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Abstract

Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and
exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation
is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell
subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine
balance to regulate appropriate adaptive immune responses.
In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci
development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory
milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes.
Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment,
and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis.
We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression,
metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance
among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic
function and relationship to metastasis in lung cancer.

Keywords: Th17, IL-17, Regulatory T cell, Treg, Lung cancer, Inflammation, Cancer immunology, Tumor
microenvironment, Tumorigenesis, Prognosis

Background
Lung cancer
Lung cancer is the leading cause of cancer-related deaths
worldwide, with a dismal five-year survival rate of 17 %
[1, 2]. There are two major types of lung cancer: small-
cell lung cancer (SCLC), which accounts for ~15 % of
lung cancer patients, and non-small-cell lung cancer
(NSCLC), comprising the remaining ~85 % [3] (Fig. 1).
The three major histological subtypes of NSCLC are
adenocarcinoma (AC), squamous cell carcinoma (SqCC)

and large cell carcinoma (LCC) (Fig. 1). AC is the most
common histological subtype of lung cancer, accounting
for approximately half of NSCLC cases (43.3 %; SEER
Cancer Statistics Review, 1975–2012) and typically arises
in the glandular epithelium of the lung periphery from
either bronchioalveolar stem cells, club (formerly Clara)
cells or type II pneumocytes [3–5] (Fig. 1). AC is also
the predominant subtype that arises in patients who
have never smoked [6]. By contrast, SqCC accounts for
approximately 30 % of NSCLC (22.6 %; SEER Cancer
Statistics Review, 1975–2012), develops primarily in the
central airways and segmental bronchi, and strongly asso-
ciates with a history of smoking [3, 5, 7] (Fig. 1). Regarding
SCLC, the cell of origin has yet to be defined, but has been
postulated to originate from differentiated neuroendocrine
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cell lineages, committed neuroendocrine progenitor cells
or non-neuroendocrine cells that acquire neuroendocrine
differentiation in the lung [8, 9] (Fig. 1).

Inflammation and lung cancer
Inflammation has been shown to promote cancer initi-
ation and progression [10]. Specifically, inflammatory
programs have been implicated in all aspects of cancer
development, including malignant transformation, cell
proliferation and survival, angiogenesis, invasion and
metastasis [11]. Studies have indicated a strong relation-
ship between lung cancer risk factors and alterations in
inflammatory cytokine levels, oxidative stress markers
and immune cell composition.

Lung cancer risk factors, inflammatory cytokines and
oxidative stress
Exposure to tobacco smoke is a principal risk factor as-
sociated with lung cancer — smokers display a 14-fold
increased risk of developing lung cancer compared to
never smokers [12]. Although lung cancer is often
viewed as a smoker’s disease, if lung cancer in never
smokers was considered as its own disease, it would
rank as the seventh most common cause of cancer

deaths worldwide and account for 300,000 deaths each
year [6]. Other factors known to influence lung cancer
risk include environmental carcinogens such as arsenic,
radon, asbestos, air pollution, viral infection and genetic
risk factors, including a family history of lung cancer
[6, 13–16]. Furthermore, individuals with inflammatory
lung disease, such as chronic obstructive pulmonary dis-
ease (COPD), have an elevated risk of developing lung
cancer [17].
Cigarette smoking is known to drive altered local and

systemic levels of inflammatory cytokines and reactive
oxygen species (ROS) in the development of smoking re-
lated lung cancers. For example, inflammatory markers,
including C-reactive protein (CRP), chemokine (C-C
motif ) ligand (CCL) 17, and CCL22, are elevated in the
serum of former or current smokers compared to never
smokers [18]. Furthermore, elevated levels of circulating
inflammatory molecules CRP, CCL22, CCL17 and also
chemokine (C-X-C motif ) ligand (CXCL) 5, CXCL7,
CXCL9, CXCL13 are associated with increased lung can-
cer risk in both current and former smokers [19].
Smokers with lung cancer have increased serum CCL20
levels, an inflammatory molecule shown to promote
tumor cell proliferation and migration, that has also

Fig. 1 Percent incidence and typical histologies of lung cancer subtypes. Percent incidences shown are specific to American populations [5].
Locations of lung cancers depicted are generalized sites typical of lung tumorigenesis for subtypes. Lung cancers are classified into two major
types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). All forms of pulmonary carcinomas may be distributed throughout
the lung but some locations are more typical for certain classes. SCLC primarily originates from central airways, and neuroendocrine cells are
thought to be the precursors of this tumor type. As a heterogeneous disease, NSCLC is further subdivided into three major subtypes: squamous
cell carcinoma (SqCC), large cell carcinoma (LCC) and adenocarcinoma (AC). Percentage distributions of NSCLC histologies total to NSCLC percentage
(83.4 %), where remaining histogies (non-small cell carcinoma and other specified carcinomas) are not depicted. SqCC predominately originates from
central airways and segmental bronchi and are thought to arise from basal cells. LCC are classified as tumors without general features associated with
SCLC, SqCC and AC and may arise anywhere in the lung. The most common type of NSCLC is AC and is thought to principally arise from
type II pneumocytes and club cells
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been significantly correlated with advanced disease and
poor prognosis in lung cancer [20]. Surfactant protein D
(SFTPD) is an important regulator of innate immunity,
inflammation and oxidative stress secreted by type II
pneumocytes in the airway; decreased expression of this
protein in bronchoalveolar lavage (BAL) of smokers cor-
relates with progression of bronchial dysplasia [21]. In
addition to inflammatory cytokines and chemokines,
ROS is also a major mediator of smoke induced damage,
chronic inflammation and cancer development by pro-
moting oxidative DNA damage and genomic instability
[22]. Cigarette smoke is an enriched source of oxidants,
which can enhance ROS generation by phagocytes to
promote oxidative stress [23]. Increased recruitment of
these phagocytes, including neutrophils and macrophages,
is prominent in the lungs of smokers and patients with
COPD compared to non-smokers [23]. Alternative oxida-
tive stress markers, like extracellular superoxide dismutase
(ECSOD), are elevated in the sputum of smokers [23, 24].
Taken together, alterations in cytokine and oxidative stress
profiles of smokers indicate the presence of an important
molecular link between smoking and lung inflammation.
In addition to smoking, exposure to airborne irritants

and environmental carcinogens has been shown to in-
duce lung inflammation. A well-documented example is
asbestos, which refers to six unique silicate mineral fi-
bers: chrysotile, amosite, crocidolite, tremolite, antho-
phyllite and actinolite. Inhaled asbestos fibers larger
than 20 μm are not efficiently phagocytosed and remain
in lung tissue, where they induce fibrosis, inflammation
and eventually, carcinogenesis [15, 25]. Most of the in-
flammation driven effects of asbestos exposure are a con-
sequence of increased ROS production [26]. The presence
of asbestos fibers induces a chronic inflammatory re-
sponse, which generates significant ROS that contributes
to subsequent DNA damage [26, 27]. Interestingly, differ-
ent classes of asbestos fibers can induce changes in cyto-
kines detectable in the serum, including cytokines
characteristic of a T helper 17 (Th17) immune response,
which will be discussed further below. In mice, intratra-
cheal exposure to chrysotile asbestos induces a pattern of
chronic inflammation associated with Th1 cytokines, while
amphibole asbestos exposure induces both a Th1 and
Th17 cytokine response [28]. Additionally, it has been
shown that tremolite and erionite (a fiber with similar
characteristics to amphibole asbestos) exposure caused
increased IL-17 in splenocyte cultures, and erionite expos-
ure induced elevated serum IL-17 levels in mice [29].
Finally, respiratory diseases involving chronic inflam-

mation are linked with lung cancer risk. Of note, pa-
tients with the inflammatory lung disease COPD have
up to a tenfold increase of lung cancer risk, and COPD
is linked to activation of pro-tumorigenic inflammatory
signaling pathways in immune cells [30]. Tumor and

immune cells can communicate through nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB)
and signal transducer and activator of transcription 3
(STAT3)-dependent cytokine production. Oncogenic
activation of STAT3 and NF-κB induces cytokine produc-
tion by tumor cells that can regulate immunosuppressive
and tumor-promoting functions of tumor infiltrating im-
mune cells via trans-activation of these same transcription
factors [31]. This molecular pathway is noted as a poten-
tial mechanism for COPD-related lung cancer develop-
ment [31–33]. Taken together, these studies highlight that
lung cancer risk is influenced by changes in systemic and
local inflammation. Moreover, altered compositions and
activities of immune cells modulate the tumor microenvir-
onment to promote lung cancer development.

Inflammatory cells and lung cancer
The biological process of inflammation relies on recruit-
ment of diverse immune cell types. The inflammatory re-
sponse depends on innate and adaptive immune cell
activities to maintain tissue homeostasis [34]. However,
immune cell infiltration is observed in tumors and can
also promote cancer development, progression and metas-
tasis [35] (Fig. 2). Immune cell composition in the tumor
microenvironment may contribute to immune evasion
and cancer development [36]. Innate and adaptive im-
mune cells, including macrophages, neutrophils, natural
killer (NK) cells and B cells, have been implicated in both
anti-tumor and pro-tumor activities [37–43]. Specifically,
the anti-tumor and pro-tumor roles of T cells in cancer
development are currently of great interest. Therapeutic
strategies targeting this adaptive immune cell type have
been a major focus of recent immunotherapy develop-
ment and applications, including for lung cancer
treatment [44, 45].
T cells play diverse roles in the immune response and

are highly relevant to lung cancer biology. CD8+ cyto-
toxic T lymphocytes (CTLs) facilitate immunosurveil-
lance by T cell receptor (TCR) recognition of antigens
bound to major histocompatibility complex (MHC)-I on
antigen presenting cells and when activated, produce
interferon gamma (IFN-γ), perforin and granzyme B that
contribute to tumor cell cytolysis [46]. In addition to
CD8+ CTLs, various CD4+ T cells, including regulatory
T (Treg) and T helper 17 (Th17) CD4+ T cell subsets
have emerged as key players across a variety of diseases
involving inflammation, including cancer. Both these
CD4+ T cell subsets facilitate a pro-tumor environment
through the promotion and maintenance of an immuno-
suppressive and pro-tumor inflammation environment
that could favor tumorigenesis, cancer progression and
metastasis. Treg and Th17 subsets are generally thought
to play opposing roles in regulating immunity, where cell
fate determineration arises from a balance of transcription
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factors governing CD4+ T cell differentiation and Treg and
Th17 cell generation [47]. For instance, mouse and human
studies show that expression of the transcription factor
forkhead box P3 (FoxP3) represses Th17 transcription fac-
tors retinoic acid receptor-related orphan receptor gamma
t (RORγt) and ROR alpha (RORα) to drive Treg differenti-
ation [48, 49]. Moreover, Th17 differentiation can occur
when pro-inflammatory cytokines, including IL-6, IL-21
and IL-23, inhibit FoxP3 expression and subsequent repres-
sion of RORγt [48, 50]. In addition to de novo generation
of Tregs from FoxP3− T cells, Tregs can also be generated
under homeostatic or pathological conditions via prolifera-
tion of thymus-derived FoxP3+ cells [51, 52]. Additionally,
a novel mechanism of Treg-dependent promotion of Th17
differentiation via IL-2 sequestration has been shown to
promote IL-17-driven inflammation and tumorigenesis in
colon cancer, highlighting the complex interplay between
these two cell types in the context of cancer [53].

Main text
Tregs and lung cancer
By maintaining tolerance toward innocuous antigens,
Tregs represent a vital component of the adaptive im-
mune system, which functions to prevent autoimmunity
and chronic inflammation [54, 55]. Tregs represent a
phenotypically diverse cell lineage classified according to
their site of differentiation, either in the thymus or at
extrathymic sites [56]. Although not definitive, these
cells are generally characterized as CD4+CD25high, and
express the master regulatory transcription factor FoxP3
[57]. Tregs can induce immunosuppression through
contact-dependent mechanisms such as the expression
of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
programmed cell death 1 (PD-1), programmed death-
ligand 1 (PD-L1), lymphocyte-activation protein 3 (LAG-3),
CD39/73 and neuropilin 1 (Nrp1), or through contact-
independent mechanisms, including the sequestration of

Fig. 2 Variable immune cell infiltration within pulmonary AC in patients. a Lepidic growth pattern showing wide expansion (star) of alveolar
interstitium by a diffuse population of mononuclear inflammatory cells, principally lymphocytes. Arrow indicates neoplastic cells. b A similar
tumor showing minimal interstitial expansion (star) with few infiltrating inflammatory cells. Arrow indicates neoplastic cells. c Another lepidic
growth region of AC showing focal expansion of the interstitium by lymphoid follicular hyperplasia (star). Arrow indicates neoplastic cells. d AC
with infiltrating acinar pattern showing a desmoplastic (fibroblastic scarring) reaction (star) with very few infiltrating lymphocytes. Arrow indicates
neoplastic cells. e AC with a papillary pattern demonstrating alveolar septae (arrow heads) with no fibrous expansion and no infiltration by
lymphocytes. Arrow indicates neoplastic cells. Original magnification for images 100x
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IL-2 and the production of the soluble immunosuppressive
molecules IL-10, TGF-β, adenosine, prostaglandin E2
(PGE2) or galectin-1 [52, 55, 58–61] (Fig. 3a). In carcino-
genesis, systemic expansion and intratumoral accumulation
of immunosuppressive Tregs is thought to disrupt anti-
tumor immunity, leading to the growth and metastasis of a
variety of malignancies, including lung, breast, prostate and
ovary [54, 56]. Certain cell surface molecules have been
shown to have stabilizing effects on the Treg cell

population: CD39 (ectonucleoside triphosphate dispho-
sphohydrolase 1; ENTPD1) has been shown to increase
stability of CD4+ FoxP3+ Tregs, contributing to their im-
munosuppressive function [62]. By suppressing anti-tumor
effector cells, Tregs have emerged as active contributors to
cancer progression [63, 64].
Tregs are implicated in the early stages of tumor de-

velopment. In murine models of mutant Kras-driven
AC, tumorigenesis was found to be Treg dependent,

Fig. 3 Potential roles of Tregs associated with lung cancer development. a Contact-dependent and contact-independent mechanisms of Tregs in
mediating tumorigenesis. All receptors shown are mouse specific. For humans, receptors shown are human-specific except for LAG3, CD73 and
Nrp1, which are non-human specific or where human specificity remains undetermined. b Immunosuppressive and pro-tumorigenic processes in
lung cancer development depend on quantitative relationships of Treg populations. Arrows indicate Treg-dependent processes, with red indicating
positive relationships and blue indicating negative Treg-dependent relationships
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with Kras transgenic mice deficient in FoxP3+ Tregs de-
veloping 75 % fewer lung tumors [65] (Fig. 3b). Tobacco
carcinogen exposure increased pulmonary FoxP3+ lym-
phocytes prior to tumor development, suggesting a po-
tential role for Tregs in the generation of a favorable
niche for the development of lung tumors driven by
Kras, mutations mainly found in smoker-related lung
cancers [65].
Tregs influence the tumor microenvironment during

the progression of lung cancers. Murine models of lung
AC have demonstrated that Tregs may inhibit CD8+ T
cell-mediated anti-tumor immunity (Fig. 3b), with the
depletion of Tregs resulting in tumor cell death and ele-
vated levels of granzyme A, granzyme B, perforin and
IFN-γ in infiltrating CD8+ T cells at early stages of
tumorigenesis [66]. Further, the development of SCLC
influences immunosuppressive activities of Tregs, where
SCLC cell lines were reported to induce Treg generation
from CD4+ T cells through the production of IL-15 [67]
(Fig. 3b). In lung tumors, Tregs are also associated with
expression of angiogenic and metastatic potentiator
cyclooxygenase-2 (COX2), where elevated numbers of
intratumoral FoxP3+ lymphocytes were positively corre-
lated with high intratumoral expression of COX2, and
can be induced by the tobacco carcinogen nicotine-
derived nitrosamine ketone (NNK) in mouse lungs
[68, 69] (Fig. 3b).
Emerging evidence suggests that Tregs promote me-

tastasis and metastatic tumor foci development [52]. A
clinical study of NSCLC observed that Treg levels in
peripheral blood increased with stage and were highest
in patients with metastatic tumors [70]. It was also re-
ported that Treg levels were elevated in metastatic
lymph nodes compared to nonmetastatic lymph nodes
in patients with AC [71, 72]. Mouse models of Lewis
lung carcinoma reveal that Tregs inhibit NK cell-
mediated cytotoxicity in a TGF-β-dependent manner,
and that depletion of Tregs contributes to enhanced NK
cell antimetastatic activities [73] (Fig. 3b). Prognostically,
the relative accumulation of Tregs in NSCLC tumors,
and peripheral blood of SCLC patients (in relation to ef-
fector T cell populations) has been linked to increased
risk of recurrence, and a high proportion of FoxP3+ lym-
phocytes in SCLC lung tumor biopsies correlates with
poor survival [67, 68, 74, 75]. Another study in NSCLC
identified elevated levels of intratumoral FoxP3+ lym-
phocytes were associated with reduced recurrence-free
survival [68].
Taken together, these findings underscore the rele-

vance of Tregs in promoting lung cancer progression
and metastasis. In a clinical setting, targeting the im-
mune checkpoint molecules CTLA-4 and PD-1 have re-
cently received much attention in a variety of cancer
types including lung cancers [76–79]. Ligation of these

receptors leads to inhibition of T cell activation, particu-
larly that of effector CD8+ T cells. The anti-CTLA-4 im-
munotherapeutic agent ipilimumab has demonstrated
promising results in improving SCLC and NSCLC pa-
tient outcomes, while nivolumab (anti-PD-1 therapy) has
been approved by the Food and Drug Administration
(FDA) for the treatment of advanced squamous and
non-squamous NSCLC [76–80]. However, the response
rate to nivolumab was only 20 % in lung SqCC patients,
and determining clinical biomarkers for treatment strati-
fication for these available immunotherapies is a major
focus [78, 81]. Currently, clinical biomarkers are limited
for these treatments, as patients with little to no expres-
sion of these molecules in their lung tumors can still
have beneficial therapeutic responses. For instance, pa-
tients harboring tumors with negative expression of the
PD-1 ligand, PD-L1, can also benefit from anti-PD1/PD-
L1 therapies, suggesting that clinical use of PD-L1 posi-
tivity as selection criteria could exclude patients who
could potentially benefit from these treatments [61].
Other factors are at play and the molecular mechanisms
underlying Treg recruitment and their immunosuppres-
sive functions in the lung tumor microenvironment
require further study to improve patient therapy and
outcomes.

Th17 cells and lung cancer
Th17 cells are a group of CD4+ T helper cells that are
phenotypically distinct from Th1 and Th2 cells, and
have been characterized in many inflammatory lung dis-
eases, including COPD [82–89]. Th17 cells express the
transcription factors RORγt/RORC2 (mouse/human)
and RORα, which drive Th17 differentiation and pro-
duce pro-inflammatory cytokines, including IL-17A, that
modulate the tumor microenvironment [90, 91] (Fig. 4).
The IL-17 cytokine family contributes to inflammation,
cytokine and chemokine production, neutrophil recruit-
ment in the context of lung inflammation and infection,
and lung antitumor immunity [92, 93] (Fig. 4). Alter-
ations to IL-17 and its signaling pathways are relevant to
lung cancer development with IL-17 polymorphisms and
epigenetic changes to the IL-17 signaling pathway cor-
relating with increased predisposition to lung cancers
[89, 94]. Thus, Th17 cells are an integral component of
the inflammatory milieu in the tumor microenviron-
ment, and may be causally involved in promoting dis-
tinct lung tumor phenotypes.
The IL-17 family of cytokines is comprised of six

members: IL-17A (also known as IL-17), IL-17B, IL-17C,
IL-17D, IL-17E (also called IL-25) and IL-17 F [93, 95].
Th17 cells produce IL-17A and IL-17 F [93, 96]. Serum
IL-17 levels strongly associate with lung cancer develop-
ment. Serum IL-17 levels were found to be significantly
higher in NSCLC compared to subjects without cancer,
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which could potentially offer an additional diagnostic
marker for NSCLC [97]. IL-17 cytokines contribute to
inflammation by facilitating pro-inflammatory cytokine
and chemokine induction. Exogenous treatment of
mouse embryonic fibroblasts (MEFs) with either IL-17A
or IL-17 F induced greater expression of IL-6, CXCL1,
CCL2 and CCL7. Elevated expression of chemokines
CCL7, CCL22, CCL20, CCL11 and chemokine (C-X3-C
motif ) ligand 1 (CX3CL1) were found in the lungs of
transgenic mice chronically overexpressing IL-17A. In
addition to upregulating these chemokines, elevated
CCL1, CCL2 and CXCL1 expression was also present in
the mouse lung epithelial cell line MLE12 upon exogen-
ous IL-17A treatment [98] (Fig. 4).
Genetic variation and epigenetic alterations to the IL-

17 F pathway may impact lung cancer development. Epi-
genetic analysis of DNA methylation patterns of COPD
small airway epithelia has highlighted the relevance of
the IL-17 F inflammatory response pathway in a disease
significantly linked to lung cancer [89]. Specifically in

COPD small airways, IL-17 receptor C (IL17RC) and
CXCL1 (upstream and downstream components of the
IL-17 F inflammatory pathway, respectively) were both
identified to be hypermethylated and underexpressed,
while DNA hypomethylation and overexpression of col-
ony stimulating factor 2 (CSF2), an IL-17 F-induced pro-
inflammatory cytokine, was observed [89]. Many other
genes in the IL-17 F inflammatory pathway were also
found to be altered by DNA methylation in COPD small
airways, and alterations of these genes are known to
contribute to carcinogenesis [99] (Fig. 5, Table 1). Single
nucleotide polymorphisms (SNPs) in IL-17 F genes are
significantly associated with lung cancer development.
For example, the IL-17 F 7488G allele is associated with
advanced stage or metastatic lung cancer in a Tunisian
population [94]. COPD was characterized by increased
Th17 cells (CD3+CD4+IL-17A+) in peripheral blood
[100]. Likewise, high levels of Th17 cell cytokines have
been observed in BAL of mouse models bearing onco-
genic Kras-driven lung AC with concurrent induction of

Fig. 4 Pro-inflammatory and pro-tumorigenic roles of Th17 cells in lung cancer pathogenesis depend on Th17 cell cytokine production. Th17
cells are cardinal producers of IL-17, a family of pro-inflammatory cytokines orchestrating a variety of molecular mechanisms that promote
lung tumorigenesis. For specific pro-inflammatory cytokine and chemokine expression stimulated by IL-17A or -F, refer to text in Section “Th17
cells and lung cancer”
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COPD-like inflammation through exposure to Hae-
mophilus influenzae lysate (NTHi) [101]. Il17−/− mice
had reduced lung tumor numbers, as well as reduced
tumor cell proliferation, angiogenesis, myeloid cell re-
cruitment and expression of pro-inflammatory mediators
(Il6, Cxcl2, Ccl2, Arg1, Csf3, Mmp7, Mmp12 and
Mmp13) compared to Il17+/+ mice (Fig. 6). Of note, reduc-
tion of lung tumor numbers occurred with IL-17 defi-
ciency, but not with IL-17 F deficiency in lung tumor
bearing mice [101]. Similarly, IL-17 has been shown to

promote tumor growth in mice by increasing angiogenesis,
metastasis and macrophage infiltration into tumors [102].
In malignant disease, increased expression of Th17

markers (IL-17A, RORα4 and RORγt) was observed in
human lung AC compared to non-malignant lung tissue
[103]. Th17 cells are key producers of IL-17, and this
cytokine is known to contribute to the induction of lung
cancer prometastatic factor expression. Elevated expres-
sion of IL-17 in peripheral blood was significantly corre-
lated with TNM (tumor node metastasis) stage and

Fig. 5 The IL-17 F signaling pathway is epigenetically altered in malignant COPD and non-malignant COPD lung airway epithelial cells. Top
disrupted downstream molecular components of the IL-17 F pathway are involved in mediating inflammatory and anti-microbial processes. Genes
involved in IL-17A signaling pathways and that overlap with deregulations in the IL-17 F signaling pathway are also depicted. CCL2: chemokine
(C-C motif) ligand 2; CXCL1: chemokine (C-X-C motif) ligand 1; G-CSF: granulocyte colony-stimulating factor 3; CX3CL1: chemokine (C-X3-C motif)
ligand 1, GM-CSF: granulocyte-macrophage colony-stimulating factor; HBD1: defensin beta 1; IL: interleukin; IL-17RA: interleukin 17 receptor A;
IL- 17RC: interleukin 17 receptor C; LCN2: lipocalin 2

Table 1 Examples of genes in the IL-17 F pathway epigenetically altered in COPD and their respective roles in cancer

Epigenetically disrupted in COPD Roles in cancer References

IL-1α Tumor cell-derived IL-1α increases tumor immunogenicity
Precursor IL-1α from necrotic tumor cells promotes inflammation

[155]

IL-1β Polymorphisms associated with overall cancer risk [156]

IL-10 Polymorphisms associated with overall cancer risk
Induces IFN-γ-mediated CD8+ anti-tumor immunity
Treg cell-derived IL-10 suppresses Th17 inflammation

[157–159]

CCL2 Promotes metastasis and angiogenesis
Recruits monocytes and macrophages contributing to inflammation

[160, 161]

CXCL1 Promotes metastasis, angiogenesis and cell proliferation
Induces constitutive NF-κB activation
Facilitates tissue damage

[162, 163]

GM-CSF/G-CSF Promotes angiogenesis
G-CSF contributes to myeloid derived suppressor cell recruitment at tumor site

[164, 165]

LCN2 Induces epithelial-mesenchymal transition (EMT) and promotes metastasis
Promotes cell survival through iron sequesteration

[166, 167]

HBD1 Disrupts cell membrane and activates caspases in tumor cells
Frequently lost in cancers, including prostate and renal cancers
Recruits immature dendritic cell and memory T cell

[168, 169]
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increased expression of IL-17 receptor (IL-17RC) in
NSCLC tumor cells was associated with invasive poten-
tial [104]. Treatment of NSCLC cell lines A549 and
H520 with IL-17 resulted in increased phosphorylation
of STAT3, which upregulated prometastatic factor pro-
duction including vascular endothelial growth factor
(VEGF) [105]. While IL-17 upregulation of STAT3 was
shown to be mediated by IL-6 other cancer types
[106, 107], this phenomena did not hold true in this
case [105]. As a mechanism of lymph node metastasis, IL-

17 can promote lymphangiogenesis by upregulating the
expression of the lymphangiogenic factor vascular endo-
thelial growth factor-C (VEGF-C) in murine lung cancer
cells [108, 109] (Fig. 4). In humans, increased density of
IL-17 positive cells in NSCLC tumors correlated with
lymphatic vessel density [110]. Furthermore, loss of IL-17
has been shown to reduce metastases. Studies have shown
that when challenged with Lewis lung carcinoma
cells, IL-17 knockout mice had reduced number of
metastatic nodules in lungs and improved survival

Fig. 6 Treg/Th17 ratios are context-dependent in lung cancer patients and associate with disease pathogenesis and outcome of lung cancers.
Blue arrows indicate negative relationships, and red arrows indicate positive relationships. Balance beams indicate correlation among Treg and
Th17 cell subsets, with intermediate IL-17+FoxP3+ phenotypes present at the centre to indicate that these cells may contribute to cell ratios. The
Treg/Th17 ratio has been primarily assessed in pleural effusion and peripheral blood in malignant and non-malignant pleural effusions. MPE:
malignant pleural effusion; NMPE: non-malignant pleural effusion derived from non-chronic diseases; PPE: parapneumonic effusion; TPE: Tuberculous
pleural effusion
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compared to wild-type mice [104, 111]. Taken together,
these studies reveal potential mechanistic and functional
effects of IL-17 in cancer progression and metastasis.
Th17 cells produce other cytokines in addition to IL-17,

including IL-22, which is also associated with lung cancer.
IL-22 contributes to pro-survival signaling, angiogenesis
and metastasis, part of which may be associated with its ac-
tivation of STAT3 signaling pathway in cancer cells [112]
(Fig. 4). High levels of IL-22 have been detected both locally
in primary tumors and malignant pleural effusions (MPEs)
and systemically in serum of NSCLC patients [113].
Th17 cells have complex biological functions and evi-

dence suggests that these cells may paradoxically also
contribute to anti-tumor immunity. With infusion of in
vitro-generated Th17 cells, lungs of mice bearing B16
melanoma tumors had elevated dendritic cell and acti-
vated T cell recruitment, as well as elevated CCL20 and
CCL2 expression, chemokines known to recruit these
anti-tumor immune cells [114]. Increased IL-21 levels,
also produced by Th17 cells, can induce tumor regres-
sion through expansion of CD8+ tumor-infiltrating lym-
phocytes in NSCLC as well as ovarian cancer and
melanoma [115, 116] (Fig. 4). Moreover, high counts of
pleural Th17 cells are associated with increased survival
of NSCLC (lung AC and SqCC histologies) in human
MPEs [117]. These studies reveal differential functions
of Th17 cells, thus further investigation into their bio-
logical roles and clinical relevance in cancer develop-
ment is warranted.

Quantitative relationships between Th17s and Tregs in
lung cancer prognosis
While various immune cell populations have been stud-
ied extensively in the context of cancer biology, the field
has primarily focused on individual cell populations.
More recently, cancer immunology has shifted towards a
more integrated understanding of potential interactions
among immune cell populations within the tumor
microenvironment, including a focus on cellular ratios,
crosstalk and phenotype plasticity in the context of cancer
prognosis. Advancements in this framework include the
development of an immunoscore as a potential compo-
nent of cancer classification with prognostic relevance
across a number of different tumor types, including
NSCLC [118–121]. In addition to lung cancer, changes to
Treg/Th17 levels have been observed in hematological
and other solid tumor types in addition to autoimmune
diseases and viral and bacterial infections, indicating that
the balance of these two subsets plays an important
role in regulating inflammation and cancer develop-
ment [122–124]. Although both Treg and Th17 cells
exert a diverse set of cancer-related functions (Figs. 3
and 4), these CD4+ T cell subsets may have opposing
prognostic values in lung cancer, with a higher ratio

of Tregs to Th17s correlating with more aggressive
and advanced-staged malignancies [125, 126]. The
balance of Treg and Th17 cells has been assessed in
inflammation resulting from autoimmune disease,
viral infections and bacterial infections [127–134]. In
addition, Th17 and Treg cells are broadly considered
to play pro- and anti-inflammatory roles, respectively,
though it should be noted T cell plasticity allows for
a functional continuum between these two CD4+ T
cell subsets [135, 136]. In summation, the balance of
these two CD4+ T cell subsets at local tumor and sys-
temic sites appears to be strongly associated with
lung cancer development, progression and prognosis.
The Treg/Th17 ratio and lung cancer prognosis has been

assessed in peripheral blood. Peripheral blood of NSCLC
patients is characterized by a significantly higher percent-
age of Th17 (CD4+IL-17+) and Treg cells (CD4+CD25
+FoxP3+) compared to individuals without cancer. How-
ever, in NSCLC patients, the levels of these two CD4+ T
cell subsets were inversely correlated in peripheral blood
[137] (Fig. 6). Serum Th17 cells are known to positively
correlate with IL-1β, IL-6, IL-23, while Tregs are known to
positively correlate with TGF-β1 and IL-10 [137] (Fig. 6).
NSCLC patients with Stage IV disease had higher Treg/
Th17 ratios compared to patients with Stage I-III disease
(Fig. 6). Conversely, the ratio was determined in another
study to inversely correlate with serum levels of carcinoem-
bryonic antigen (CEA), an oncofetal marker elevated in
lung cancers with poor prognosis [137]. These studies high-
light the variability of CD4+ T cell ratios in cancer progres-
sion, which certainly warrants further exploration [126].
In addition to assessing Treg/Th17 ratios in a systemic

context in peripheral blood, proportions of these CD4+

T cell subsets have been characterized in biological fluids
that are local to the lung, including pleural fluid
(Table 2). Malignant and non-malignant pleural effu-
sions (NMPE) derived from chronic inflammatory lung
diseases, such as lung cancer and tuberculosis, have
lower Treg and higher Th17 levels compared to non-
chronic pleural effusions [138]. However, upon stimula-
tion, CD4+ T cells in MPE secrete higher levels of IFN-γ,
IL-6 and IL-17A and lower levels of IL-10 compared to
that of non-malignant tuberculous pleural effusions
(TPE) over time, suggesting that Th17s may maintain a
pro-inflammatory environment in the pleural cavity of
lung cancer patients [138] (Fig. 6). Conversely, an ele-
vated Treg/Th17 ratio was found in MPEs when com-
pared to NMPEs, such as parapneumonic pleural
effusions (PPE) [139]. Furthermore, MPEs from lung
cancer patients with a high Treg/Th17 ratio were found
to correlate with poor survival [139]. These differences
may be partially accounted for by the complex roles of
inflammation in pro-tumor and anti-tumor activities
during the course of cancer development [140].
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As evidenced by the studies mentioned above, the
Treg/Th17 ratio has been primarily assessed in peripheral
blood and pleural effusion samples. Collection of liquid
biopsies requires less invasive procedures and are advanta-
geous for longitudinal studies, as sampling can be con-
ducted at multiple time points [141]. Future longitudinal
studies will be very valuable to elucidating potential tem-
poral relationships of these cell types during lung cancer
pathogenesis and their clinical relevance. Treg and Th17
cell levels have been assessed in lung tumor biopsies, al-
though these cell types are typically assessed individually
using single markers on tissues sections, and Treg/Th17 ra-
tios have not yet been reported for lung tumors. Part of the
difficulty in assessing Tregs and Th17 cells in solid tumors
is that both cell types are most accurately identified using
multiple phenotypic markers and are therefore more amen-
able to analyses by single cell analytical methods, such as
flow cytometry [142]. The advancement of multispectral
imaging analyses of tissue sections may allow for Treg/
Th17 ratio assessment in lung tumour biopsies in the fu-
ture, while also providing extended insights into the clinical
relevance of the spatial relationships of immune cells within
the tumor microenvironment [143, 144].
While Th17s and Tregs have unique roles in the

tumor microenvironment, interpretations of this ratio
may be confounded by the presence of IL-17+FoxP3+ T
cells, an intermediate Treg/Th17 phenotype that may be
relevant to tumorigenesis [145] (Fig. 6). IL-17+FoxP3+ T
cells may be generated from cytokine-dependent repro-
gramming of Tregs [146]. IL-17+FoxP3+ T cells have
been implicated in autoimmune disease and solid cancer
development, including inflammatory bowel disease and
esophageal, colon and lung cancers [147–150]. In lung
cancer, a CD45RA−CD45RO+FoxP3hi subset enriched in
NSCLC is characterized by increased RORγt and IL-17
expression [151]. Elucidation of specific molecular fea-
tures and functions that IL-17+FoxP3+ T cells possess
may reveal how this intermediate cell type influences in-
flammation in the tumor microenvironment, and may
improve understanding of the Treg/Th17 ratio in cancer
prognosis. The link between the balance of Tregs/Th17

cells and lung cancer prognosis underscores the clinical
relevance of these cell types as biomarkers and potential
therapeutic targets. With the current development of
Th17 and Treg-targeted therapies, further studies asses-
sing the complex roles of these immune cell types in lung
cancer are needed if they are to be implemented in the
clinic as a novel lung cancer treatment strategy [152–154].

Conclusions
Inflammation mediated by infiltrating immune cells
plays a key role in cancer pathogenesis. Among these, T
cells display critical and diverse roles in the establish-
ment and suppression of inflammation within the tumor
microenvironment. These include Tregs and Th17s,
CD4+ T cells which have been observed to mechanistically
promote tumorigenesis, cancer progression and metastasis
through immunosuppressive and pro-inflammatory func-
tions. Specifically, Treg and Th17 cells in the tumor
microenvironment modulate cytokine and chemokine
production, promote immune cell recruitment and help
regulate anti-tumor and pro-tumor immune cell activation
states. Altered levels of these immune cell populations
and their respective functions can facilitate lung cancer
progression and metastasis. Furthermore, the balance of
these CD4+ T cell populations at local and systemic sites
may be clinically relevant in evaluating lung cancer prog-
nosis. Further investigations are warranted to fully
characterize the mechanistic effects and prognostic value
of these immune cell populations in the context of cancer.
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Table 2 Characterization of Treg/Th17 ratios in malignant pleural effusions

Pleural effusion type compared Observed characteristics of malignant pleural effusion (Relative to pleural effusion type compared) References

Parapneumonic ↑ Treg (CD4+CD25+FoxP3+)/Th17(CD4+IL-17+) ratio
↑ Foxp3/RORγt ratio

[139]

Malignant (with low Treg/Th17 ratio) ↓ Overall survival with high Treg/Th17 in malignant pleural effusions

Non-chronic diseases ↓Treg (CD4+CD25+CD127low/−)/Th17 (CD3+CD4+RORγt+) ratio a

↑ IL-17A+CD4+ cells
↓ CCR6+ Th17 cells

[138]

Tuberculous No significant difference in Treg (CD4+CD25+CD127low/−)/Th17 (CD3+CD4+RORγt+) ratio
↑ IL-17A+CD4+ cells
↓ CCR6+ Th17 cells

a For consistency, cell ratios are presented as Treg/Th17
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