figure1. The layers are

presented separately the brain (A), the skull (B), the scalp (C)

followed by all the layers (D) with the interpolated electrodes and

sensors on the scalp. (E) shows the location of the electrodes and

sensors with respect to the subject’s head.

2.4 Source Analysis
The analysis tool used here is the dynamic imaging of coherent

sources (DICS) [19] for identifying the coherent brain sources at

the pre-defined frequency band. DICS uses a spatial filter

algorithm [38] and estimates the tomographic coherence maps

which are based on the realistic head models. There are two major

constraints in this beamformer approach: it assumes an un-

constrained single dipole model, which is not linearly correlated to

other dipoles. This assumption is valid if the coherence is not too

strong and the signal-to-noise ratio is sufficient [19]. The second

constraint is that the coherence between the identified areas with

itself is always 1. The source in the brain with strongest coherence

to the EMG signal at the finger tapping frequency (2–4 Hz) was

identified. In the next step, this area of the brain or the activated

voxels were considered as noise in order to find further weaker

coherent areas in the brain [39]. All the coherent brain areas were

identified one by one by only taking the EMG as the reference

signal, finally their activity was extracted by the spatial filter [38].

The spatial filter was applied to a large number of voxels covering

the entire brain, assigning to each voxel a specific value of

coherence to the given reference signal (i.e., EMG). A voxel size of

5 mm was used in this study. The dipole orientations for each of

these sources were obtained from the resulting lead field matrix for

each modality separately and also for the combined approach for

each subject. The application of the spatial filter has been

described elsewhere [40]. The criteria used to identify areas in the

brain was by using the significance level obtained from a within

subject surrogate analysis. Local maxima in the resulting maps

represent areas that have the strongest coherence to the reference

signal. In a further analysis, all the original source signals from

each source with several activated voxels were combined by

estimating the second order spectra and employing a weighting

scheme depending on the analyzed frequency range to form a

pooled source signal estimate for every source as previously

described in [41,42]. This analysis was performed for each subject

separately, followed by a grand average across all subjects for all

the three modalities EEG, MEG and the combined approach

(MEG+EEG). All the steps performed in the source analysis are

depicted in the flowchart with output pictorial representation after

each step in the figure S1.

2.5 Renormalized Partial Directed Coherence
To identify the direction of information flow between two

signals, the technique called the renormalized partial directed

coherence (RPDC) was applied [25]. The multivariate model is

strictly based on the principle of Granger causality [43] (i.e., not

taking into account zero-lagged or instantaneous influences). The

RPDC is a general method mostly used to analyze connectivity of

EEG and MEG signals in the frequency domain. The pooled

source signals were modelled using an autoregressive process to

obtain the coefficients of the signals in the particular frequency

band with a multivariate approach. The formulation to estimate

the RPDC values between two signals i and j at a specific

frequency v is given as follows [25]:

Multimodal Integration of MEG and EEG Data
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Dpi/j(v)D~
Aij(v)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k

DÂAik(v)D2
r ð1Þ

In the above equation the numeratorAij(v) is the estimated

autoregressive coefficient from j to i at a certain frequency band .

The denominator ÂAik(v) also gives the autoregressive coefficients

at the same frequency band v from i to all other k signals, that is,

RPDC ranks the interaction strength with respect to the given

target signal.

The optimal model order needs to be chosen which was

estimated by minimizing the Akaike Information Criterion (AIC).

This order indicates the ideal number of coefficients that need to

be estimated [44,45]. The AIC is a measure of the relative

goodness of fit which has the minimum loss of information for a

resulting statistical model with an optimal order [45]. The

bootstrapping method [46] was used to calculate the significance

level on the applied data after the estimation of the RPDC values.

In the bootstrapping method [46,47] we divided the original time

series into smaller non-overlapping segments of equal size. The

smaller windows are shuffled randomly and then concatenated.

This process was repeated 100 times and the 99th percentile was

taken as the threshold or significance value. The concatenated

time series has the same power spectrum as that of the original

time series, however all the coherence and directionality is lost. In

addition, the significant connections were tested with a time

reversal technique only for the EEG modality. In order to justify

that the shown connections were due to the strong symmetry

present in the data and not due to any volume conduction effects

[48]. The open source Matlab (The MatWorks Inc., Natick, MA,

USA) package ARFIT [49,50] was used for estimating the

autoregressive coefficients from the spatially filtered source signals.

2.6 Signal-to-noise Ratio Analysis
The scalp level relative SNR was estimated for both the

modalities separately from the power spectrum of each of the

electrodes/sensors. The signal is defined by the peak finger

tapping frequency (2–4 Hz) in this task. In order to use a session-

specific noise [14] then the noise was estimated from another

recording where the same subjects open their eyes without

performing any task. The noise level is then defined as the power

in the frequency band (2–4 Hz). The same number of sensors was

selected from MEG and corresponding EEG electrodes to have a

direct comparison of the SNR values. In total 15 electrodes/

sensors were selected for the finger tapping task from the

contralateral motor cortex region in the scalp. At the end, the

mean SNR was estimated from the 15 electrodes/sensors for both

the modalities separately. The selection of the electrodes and

sensors was done by estimating the Euclidean distance between the

EEG electrodes and the corresponding MEG sensors (selected by

Figure 1. For a representative single subject, the created realistic head model is shown. The layers are represented separately the brain
(A), the skull (B), the scalp (C) followed by all the layers (D) with the interpolated electrodes and sensors on the scalp with transparent sections. (E)
shows the location of the electrodes and sensors with respect to the subject’s head.
doi:10.1371/journal.pone.0091441.g001

Multimodal Integration of MEG and EEG Data

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e91441



visualization in the forward model). A sphere with the radius of

40 mm was considered with the center being the EEG-C3

electrode on the scalp. In this analysis, 15 electrodes were selected

surrounding the C3 electrode. The criterion was to meet the

Euclidean distance, = 20 mm between the EEG channels and

corresponding MEG sensors. The source level SNR was estimated

by taking the pooled source signals from the identified sources in

each modality separately, instead of the electrodes/sensors signals.

In case of the combined approach, the SNR was calculated by

normalization of the pooled source/scalp signals to their individual

noise amplitudes, yielding unit-free measures for both EEG and

MEG [10]. The individual noise amplitudes were estimated from

the eyes open recording for each individual subject at the

frequency band (2–4 Hz).

2.7 Time Frequency Analysis
This analysis was performed to find the time segments with

higher significant coherence between the EEG/MEG electrodes

and the EMG. The dynamics of the cortico-muscular coherence

was estimated by the multitaper method [51]. In this method the

signals are multiplied initially with different windows (i.e., tapers)

(K = 7). The length of the window used in this analysis is 1000 ms.

The time step used was 50 ms with overlapping windows of

950 ms, a coherence value is calculated every 50 ms and the

frequency resolution is approximately 1 Hz. A 95% overlapping

corresponds to a time resolution of approximately 50 ms. The

complete description of this method is explained elsewhere [52]. In

the subsequent analysis, all the coherence estimates of the

significantly coherent EEG/MEG electrodes (selected 15 elec-

trodes/sensors) with the EMG were combined to get a pooled

coherence estimate as described earlier in the source analysis

section. From the pooled estimate, the time segments (FT-mean:

10062.4;) were chosen with coherence values greater than (mean+
std) for the whole recorded data length. Source analysis was

repeated on these time segments for the case of EEG modality only

to see whether the analysis identifies sub-cortical sources.

2.8 Statistical Analysis
The total data length between the subjects was tested with a

non-parametric Friedman test for dependent samples (n = 15,

a= 0.01). The significance of the sources were tested by a within

subject surrogate analysis. The surrogates were estimated by a

Monte Carlo random permutation, i.e., 100 times shuffling of one

second segments within each subject. The p-value was estimated

for each of these 100 random permutations and the 99th percentile

value of each source for all these permutations is taken as the final

threshold.

Next, the voxel co-ordinates of the identified sources with the

maximum coherence were compared to that of the reference voxel

within the same modality. A reference voxel for each of the

identified sources was determined in the MNI co-ordinate system

for the finger tapping task; [primary sensory motor cortex -

PSMC: (256.0, 214.0, 41.0); premotor cortex – PMC: (227.0,

46.0, 32.0); supplementary motor area – SMA: (214.0, 24.0,

44.0); posterior parietal cortex – PPC: (246.0, 271.0, 35.0);

thalamus – TH: (25.0, 216.0, 8.0); cerebellum – CER: (13.0, 2

76.0, 251.0)]. The euclidean distance was estimated between the

reference voxel and the maximum coherent voxel. In the further

analysis, the euclidean distance was estimated between the

different modalities, for each of the sources, to compare the

difference in the source location (e.g. EEG vs. MEG; EEG vs.

EEG+MEG; MEG vs. EEG+MEG). The chi-square variance test

was used by defining the category with the minimum distance as

zero and the maximum depending on the calculated distance in

each combination. Bonferroni correction was done. For three

comparisons the level of significance would drop from 0.05 to

0.017 between all three combinations (EEG vs. MEG; EEG vs.

EEG+MEG and MEG vs. EEG+MEG).

Finally, the source coherence values and the source signal SNR

values (n = 15, a= 0.01) for each of the modalities were tested for

significance using the multifactorial analysis of variance (AN-

OVA), within-subject factors being the sources (n = 4 sources:

EEG), (n = 6 sources: MEG and EEG+MEG) and the between

subject factor being the modalities (n = 3: EEG, MEG, EEG+
MEG). The scalp level SNR between the modalities (EEG vs.

MEG) was tested using a non-parametric Friedman test for

dependent samples (n = 15, a= 0.01). The mean SNR values of

the selected 15 electrodes were compared with the SNR values of

the pooled coherence estimate of the time segments with the

highest coherence value. These values were tested with a non-

parametric Friedman test for dependent samples (n = 15, a= 0.01).

The RPDC values (n = 15, a= 0.01) between the pooled source

signals were tested for significance using the multifactorial

ANOVA, within-subject factors being the connections of the

pooled source signals (n = 12 connections: EEG), (n = 30 connec-

tions: MEG and EEG+MEG) and the between subject factor being

the modalities (n = 3: EEG, MEG, EEG+MEG). The Bonferroni

correction was performed for all the post-hoc test which involved

multiple comparisons.

Results

3.1 EEG/MEG-EMG Coherence
The data length within the subjects was not significantly

different (p = 0.423). Power spectral analysis on the EMG activity

of all the subjects showed a dominant peak at the frequency range

(2–4 Hz; mean: 2.9360.70). The cortico-muscular coherence did

not differ either in the frequency or in amplitude for both EMG

signals with or without rectification. At the above mentioned

frequency, all subjects exhibited significant coherence between

EMG and EEG/MEG electrodes or sensors covering the region of

the contralateral sensorimotor cortex.

3.2 Network of Sources
In all the healthy subjects the network of sources were identified

for each of these modalities first separately and then combined.

For the EEG modality, the network for the finger tapping

frequency consisted of the PSMC (primary sensory motor cortex)

Brodmann area (BA) 3, PFC (prefrontal/premotor cortex) BA 6,

proper-SMA (supplementary motor area) BA 6 and the PPC

(posterior parietal cortex) BA 7 as shown in figure 2. The network

for the MEG modality included the first four cortical sources seen

in EEG and additional two sub-cortical sources; the thalamus (TH)

BA 23 and the cerebellum (CER) in the posterior lobe (right lobule

V) (Figure 2). The network for the combined (MEG+EEG)

modality also consisted of similar network as that of the MEG

modality. This is illustrated in figure 2 group statistics maps of the

healthy subjects. All of these identified sources were statistically

significant (p = 0.003) in a Monte Carlo random permutation test

across all subjects within each modality. For the between subjects

same modality test, the euclidean distance of the sources with the

reference source was not statistically different for all the sources in

all the three modalities; PSMC (EEG-p = 0.76; MEG-p = 0.35;

MEG+EEG-p = 0.42); PMC (EEG-p = 0.65; MEG-p = 0.74;

MEG+EEG-p = 0.21); SMA (EEG-p = 0.56; MEG-p = 0.63;

MEG+EEG-p = 0.4); PPC (EEG-p = 0.49; MEG-p = 0.57;

MEG+EEG-p = 0.62); TH (MEG-p = 0.28; MEG+EEG-

p = 0.19); CER (MEG-p = 0.35; MEG+EEG-p = 0.45). Thus, this

Multimodal Integration of MEG and EEG Data
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test indicated that the location of the identified sources was not

significantly different between the subjects. In a further step, we

tested the Euclidean distance for within subject’s using different

modalities. All the comparisons between the modalities showed no

significant difference; EEG vs. MEG (p = 0.47); EEG vs. MEG+
EEG (p = 0.42); MEG vs. MEG+EEG (p = 0.52). This in turn

indicated that the different modalities located the sources at the

same location either when used separately or combined. The

source coherence values for all the cortical and sub-cortical sources

for the combined (MEG+EEG) approach had significantly higher

(p = 0.009) coherence values as compared to the other two

modalities. In the comparison between EEG and MEG, the

EEG had significantly higher coherence values for the identified

four cortical sources (p = 0.007). The source coherence values for

all the sources and the three different modalities are shown in

Table 1. The dipole orientation for the identified cortical sources

showed preferentially radial sources (60u–120u) for the EEG

modality and mostly tangential (1u–60u or 120u–180u) for the

MEG modality as expected. In the combined (MEG+EEG)

approach the cortical sources predominantly showed tangential

orientation (range-n = 8–10; mean: 9.461.5 subjects) than radial

orientation (range-n = 3–5; mean: 4.1260.9 subjects). However, in

the sub-cortical sources both for the MEG alone and the

combined approach all the subjects showed tangential orientation

for both TH and CER. The additional selected higher SNR time

segment source analysis which is described in (section 2.7– Time

frequency analysis), for the case of the EEG alone revealed two

further sources in the thalamus (TH) and the cerebellum (CER) for

all the subjects as can be seen in figure 3. Comparison between

EEG and MEG for the sub-cortical sources, the MEG had

significantly higher coherence values for the identified two sub-

cortical sources (p = 0.009). The source coherence values indicated

that the combined approach produced the optimum results as

compared to either of the modalities separately in this specific

voluntary task.

The source analysis was repeated by taking only 102 EEG

channels and separately 102 gradiometers or 102 magnetometers

into consideration. The selection was done on the basis of matching

the EEG channels that overlay the MEG sensors according to the

measured realistic individual ½x,y,z� co-ordinates with the Euclidean

distance ,20 mm. The network of sources identified by both EEG

and MEG (magnetometers or gradiometers) were similar but the

spatial resolution (no. of voxels included in a single source) was

reduced (i.e. more voxels for one source) compared to the analysis

with all the electrodes and sensors. The p-values are given first for

each of the comparisons followed by the information in square

brackets which sensor configurations were compared for the source

analyses. For all the sources in the case of EEG there was no

significant difference (p = 0.21) [selected 102 EEG channels with all

128 EEG channels], however, in the case of the MEG magnetom-

Figure 2. EEG - The grand average statistical map of network of sources for the finger tapping (FT) task by taking EMG as the
reference signal for the whole recording data length. MEG - The network of sources for MEG separately. MEG+EEG - The coherent network of
sources for the combined approach (MEG+EEG). The network of sources was primary sensory motor cortex (PSMC), premotor cortex (PMC),
supplementary motor area (SMA) and posterior parietal cortex (PPC) for the modality EEG. Additionally, two sources at the thalamus (TH), and
cerebellum (CER) were identified only for the modalities MEG and for the combined approach (MEG+EEG).
doi:10.1371/journal.pone.0091441.g002

Multimodal Integration of MEG and EEG Data
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eters (p = 0.004) [102 magnetometer sensors with all 306 MEG

sensors], gradiometer1 (p = 0.006) [102 gradiometer1 sensors with

102 gradiometer2 sensors], gradiometer2 (p = 0.009) [102 gradi-

ometer2 sensors with 102 gradiometer1 sensors] MEG (magnetom-

eters)+EEG (p = 0.008) [102 magnetometer sensors+selected 102

EEG channels with all 306 MEG sensors and 128 EEG channels],

MEG (gradiometer1)+EEG (p = 0.009) [102 gradiometer1 sensors+
selected 102 EEG channels with all 306 MEG sensors and 128 EEG

channels], MEG (gradiometer2)+EEG (p = 0.007) [102 gradiome-

ter1 sensors+selected 102 EEG channels with all 306 MEG sensors

and 128 EEG channels] there were significant difference in the

identified voxels.

3.3. Signal-to-Noise Ratio
The scalp level SNR from the selected 15 electrodes/sensors

showed significant difference (p = 0.005; MEG.EEG) between the

EEG and MEG for this task. As defined the SNR from the higher

coherence time segments showed significantly higher SNR (FT –

EEG-0.006; MEG-0.008) than the scalp level SNR for the whole

recorded data length using the selected 15 electrodes/sensors. For

the source level SNR, the within subject factor, i.e., the first four

cortical sources in MEG (namely the CMC; PMC; SMA; PPC) had

significantly higher (p = 0.004) SNR as compared to the EEG and

the combined (MEG+EEG) approach. The last two sub-cortical

sources in the MEG also showed significantly higher SNR

(p = 0.007) as compared to the combined approach. The between

subject factor, i.e., the modalities, showed that MEG has the highest

SNR as compared to the EEG and the combined approach

(p = 0.006). The combined approach (MEG+EEG) indicated

significantly higher SNR (p = 0.004) than the EEG modality.

3.4 Information Flow between Source Signals
The network connectivity between the source signals was

estimated using the renormalized partial directed coherence

(RPDC) at the desired frequency for the FT task separately for

each modality and then combined. The values were statistically

compared using ANOVA test for repeated measurements and post-

hoc comparisons. For the EEG modality (as shown in Figure 4), the

interactions CMC to PMC; CMC to SMA; CMC to PPC were

significantly higher for all the subjects (p = 0.004; p = 0.003;

p = 0.009) as compared to the opposite interactions. The interac-

tions between the sources PMC and PPC showed significant

bidirectional connectivity. The interactions between the sources

PMC to SMA and SMA to PPC did not show any significant

information flow in both directions. In the MEG modality (as shown

in Figure 4), the interactions between the CMC, PMC, SMA and

PPC remained similar as in the case of EEG. After the additional

time segment analysis, the sub-cortical sources in EEG and MEG,

showed significant (p = 0.008; p = 0.009) unidirectional interactions

from TH to CMC and CER to CMC. The interactions between the

PMC to TH and TH to CER showed significant bidirectional

connectivity. The cortical sources SMA and PPC did not show any

significant interactions with the sub-cortical sources of TH and

CER. In the combined (MEG+EEG) approach (as shown in

Figure 4), in addition to the connections found in each of the

modalities, EEG and MEG, some additional cortical sources

showed significant interactions. The interaction between the TH

and CER showed no more bidirectional connection; instead a

significant (p = 0.008) unidirectional flow from CER to TH. The

interactions between the CER to PMC and TH to SMA showed

significant (p = 0.006; p = 0.008) uni-directional connections. The

interactions between the TH and PPC were bidirectional

(p = 0.004). In the between subject factor analysis, the combined

approach (MEG+EEG) showed significantly (p = 0.005) higher

RPDC values for all sources in comparison to either of the

modalities alone. For the comparison between EEG and MEG, the

cortical sources showed higher RPDC values for the EEG modality

but the difference was not significant (p = 0.21).

Discussion

4.1 Central Network of Sources Identified by the Different
Modalities

The network of cortical sources estimated using each of the

modalities separately or combined indicated a similar network.

However, the sub-cortical sources were only identified for the

MEG and the combined approach (MEG+EEG). These same

network of sources have been previously described in EEG

[24,53,54], MEG [21–23,55], functional magnetic resonance

imaging (fMRI) [56,57] and in a positron-emission tomography

(PET) study [23]. In a combined EEG and fMRI study, similar

sources were identified for the voluntary movements [54]. These

earlier studies describe motor planning in secondary motor centres

followed by task execution using the primary sensorimotor cortex.

In our earlier studies with EEG alone [24] and MEG alone

[21,22] we were also able to show the involvement of sub-cortical

centres, that is, thalamus and cerebellum. However, these sub-

cortical sources could only be resolved by the EEG when segments

with especially high SNR were selected and analysed separately

[24], whereas the MEG resolved these sub-cortical sources more

readily without selecting any time segments [22]. The whole

cortical and sub-cortical network involved in the finger tapping

task has been previously described in voluntary motor tasks

[58,59]. The involvement of Brodmann areas 3, 6, 7, 23 and the

posterior lobe (right lobule V) [60] of the cerebellum have been

particularly shown to be involved in voluntary rhythmic tasks [61].

Table 1. The source (mean6std) of the coherence values for each of the sources and the three different modalities are depicted.

Sources Modalities

EEG MEG MEG+EEG

PSMC 0.1860.04 0.1560.03 0.2260.04

PMC 0.1660.03 0.1360.04 0.1960.03

SMA 0.1160.02 0.1060.02 0.1660.03

PPC 0.0960.02 0.0960.02 0.1360.04

TH – 0.0760.01 0.1060.03

CER – 0.0460.01 0.0860.04

doi:10.1371/journal.pone.0091441.t001
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This was confirmed in the present study. The additional

information to the previous literature is the setting of simultaneous

recordings of these two modalities (EEG and MEG) allowing a

direct comparison of the spatial location of the identified sources

and their corresponding coherence values. The source location were

neither significantly different between the subjects nor between the

different modalities. This confirms that both approaches detected

the same physiological motor network. This also indicated that for

identifying the network of cortical sources, the spatial resolution of

EEG is sufficient. However, the coherence values for the combined

approach were significantly higher for all the sources as compared

to either EEG or MEG. In the comparison between EEG and

MEG, cortical sources of EEG showed significantly higher

coherence values than MEG; and in the sub-cortical sources

MEG showed significantly higher coherence values.

4.2 Network of Interactions Indicated by the Different
Modalities

The network of interactions during the finger tapping task in

healthy subjects has been presented in earlier studies using MEG/

EEG [21,22,24]. In some fMRI studies Granger causality analysis

was used to study the effective connectivity during a motor

response task [62] and visuomotor task [63]. In most of these

studies either part of the network is involved or one of these

modalities, EEG/MEG, is used. But, in this work, both these

modalities were analysed separately and directly compared with

the combined approach which appends to our previous knowledge

about the interpretation of the interactions between the network

involved in a finger tapping task. Very similar network interactions

were revealed when analysing EEG and MEG separately as in

these earlier studies [21,22,24]. However, the combined approach

depicted a few more connections from the sub-cortical to cortical

areas. The feedback connection from the TH to SMA and the

CER to PMC has been earlier described as direct connections

which are hypothesized as a basis of normal oscillatory phenom-

ena [64,65]. The oscillations induced in the brain due to a finger

tapping task are controlled oscillations. The first feedback

connection from the main relay nuclei of the thalamus to the

(secondary) motor areas is vital for sustaining the coupling between

the motor areas and hand muscle. The second feedback from the

cerebellum to the pre-motor cortex is vital for the task execution.

The bi-directional connection between TH and PPC has been

discussed as the connection which maintains the repetitive stability

in the brain for motor tasks [22]. This bi-directional connection is

important for constant feedback between these two areas which

passes on information about the performance of the task from the

sub-cortical to cortical centres. These connections were revealed

only due to the combined approach which could indicate that

more complete network connections are visible when both

modalities are used in tandem.

4.3 Effect of Signal-to-noise Ratio and Dipole Orientation
on Source Analysis

The role of SNR on source analysis has been examined in MEG

and/or EEG [11–14] with pure simulations or simulated data

from real recordings. In this study, we supplement to the

Figure 3. The grand average sources for the higher SNR time segment analysis for EEG, MEG and for the combined approach
(MEG+EEG). In this analysis all the modalities showed a similar network of sources.
doi:10.1371/journal.pone.0091441.g003
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beforehand hypotheses that MEG has better SNR by comparing

directly the SNR on the scalp and the source level for the finger

tapping task. In this task, the MEG showed significantly higher

SNR in the scalp and source level as compared to the EEG and

the combined approach, whereas, the SNR of the combined

signals was significantly better than the EEG. This difference in

SNR was reflected in the source analysis. The deeper sources were

identified only in the MEG and the combined approach in the

initial analysis. The later analysis, with the higher SNR time

segments revealed sub-cortical sources in the EEG confirmed the

importance of the SNR. These results indicate that EEG is also

capable of identifying sub-cortical sources but only with time

segments, which have higher signal-to-noise ratio as compared to

the whole recorded data length.

In contrast to the signal-to-noise-ratio, the coherence level for

the cortical sources was higher in the EEG than in the MEG

analysis. Thus the coherence between the cortical motor area and

the peripheral muscles is not linearly related to the SNR but may

reflect different cortical signal components being picked up by

EEG and MEG. On theoretical grounds it is assumed that MEG

mostly detects tangentially oriented dipoles and the EEG mainly

the dipoles which have a radial orientation [66–69]. In view of the

cortical anatomy it is self-evident that the signals from the

superficial parts of the cortical gyri, the walls of the sulci and the

deep regions of the sulci give rise to different dipole orientations

and thus the sensitivity of the EEG and MEG to the activity in

these sub-regions of the same cortical area also differ [66,70,71].

Comparisons between intra-sulcal and gyral electro-corticograms

have shown that at least in the primary sensorimotor cortex intra-

sulcal and gyral signals seem to be differentially linked to the

peripheral motor action [72]. This may be an explanation for the

difference in coherence between cortical MEG and EEG observed

in the present study and underlines that even in the cortex, which

is well-resolved by both methods, they carry complimentary

information.

In case of very deep sub-cortical sources, the MEG is clearly

superior to the EEG although the dipole orientation of these deep

sources is believed to be more radial than tangential [14]. For the

detection of these very weak signals coming from the deep region

of the brain, an optimal signal-to-noise ratio seems to be the most

important prerequisite. Another possible reason in EEG could be

the volume conduction effect, which does not affect the MEG

system [73–75]. In addition, the repetition of the source analysis

with only 102 EEG electrodes and 102 MEG sensors (magnetom-

eters or gradiometers) showed no significant change in the spatial

resolution.

In conclusion, the SNR is an important parameter when both

modalities, EEG and MEG, are used either separately or in tandem.

The theoretical dipole orientation in the EEG and MEG modality

does not seem to be a major concern as compared to the SNR. The

effective connectivity between the sources in the brain also benefits

from measuring both these modalities simultaneously. The combi-

nation of both these modalities and the use of all the available

electrodes/sensors gives the optimum spatial resolution, and also

indicates that the coherence could be a useful parameter for

identifying the network of sources involved in voluntary motor tasks.

Figure 4. This figure illustrates the information flow between the coherent sources in the brain for the FT task using EEG, Meg and
MEG+EEG. The dashed line indicates significant bi-directional interaction and the bold lines with the arrow heads indicate the corresponding
significant uni-directional interaction between the sources. The two dotted lines indicate the two additional interactions found between the sources
for only the combined approach (MEG+EEG).
doi:10.1371/journal.pone.0091441.g004
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Figure S1 The figure illustrates the steps involved in the
source analysis with a pictorial representation of the
output after each step.
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EEG to Source Orientation. Brain Topography 23: 227–232.

67. Cohen D (1972) Magnetoencephalography: Detection of the Brain’s Electrical

Activity with a Superconducting Magnetometer. Science 175: 664–666.

68. Neil Cuffin B, Cohen D (1979) Comparison of the magnetoencephalogram and

electroencephalogram. Electroencephalography and Clinical Neurophysiology

47: 132–146.

69. Melcher JR, Cohen D (1988) Dependence of the MEG on dipole orientation in

the rabbit head. Electroencephalography and Clinical Neurophysiology 70: 460–

472.

70. Starr A, Kristeva R, Cheyne D, Lindinger G, Deecke LD (1991) Localization of

brain activity during auditory verbal short-term memory derived from magnetic

recordings. Brain Research 558: 181–190.

71. Cheyne D, Kristeva R, Lang W, Lindinger G, Deecke L (1990) Neuromagnetic

Localisation of Sensorimotor Cortex Sources Associated with Voluntary

Movements in Humans. In: Williamson S, Hoke M, Stroink G, Kotani M,

editors. Advances in Biomagnetism: Springer US. 177–180.

72. Yanagisawa T, Hirata M, Saitoh Y, Kato A, Shibuya D, et al. (2009) Neural

decoding using gyral and intrasulcal electrocorticograms. NeuroImage 45:

1099–1106.

73. Mima T, Hallett M (1999) Electroencephalographic analysis of cortico-muscular

coherence: reference effect, volume conduction and generator mechanism.

Clinical Neurophysiology 110: 1892–1899.

74. van den Broek SP, Reinders F, Donderwinkel M, Peters MJ (1998) Volume

conduction effects in EEG and MEG. Electroencephalography and Clinical

Neurophysiology 106: 522–534.

75. Winter WR, Nunez PL, Ding J, Srinivasan R (2007) Comparison of the effect of

volume conduction on EEG coherence with the effect of field spread on MEG

coherence. Statistics in Medicine 26: 3946–3957.

Multimodal Integration of MEG and EEG Data

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e91441


