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This section provides an overview of the genetic systems developed in the Archaea.
Genetic manipulation is possible in many members of the halophiles, methanogens,
Sulfolobus, and Thermococcales. We describe the selection/counterselection principles
utilized in each of these groups, which consist of antibiotics and their resistance markers,
and auxotrophic host strains and complementary markers. The latter strategy utilizes
techniques similar to those developed in yeast. However, Archaea are resistant to many
of the antibiotics routinely used for selection in the Bacteria, and a number of strategies
specific to the Archaea have been developed. In addition, examples utilizing the genetic
systems developed for each group will be briefly described.
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INTRODUCTION
Genetic manipulation, designated here as the ability to intro-
duce, remove, or modify genes in a given organism, is a vital
tool to study gene function. Deleting or overexpressing a gene
may lead to phenotypic changes that provide valuable clues in
determining the physiological role of the gene. Random mutage-
nesis and the isolation of mutant strains, followed by screening
for genes that complement the mutations is a classical strat-
egy to identify groups of genes that are involved in a particular
biological function. Genetic manipulation can also be used to
engineer cells to improve or introduce a desired function in a cell.
The tools necessary for genetic manipulation have been devel-
oped in a wide variety of eukaryotes and bacteria, including
the yeast Saccharomyces cerevisiae, the Gram-negative bacterium
Escherichia coli and Gram-positive bacterium Bacillus subtilis,
all of which have been subject to genome-wide gene disruption
projects (Giaever et al., 2002; Kobayashi et al., 2003; Baba et al.,
2006).

Compared to eukaryotes and bacteria, the development of
genetic systems in Archaea is still at a modest stage. Many
archaeal species have been found to be resistant against con-
ventional antibiotics utilized for selection in bacterial genetic
systems. In addition, many archaeal species can be regarded
as extremophiles, preferring growth conditions that greatly dif-
fer to those of the mesophilic, aerobic model microbes such
as S. cerevisiae, E. coli, and B. subtilis, which adds some dif-
ficulty to establish efficient screening methods. For example,
when developing a system for hyperthermophilic archaea, the
(thermo)stability of the compounds used for selection must also
be taken into account, and establishing techniques necessary
for growing colonies at high temperatures (and in many cases
under an anaerobic environment) are necessary. These factors and

others have hampered the development of archaeal genetic sys-
tems in the past, but the number of archaea with genetic systems
is now increasing at a steady rate. Among the Crenarchaeotes,
genetic manipulation is possible in a number of species in the
genus Sulfolobus. In the Euryarchaeota, genetic systems have been
developed in a number of halophiles, methanogens, and mem-
bers of the Thermococcales. This section will give an overview of
the genetic systems developed in these archaeal species, focusing
on the principles applied for transformant selection (summarized
in Table 1) and some examples of gene disruption that have led
to a better understanding of gene function. An in-depth descrip-
tion of the individual organisms and detailed methodology, along
with a historical account on the development of these systems,
are available in the literature (Whitman et al., 1997; Tumbula and
Whitman, 1999; Allers and Mevarech, 2005; Rother and Metcalf,
2005; Berkner and Lipps, 2008; Wagner et al., 2009; Buan et al.,
2011; Leigh et al., 2011).

HALOPHILES
SYSTEMS BASED ON ANTIBIOTIC RESISTANCE
Genetic systems have mainly been developed in Halobacterium
salinarum and Haloferax volcanii. Systems based on both
antibiotic resistance markers and auxotrophic selectable
markers have been established. In terms of systems based
on antibiotic resistance, novobiocin, which inhibits DNA
gyrase, and mevinolin/simvastatin, which inhibits 3-hydroxy-
3-methylglutaryl coenzyme A (HMG-CoA) reductase, are two
antibiotics that have successfully been applied in halophiles
belonging to the genera Haloferax and Halobacterium. DNA
gyrase is a type II topoisomerase that introduces negative super-
coils into DNA and whose function is essential for DNA synthesis.
HMG-CoA reductase is one of the enzymes of the mevalonate
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Table 1 | A simple summary of the selection strategies employed for genetic manipulation in the Archaea.

Marker gene Host requirements Medium requirements Demonstrated in

H M S T

SELECTION CRITERION

Novobiocin resistance gyrB mutant – – O – – –

Mevinolin/simvastatin
resistance

hmgR overexpression – – O – O O

Puromycin resistance pac – – – O – –

Neomycin resistance APH3′I/II – – – O – –

Hygromycin B resistance Thermostable hph mutant – – – – O –

Butanol/benzyl alcohol
resistance

adh – – – – O O

Uracil prototrophy pyrE, pyrF pyrE−, pyrF−, upp+ Pyrimidine-free O – O O

Leucine prototrophy leuB leuB− Leucine-free O – – –

Tryptophan prototrophy trpE, trpAB trpE−, trpAB− Tryptophan-free O – – O

Histidine prototrophy hisA hisA− Histidine-free – O – –

Lactose prototrophy lacS lacS− Lactose as major
carbon/energy source

– – O –

Agmatine prototrophy pdaD pdaD− Applicable with
tryptone/yeast extract

– – – O

COUNTERSELECTION CRITERION

5-Fluoroorotic acid resistance pyrE, pyrF pyrE−, pyrF− – O – O O

6-Azauracil/8-
azahypoxanthine/8-aza-
2,6-diaminopurine
resistance

hpt Resistant w/o hpt – – O – –

6-Methylpurine resistance hpt Resistant w/o hpt – – – – O

H, halophiles; M, methanogens; S, Sulfolobus; T, Thermococcales. Details are described in the text and referred publications.

pathway, which utilizes three molecules of acetyl-CoA to synthe-
size isopentenyl diphosphate (IPP) and its isomer dimethylallyl
diphosphate (DMAPP) (Figure 1). IPP and DMAPP are pre-
cursors for isoprenoid compounds, which are particularly
important for the archaea as their membrane lipids utilize
isoprenoid chains. A gene that encodes a novobiocin-resistant
DNA gyrase was isolated from Haloferax strain Aa2.2 and has
been used as a selection marker in developing Hf. volcanii–E. coli
shuttle vectors (Holmes and Dyall-Smith, 1990; Holmes et al.,
1991, 1994). Furthermore in Hf. volcanii, shotgun cloning of
DNA from spontaneous mevinolin-resistant strains led to the
isolation of DNA fragments that could transform Hf. volcanii
to mevinolin resistance, enabling the construction of shuttle
vectors (Lam and Doolittle, 1989; Blaseio and Pfeifer, 1990).
An examination of various Hf. volcanii mevinolin-resistant
mutants have revealed that resistance is brought about by either
gene amplification or up-promoter mutations, both resulting
in enhanced and excess production of HMG-CoA reductase
(Lam and Doolittle, 1992). Shuttle vectors such as pWL102 have
been shown to also be applicable in transforming members of
the genus Haloarcula (Cline and Doolittle, 1992). Additional
shuttle vectors and gene disruption systems are now available in
several members of the Haloarcula and their application has been
demonstrated (Zhou et al., 2004; Ozawa et al., 2005; Tu et al.,
2005).

SYSTEMS BASED ON AUXOTROPHIC SELECTABLE MARKERS
The ura3 (or pyrF) gene encoding orotidine-5′-monophosphate
decarboxylase, an enzyme necessary for de novo pyrimidine
biosynthesis, has been utilized as a selection marker in a number
of halophilic archaea including Hb. salinarum NRC-1, Haloferax
mediterranei, and Haloarcula hispanica (Liu et al., 2011). A host
cell with a defect in ura3/pyrF can grow when uracil is added to
the medium owing to the function of uracil phosphoribosyltrans-
ferase encoded by the upp gene. The ura3/pyrF system is especially
convenient as it also allows counterselection. The addition of 5-
fluoroorotic acid (5-FOA) to the medium prohibits growth of
cells with an intact ura3/pyrF gene, as 5-FOA is converted to
the toxic 5-fluorouridine 5′-phosphate and 5-fluorouracil (Boeke
et al., 1984, 1987). These compounds inhibit DNA/RNA synthe-
sis, with the latter known to inhibit thymidylate synthase, an
enzyme necessary for thymidine synthesis. It is thus possible to
specifically select cells that have lost a pyrF (or pyrE) gene by
supplementing the medium with 5-FOA and a pyrimidine pre-
cursor such as uracil (Figure 2). In Hb. salinarum, a ura3/pyrF
deletion strain was constructed using a mevinolin resistance
marker, and the use of the ura3/pyrF gene as a counterselection
marker has been extensively examined (Peck et al., 2000). Further
improvements have enabled the use of ura3/pyrF as both a selec-
tion marker (uracil prototrophy) for initial plasmid integration,
and as a counterselection marker (5-FOA resistance) for plasmid
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FIGURE 1 | A schematic illustration of the mevalonate pathway. The
dotted arrows indicate a possible route adopted in the Archaea (Grochowski
et al., 2006; Matsumi et al., 2011). Enzymes catalyzing the reactions are
(a) acetoacetyl-CoA thiolase, (b) HMG-CoA synthase, HMG-CoA reductase

(written), (c) mevalonate kinase, (d) mevalonate-5-phosphate kinase,
(e) mevalonate-5-pyrophosphate decarboxylase, (f) isopentenyl-
5-pyrophosphate isomerase, (g) mevalonate-5-phosphate decarboxylase, and
(h) isopentenyl-5-phosphate kinase.

excision and gene deletion (Wang et al., 2004). The methodol-
ogy has been successfully applied in disrupting and examining
the arsenic resistance genes of this organism (Wang et al., 2004).
The system has also been used to study the physiological roles of
TATA binding proteins and transcription factor B proteins, whose
genes are present in multiple copies on the genome (Coker and
Dassarma, 2007). The methodology developed in Hb. salinarum
can also be used in Hf. mediterranei and Ha. hispanica. The sys-
tem was applied in deleting the phytoene synthase gene in both of
these organisms (Liu et al., 2011).

Systems based on other auxotrophic selectable markers have
been established in Hf. volcanii. The ura5 (or pyrE) gene encoding
orotate phosphoribosyltransferase, responsible for the reaction
preceding that of the ura3/pyrF product, has been demonstrated
to be applicable as both a selection and counterselection marker
(Bitan-Banin et al., 2003). Although two genes (pyrE1 and pyrE2)
encoded proteins homologous with PyrE, pyrE2 was the gene
actually involved in pyrimidine biosynthesis. A �pyrE2 strain
was constructed and used as a host cell to disrupt the cmi4 gene
of Hf. volcanii. Systems based on selection markers involved in
amino acid biosynthesis have also been developed in Hf. volcanii
(Allers et al., 2004). The leuB gene, encoding 3-isopropylmalate
dehydrogenase in the leucine biosynthesis pathway, and the trpA
gene that encodes one of the two subunits of tryptophan synthase

have been used for selection based on leucine and tryptophan
prototrophy, respectively. A convenient system for gene expres-
sion has also been developed in Hf. volcanii (Allers et al., 2010).
Use of the tryptophanase promoter of Hf. volcanii (p.tna) pro-
moter, which is induced by tryptophan, allows conditional over-
expression of the target gene. The genetic background of the host
strain has also been modified to facilitate the purification of His-
tagged proteins and relieving the need to passage DNA through
an E. coli dam mutant.

APPLICATION OF THE GENETIC SYSTEMS IN HALOPHILES
Gene manipulation is routinely performed in the halophiles
and an overwhelming amount of genetic examinations has been
reported in the literature (Leigh et al., 2011; Soppa, 2011). This
most likely reflects the fact that genetic systems were developed at
a relatively early stage in the halophiles and the versatility of the
genetic systems themselves, along with the mesophilic and aerobic
lifestyles of these organisms. To mention only several of the most
recent studies, in Hb. salinarum, a gradual inducible gene expres-
sion system has been developed (Kixmüller and Greie, 2012). It
relies on the promoter of the potassium uptake system operon
(Pkdp), which responds to potassium cation concentrations in the
medium. A workflow for genome-wide mapping of transcription
factors from Hb. salinarum has also been reported (Wilbanks
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FIGURE 2 | A schematic illustration of the reactions catalyzed by

(a) orotate phosphoribosyltransferase (pyrE gene product), (b) orotidine-

5′-monophosphate decarboxylase (pyrF gene product), and (c) uracil

phosphoribosyltransferase (upp gene product). The conversion from
5-fluoroorotic acid (5-FOA) to 5-fluorouridine 5′-phosphate and 5-fluorouracil
is also shown.

et al., 2012). Target genes such as those encoding the general
transcription factor TfbD and the specific transcription fac-
tor Bat were modified to incorporate a hemagglutinin tag at
the C-termini of the proteins, and the epitopes were used for
chromatin immunoprecipitation coupled with high-throughput
sequencing. Another study has examined the regulation of bacte-
riorhodopsin, particularly the relationship between bacterioopsin
and retinal biosynthesis (Dummer et al., 2011). The results sug-
gest that bacterioopsin accumulation promotes the production
of its cofactor retinal by inhibiting bacterioruberin biosynthesis.
In Hf. mediterranei, a genetic approach was applied in exam-
ining the functions of polyhydroxyalkanoate granule-associated
proteins (Cai et al., 2012). The PhaP protein in this organ-
ism was found to act as the predominant structure protein on
the PHA granules. In Hf. volcanii, a conserved archaeal gene
with sequence similarity with a tRNA 3′-processing endonucle-
ase has been studied biochemically and genetically, suggesting
that in contrary to its annotation, the gene is involved in mem-
brane transport (Fischer et al., 2012). Another study identifies
the enzyme responsible for reduction of the ω-position isoprene
of dolichol phosphate in Hf. volcanii (Naparstek et al., 2012).

Single-stranded DNA-binding proteins have also been genetically
examined. Five genes that encode proteins homologous to repli-
cation protein A (RPA) from Hf. volcanii (RpaA1A2, RpaB1B2,
RpaC) were analyzed, revealing the essentiality of RpaC and the
functional relationship among RPA proteins in this archaeon
(Skowyra and Macneill, 2012). A metabolic study identified
the enzymes responsible for fructose metabolism. Hf. volcanii
adopts a bacteria-like phosphoenolpyruvate-dependent phos-
photransferase system that generates fructose 1-phosphate, which
is further converted to trioses via fructose-1-phosphate kinase
and a Class II fructose-1,6-bisphosphate aldolase (Pickl et al.,
2012).

METHANOGENS
Genetic systems have been developed in a number of species in
the genera Methanococcus and Methanosarcina. DNA-mediated
transformation was first demonstrated in Methanococcus voltae
(Bertani and Baresi, 1987). Most systems in the methanogens
rely on antibiotic resistance for selection. Puromycin and
the puromycin transacetylase (pac) gene from the bacterium
Streptomyces alboniger (Gernhardt et al., 1990) and its derivatives
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are often used as the antibiotic and the resistance marker gene,
respectively, in methanogen genetics. Initial integration shuttle
vectors using the pac gene were constructed and successfully
used to transform M. voltae (Gernhardt et al., 1990; Patel et al.,
1994) and Methanococcus maripaludis (Sandbeck and Leigh, 1991;
Tumbula et al., 1994). Selection based on histidine auxotro-
phy/prototrophy using the hisA gene as a marker has also been
demonstrated (Pfeifer et al., 1998). Counterselection methods
have been developed (Moore and Leigh, 2005) based on the obser-
vation that M. maripaludis cells displaying growth were sensitive
to the base analogs 6-azauracil and 8-azahypoxanthine (Bowen
and Whitman, 1987; Ladapo and Whitman, 1990; Bowen et al.,
1996; Kim and Whitman, 1999). Many of the principles and tech-
niques developed in one methanogen have been shown to be
applicable in other methanogen species.

In the Methanosarcina, efficient introduction of DNA is pos-
sible using liposome-mediated transformation (Metcalf et al.,
1997). Replicating shuttle vectors were developed for Methano-
sarcina acetivorans and were also found to be applicable in a wide
range of other Methanosarcina species including Methanosarcina
barkeri, Methanosarcina mazei, and Methanosarcina thermophila.
Gene disruption using the pac gene has been demonstrated
in M. acetivorans and M. mazei. Markerless genetic exchange
using the hypoxanthine phosphoribosyltransferase gene (hpt) was
developed in M. acetivorans and also utilized in M. barkeri, with
counterselection performed based on 8-aza-2,6-diaminopurine
(8ADP) resistance (Pritchett et al., 2004; Rother and Metcalf,
2005; Welander and Metcalf, 2008; Buan et al., 2011). An in vivo
transposon mutagenesis system has also been developed using a
modified mariner-family transposable element originally derived
from insect (Zhang et al., 2000).

APPLICATION OF THE GENETIC SYSTEMS IN METHANOGENS
Using these genetic systems, a number of genes in M. mazei Gö1,
including those encoding the GlnK1 protein and archaeal his-
tone, have been disrupted. glnK1 disruption revealed that GlnK1 is
not directly involved in the transcriptional regulation of nitrogen
assimilation/fixation genes, but does play a role in growth under
nitrogen limiting conditions (Ehlers et al., 2005). Disruption of
the histone gene was not lethal, but resulted in impaired growth
on methanol and trimethylamine, and increased sensitivity to UV
light. A broad genome-wide defect in gene transcription was also
observed (Weidenbach et al., 2008). In M. acetivorans, the pylT
gene encoding the tRNA for pyrrolysine was disrupted. The dis-
ruptant did not show growth defects when grown on methanol
or acetate, but could not grow on methylamines, consistent with
the fact that the methyltransferases from this organism that
are involved in methylamine-dependent methanogenesis possess
pyrrolysine (Mahapatra et al., 2006). A genetic approach was also
used to distinguish the physiological roles of two gene clusters
on the M. acetivorans genome encoding an archaeal A1A0-ATPase
and a bacterial F1F0-ATPase. A mutant disrupted of the latter gene
cluster did not display growth defects, and intracellular ATP lev-
els were identical to those in wild-type cells, indicating that the
F1F0-ATPase is dispensible for growth in M. acetivorans (Saum
et al., 2009). The four studies introduced here have all utilized the
pac gene for selection of the gene disruptants.

For M. voltae, protoplasts can efficiently be transformed by
natural or electroporation-mediated uptake of exogenous DNA
(Patel et al., 1994). Liposome-mediated transformation has also
been applied (Heinicke et al., 2004; Chaban et al., 2009). Gene
disruption has been demonstrated on the selenium-free Vhc and
Frc hydrogenase genes in order to examine the individual roles
of four hydrogenase gene clusters (Berghöfer and Klein, 1995).
Four genes encoding the chromatin proteins histone (hstA, hstB),
histone-like protein (hmvA), and an Alba homolog (AlbA) have
been individually disrupted, revealing their involvement in reg-
ulation of gene expression (Heinicke et al., 2004). A genetic
approach has also been taken to study post-translational protein
modification. For example, two genes designated as aglC and aglK
were shown to be necessary for proper N-glycosylation in this
organism. It was suggested that the two genes are involved in the
biosynthesis or transfer of diacetylated glucuronic acid within the
glycan structure (Chaban et al., 2009).

In M. maripaludis, integration shuttle vectors and methods
for auxotroph isolation (see above), and transposon insertion
mutagenesis (Blank et al., 1995) and random insertional mutage-
nesis (Kim and Whitman, 1999) were developed at an early stage
(Whitman et al., 1997; Tumbula and Whitman, 1999; Leigh et al.,
2011). In addition to puromycin, M. maripaludis was found to be
sensitive to neomycin, and the use of aminoglycoside phospho-
transferase genes APH3′I and APH3′II as selectable markers has
been demonstrated (Argyle et al., 1996). Transformation meth-
ods have been optimized and are performed via a polyethylene
glycol-mediated method (Tumbula et al., 1994). A shuttle vector
that replicates in both E. coli and M. maripaludis was constructed
based on the plasmid pURB500 from this archaeon (Tumbula
et al., 1997). Using the histone promoter from M. voltae, vec-
tors for overexpression of endogenous and heterologous genes
have been developed (Gardner and Whitman, 1999). A genetic
approach has been taken to examine a wide variety of biologi-
cal functions in M. maripaludis. The mechanisms and regulation
of nitrogen fixation has been extensively examined. Repressor
binding sites of nifH, encoding the nitrogenase reductase com-
ponent of the nitrogenase complex, have been identified using
a nifH promoter-lacZ in vivo reporter system (Cohen-Kupiec
et al., 1997). A similar sequence was found upstream of the
glutamine synthetase gene (glnA) and shown to function in
repression. The repressor protein, NrpR, was identified, and
its gene disruption, along with in vitro binding experiments,
clearly demonstrated its function as a DNA-binding transcrip-
tional repressor that regulates genes involved in nitrogen assim-
ilation (Lie and Leigh, 2003). Further studies have revealed
how NrpR binds to specific operator sequences and how it is
released from DNA by 2-oxoglutarate binding (Lie et al., 2005,
2010). Furthermore, mechanisms governing posttranslation reg-
ulation, namely ammonia switchoff, of nitrogenase have also
been examined in detail (Kessler and Leigh, 1999; Kessler et al.,
2001; Dodsworth and Leigh, 2006). Genetics have also been
utilized to study the energy-conserving hydrogenases in M. mari-
paludis. Gene disruption of one of the two membrane-bound
hydrogenase complexes, Ehb, has revealed that the complex is
involved in anabolic CO2 assimilation (Porat et al., 2006). Results
of phenotypic analyses suggested that Ehb donates the electrons
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necessary for aromatic amino acid biosynthesis from aryl acids
via the function of indolepyruvate oxidoreductase (Major et al.,
2010). In addition to studies in M. voltae, N-glycosylation has
also been examined in M. maripaludis. A putative acetyltrans-
ferase gene was subjected to gene disruption, and the mutant
cells were found to produce flagellin proteins with sizes cor-
responding to proteins with defects in glycosylation. In addi-
tion to flagellar filament assembly, defects in pilus anchoring
were also observed, indicating that flagellum and pilus assembly
are linked in their post-translational modification mechanisms
(Vandyke et al., 2008). Further studies have identified multiple
genes that are necessary for piliation and have also led to the
identification of the protein that corresponds to the major pilin
monomer, a protein whose gene resides outside of the gene clus-
ter that had been predicted to harbor most of the genes related
to pilus formation (Ng et al., 2011). A number of recent studies
have examined mechanisms of selenocysteine (Sec) biosynthesis
in various strains of M. maripaludis (Stock et al., 2010, 2011;
Hohn et al., 2011). A selenophosphate synthetase homolog (selD)
in M. maripaludis S2 could not be deleted unless a bacterial
selenophosphate synthetase gene was present in trans, whereas
disruption of the corresponding gene in M. maripaludis JJ was
possible. Further genetic examination on the latter strain indi-
cated that selenophosphate is the selenium donor in this strain
(Stock et al., 2010). In another strain M. maripaludis Mm900,
which is related to S2, selD disruption was possible. Whereas
the ability to grow on formate was abolished, hydrogenotrophic
growth was unaffected (Hohn et al., 2011). Interestingly, dis-
ruption of genes encoding phosphoseryl-tRNASec kinase and
phosphoseryl-tRNA:Sec-tRNA synthase was possible only when
either selD was disrupted or if selenium-free hydrogenases were
expressed. Detailed biochemical characterization of the gene dis-
ruption strains suggests a complex regulatory mechanism of Sec
biosynthesis in M. maripaludis.

SULFOLOBUS
There are many natural genetic elements related to the crenar-
chaeal genus Sulfolobus, including viruses, cryptic plasmids, and
transposons (Zillig et al., 1996, 1998; Prangishvili et al., 1998;
Stedman et al., 2000). Several transformation systems based on
these natural elements were developed in Sulfolobus solfatari-
cus and Sulfolobus acidocaldarius at an early stage, followed by
the establishment of gene manipulation systems based on use-
ful selectable markers (Aagaard et al., 1996; Elferink et al., 1996;
Berkner and Lipps, 2008; Wagner et al., 2009; Leigh et al., 2011).
Transformation is now mainly carried out by electroporation.
In S. solfataricus, selection is possible by using a strain with a
deletion in lacS, which encodes a β-galactosidase. By using an
intact lacS as a marker gene, transformants can be selected by
their ability to grow in a minimal medium containing lactose
(Worthington et al., 2003). LacS+ colonies can be further iden-
tified by blue/white detection using X-Gal (Schelert et al., 2004).
Selection based on resistance toward hygromycin B has also been
reported using a gene encoding a thermostabilized hygromycin
phosphotransferase from E. coli (Cannio et al., 1998). Another
system is based on resistance toward butanol or benzyl alcohol
using an alcohol dehydrogenase gene from S. solfataricus (Aravalli

and Garrett, 1997). In S. acidocaldarius and Sulfolobus islandi-
cus, host strains with defects in pyrE, pyrF or both are utilized,
with intact pyrE and pyrF genes as selection markers (Deng et al.,
2009; She et al., 2009; Wagner et al., 2009). This strategy has also
been utilized in S. solfataricus. Based on these selection strategies,
a wide range of Sulfolobus–E. coli shuttle vectors have been devel-
oped and are described in detail in the literature (Aravalli and
Garrett, 1997; Stedman et al., 1999; Jonuscheit et al., 2003; Albers
et al., 2006; Aucelli et al., 2006; Berkner et al., 2007; Berkner and
Lipps, 2008).

APPLICATION OF THE GENETIC SYSTEMS IN SULFOLOBUS
Sulfolobus solfataricus
Gene disruption based on lacS selection has been utilized to
examine a wide range of functions in S. solfataricus. Conditions
for gene disruption have been carefully examined and optimized
(Albers and Driessen, 2007). Genetic and biochemical examina-
tion has been performed on genes involved in mercury resistance,
demonstrating that the merR gene product represses transcrip-
tion of an operon that includes the mercuric reductase gene merA
(Schelert et al., 2004, 2006). Another study demonstrated that the
copR gene product is a transcriptional activator of genes encoding
copper-transporting ATPase and copper-binding protein and is
necessary for copper tolerance of S. solfataricus (Villafane et al.,
2011). A Lrp-like regulator, Ss-LrpB, has been shown to act
as an activator of genes including the pyruvate:ferredoxin oxi-
doreductase gene (Peeters et al., 2009). A genetic study has also
been performed on a heat-shock-inducible ribonucleolytic toxin,
VapC6, and its antitoxin VapB6. Analysis of disruption strains of
these genes has identified possible targets of the ribonucleolytic
activity (Maezato et al., 2011). Genetic manipulation is now also
possible for the virus Sulfolobus turreted icosahedral virus (STIV)
(Snyder et al., 2011; Wirth et al., 2011). An infectious clone of
STIV was constructed, and gene disruptions of individual open
reading frames and their effects on viral replication have been
demonstrated.

Sulfolobus acidocaldarius
In Sulfolobus acidocaldarius, a series of small multicopy, non-
integrative shuttle vectors have been developed and their use in
overexpression of genes has been demonstrated (Berkner et al.,
2007). Promoters for both constitutive and inducible gene expres-
sion have been examined. As for constitutive gene expression, the
sac7d promoter led to the highest levels of β-galactosidase activ-
ity when various promoters were fused upstream of lacS. The
mal promoter was the most suitable for induction, displaying a
17-fold increase upon addition of maltose or dextrin (Berkner
et al., 2010). In terms of gene disruption, pyrE-deficient host cells
have been used with an intact, heterologous pyrE from S. solfa-
taricus to disrupt putative genes involved in UV photoproduct
repair (Sakofsky et al., 2011). It should be noted that in this
study, the lengths of the homologous regions flanking the selec-
tion marker were approximately 50 bp, introduced by PCR in
the primer sequences, which may allow high-throughput gene
disruption in a genome-wide scale. Another study clarified two
in vivo activities of Y-family DNA polymerase in S. acidocaldarius
(Sakofsky et al., 2012). One activity promotes slipped strand
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events within simple repetitive sequences and the other promotes
insertion of C opposite a potentially miscoding form of G, which
may contribute in preventing G:C to T:A transversions. Genetics
have contributed in the identification of sulfolobicins, antimicro-
bial proteins produced by Sulfolobus species (Ellen et al., 2011).
Antimicrobial tests, protein separation, followed by MS led to the
identification of candidate genes, and their disruption confirmed
that two genes encoding secretion proteins corresponded to the
sulfolobicin. Several studies report a genetic examination of genes
involved in cell surface structure of S. acidocaldarius. Deletion of
individual flagellin genes indicated that all genes were essential
for flagellin assembly and that assembly proceeds through hier-
archical protein interaction (Lassak et al., 2012). Another study
has led to the identification of sulfoquinovose synthase, which
is necessary for the synthesis of sulfoquinovose, a component of
the N-linked glycans on the surface-layer glycoprotein of S. aci-
docaldarius (Meyer et al., 2011). Gene disruption confirmed this
activity and also demonstrated the importance of N-glycosylation
under conditions of increased salt concentrations. A complete
genetic analysis of the three type IV pili-like structures in S. aci-
docaldarius, the flagellum, the UV-induced pili, and the adhesive
pili, has also been reported (Henche et al., 2012). The effects
of single, double, and triple deletion of the three structures on
cell surface structure, surface attachment capability, motility, and
biofilm formation were examined. It should be noted that this
study utilizes cells expressing a codon adjusted, heat stable green
fluorescent protein eCGP123. eCGP123 was used to distinguish
strains within a biofilm generated from a mixture of strains with
different gene deletions. Another study genetically demonstrates
that the UV-inducible type IV pili are involved in intercellular,
UV-inducible DNA exchange, a valuable mechanism to maintain
chromosome integrity (Ajon et al., 2011).

Sulfolobus islandicus
In Sulfolobus islandicus, several genetic studies have been reported
focusing on genes involved in DNA replication and maintenance
of DNA topology. In one study, the topoisomerase III gene of
S. islandicus was disrupted (Li et al., 2011a). Cells were viable but
displayed various defects in chromosome distribution, cell size,
and gene transcription. The results suggested that this enzyme
plays an important role in chromosome segregation and main-
tenance of DNA topology for gene transcription. Another study
addressed whether any of the three proliferating cell nuclear anti-
gen (PCNA) on the S. islandicus genome are dispensable or not
(Zhang et al., 2010). Disruption strains could not be isolated
for any of the genes, and an improved knockout system has
been described in order to carefully examine the essentiality of
each gene. A recent study reported the development of a new
gene disruption system in S. islandicus that is based on antibiotic
resistance toward simvastatin (Zhang and Whitaker, 2012). The
selectable marker gene was a construct promoting overexpression
of the HMG-CoA reductase gene.

THERMOCOCCALES
Genetic systems have mainly been developed in Thermococcus
kodakarensis and Pyrococcus furiosus. Gene disruption has also
been demonstrated in Thermococcus onnurineus (Kim et al.,

2010). Shuttle vectors are available for Pyrococcus abyssi (Lucas
et al., 2002). In T. kodakarensis, gene disruption was accom-
plished by using host strains deleted of the pyrF and/or trpE
genes, and selection with the corresponding intact marker gene
(Sato et al., 2003, 2005). A system has also been developed based
on the simvastatin/HMG-CoA reductase overexpression system
(Matsumi et al., 2007). An improved system utilizing host cells
that exhibit agmatine auxotrophy due to deletion of the arginine
decarboxylase gene (Fukuda et al., 2008) has also been developed
(Santangelo et al., 2010). This system allows selection in complex
media and not only accelerates the gene disruption procedure,
but should also contribute to the isolation of mutant cells that
require nutrient-rich conditions for cell growth. Counterselection
is performed with 5-FOA in the pyrF system (Sato et al., 2005),
and counterselection in nutrient-rich medium is possible using
a hypoxanthine–guanine phosphoribosyltransferase gene which,
when present, results in 6-methylpurine sensitivity (Santangelo
et al., 2010). In Pyrococcus furiosus, two transformation systems
based on shuttle vectors that replicate in P. furiosus and E. coli have
been developed. One is based on the shuttle vector system pYS2
from P. abyssi. The selectable marker is an HMG-CoA reduc-
tase overexpression cassette, and selection is based on resistance
toward simvastatin (Waege et al., 2010). The other system is based
on the P. furiosus chromosomal origin and utilizes the pyrF gene
as a selectable marker in combination with the P. furiosus COM
strain (�pyrF). The plasmids existed in a single copy in P. furio-
sus, and were stable without selective pressure for more than
100 generations (Farkas et al., 2011). The pyrF deletion strain
P. furiosus COM1 can also be used as an efficient host for gene
disruption (Lipscomb et al., 2011). This strain displays natural
competence and a remarkable efficiency in DNA uptake, allowing
marker replacement using linear as well as circular DNA. Using
pyrF as the selectable marker, construction of markerless dele-
tion mutants via counterselection by 5-FOA resistance has been
demonstrated (Lipscomb et al., 2011). In a recent report, the lim-
its of recombination efficiency of P. furiosus COM1 have been
examined. It was found that marker replacement was possible
with as few as 40 nucleotides of flanking homology to the tar-
get region (Farkas et al., 2012), which will surely facilitate genetic
studies in this organism. Markerless deletion was utilized to dis-
rupt the trpAB genes, encoding the two subunits of tryptophan
synthase. The disruptant displayed tight tryptophan auxotrophy,
and the wild-type trpAB genes could be used as a selectable
marker in this strain (Farkas et al., 2012).

APPLICATION OF THE GENETIC SYSTEMS IN THERMOCOCCALES
Thermococcus kodakarensis and Thermococcus onnurineus
In T. kodakarensis, a wide range of genes has been disrupted in
order to understand their physiological functions such as those
involved in transcription and its regulation, DNA replication,
and metabolism. The functions of individual transcription
factors such as TFB1/2 (Santangelo et al., 2007), RNA poly-
merase subunits E and F (Hirata et al., 2008), the switch 3
loop of subunit B (Santangelo and Reeve, 2010) have been
examined, along with sequences that can promote transcription
termination (Santangelo et al., 2009). Deletion of transcription
regulator genes, followed by transcriptome analysis, has led to
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the identification of regulons and the function of these regulators
(Kanai et al., 2007, 2010). In terms of DNA replication, a large
number of proteins expected to be involved in DNA replication
were His-tagged. Protein complexes were isolated and their
components identified, revealing the various protein networks
involved in DNA replication (Li et al., 2010). This led to the
discovery of a novel GINS-associated nuclease, GAN (Li et al.,
2011b). In other studies, genetic analyses of three mcm genes
on the genome have revealed the essentiality/dispensability
of the individual genes (Ishino et al., 2011; Pan et al., 2011).
Disruption of the reverse gyrase gene indicated that the enzyme
provides an advantage to cells when grown at temperatures of
80◦C or higher (Atomi et al., 2004). In terms of metabolism,
genes examined include those involved in glycolysis (Imanaka
et al., 2006; Matsubara et al., 2011), gluconeogenesis (Sato
et al., 2004), pentose metabolism (Orita et al., 2006), as well
as coenzyme A (Yokooji et al., 2009), polyamine (Morimoto
et al., 2010), and compatible solute biosynthesis (Borges et al.,
2010). Gene disruption of three putative hydrogenase gene
clusters and phenotypic analyses indicated that the cytosolic

hydrogenase Hyh and the membrane-bound oxidoreductase
complexes Mbh and Mbx are involved in H2 consumption,
H2 generation, and H2S generation, respectively (Kanai et al.,
2011). Disruption of various pathways related to hydrogen
production/consumption has clarified the reductant flux in
T. kodakarensis and has demonstrated strategies to elevate
hydrogen production in this organism (Santangelo et al., 2011).
T. kodakarensis harbors two pairs of genes encoding chaperonins
and prefoldins, and gene disruption has been performed to
distinguish the functions of the individual proteins at different
temperatures (Danno et al., 2008; Fujiwara et al., 2008; Gao
et al., 2012). One of multiple homologs of NAD(P)H oxidase
has been disrupted to examine its relationship with the oxygen
sensitivity of this anaerobic archaeon (Kobori et al., 2012).
Systems for gene overexpression, tagging, and protein secretion
have been established (Santangelo et al., 2008; Mueller et al.,
2009; Yokooji et al., 2009; Takemasa et al., 2011), in many cases
relying on the selection/counterselection strategy utilizing the
pyrF marker gene (Figure 3). In T. onnurineus, gene disruption
has been demonstrated using the simvastatin/HMG-CoA

FIGURE 3 | Various applications using selection/counterselection marker

genes. (A) Use in markerless gene disruption; (B) use in promoter exchange;
(C) use in reporter gene integration; and (D) use in signal peptide (SP) or tag

integration. The use of pyrF is shown, but other selection/counterselection
marker genes can be applied in a similar manner in a wide range of
Archaea.

Frontiers in Microbiology | Evolutionary and Genomic Microbiology October 2012 | Volume 3 | Article 337 | 8

http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive


Atomi et al. Genetics in the Archaea

reductase overexpression system. Gene disruption led to the iden-
tification of the gene cluster encoding formate hydrogen lyase,
cation/proton antiporter and formate transporter, which were
responsible for the growth of this organism on formate (Kim
et al., 2010).

Pyrococcus furiosus
Using the shuttle vector pYS3, the RNA polymerase subunit D
gene with a HisTag sequence was expressed with an inducible
promoter deriving from the fructose-1,6-bisphosphatase gene
from P. furiosus. This allowed a simple two-step purification of
the thermostable RNA polymerase from this organism (Waege
et al., 2010). In the process of developing the shuttle vector
system based on the P. furiosus chromosomal origin, the mini-
mum replication origin sequence required for autonomous plas-
mid replication in this organism has been identified (Farkas
et al., 2011). Interestingly, the cdc6/orc1 gene adjacent to oriC
was not required in cis for replication of the shuttle vec-
tor in P. furiosus. The gene disruption system developed with
P. furiosus COM1 has been successfully applied in disrupt-
ing individual or double gene disruptions of two cytoplas-
mic hydrogenase genes (Lipscomb et al., 2011). The system
was further applied for detailed genetic studies on proteins
related to elemental sulfur metabolism, membrane-bound oxi-
doreductase complex (Mbx), cytoplasmic coenzyme A-dependent
NADPH:sulfur oxidoreductase (Nsr), and sulfur-induced protein
A (SipA) (Bridger et al., 2011). The mbx disruptant displayed
growth defects in the presence of sulfur, and little, if any, sul-
fide generation was observed, demonstrating that Mbx plays a
critical role in elemental sulfur reduction and energy conser-
vation in P. furiosus. Gene manipulation has also been used to
overexpress the cytoplasmic [NiFe]-hydrogenase SHI. The pro-
moter of the PF1399 gene, which encodes the S-layer protein,
was fused upstream of the four-gene operon (PF0891–PF0894)
encoding SHI. In the overexpression strain, a 20-fold higher
SHI transcript level was observed, and moreover, a 100-fold

higher amount of hydrogenase was obtained when compared
with the highest homologous [NiFe]-hydrogenase system previ-
ously reported (Chandrayan et al., 2012). In another study, the
lactate dehydrogenase gene from the moderately thermophilic
Caldicellulosiruptor bescii was introduced into P. furiosus under
the control of the cold-induced protein A (cipA, PF0190) pro-
moter. Transcript levels of cipA in P. furiosus are 26-fold higher
in cells grown at 72◦C compared to those grown at 98◦C. This
recombinant strain, when grown at 98◦C, ferments sugar to pro-
duce acetate and hydrogen as end products, as is the case of
wild-type P. furiosus. When grown at 72◦C, however, the strain
generates lactate at concentrations up to 3 mM, demonstrating a
temperature-dependent regulation of metabolism (Basen et al.,
2012).

FUTURE PERSPECTIVES
The genetic systems developed in the halophiles, methanogens,
Sulfolobus, and Thermococcales provide the tools to carry out
sophisticated genetic analyses in these organisms (Leigh et al.,
2011). With the abundance of genome sequence information,
functional genomics in these organisms is a realistic approach.
On the other hand, the Archaea comprise a diverse group of
organisms, and there are still many interesting organisms that
cannot be examined genetically. Genetics are limited to Sulfolobus
in the Crenarchaeota, and considering the wealth of genome
sequence information, the development of genetic systems in
Pyrobaculum and Thermoproteus would greatly promote research
in these genera. Genetic tools for Ignicoccus can be considered
crucial to understand its unique relationship with Nanoarchaeum
equitans. In the Euryarchaeota, the thermophilic/acidophilic
Thermoplasmatales and the sulfate-reducing Archaeoglobales are
major orders in which genetic tools are still not available. Another
major group is the (hyper)thermophilic methanogens. Although
much needs to be done, the variety of tools that have been devel-
oped will surely provide a basis to explore the possibilities of
developing genetic systems in other archaea.
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