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Though significant strides in tumorigenic comprehension and therapy modality have been
witnessed over the past decades, glioma remains one of the most common and malignant
brain tumors characterized by recurrence, dismal prognosis, and therapy resistance.
Immunotherapy advance holds promise in glioma recently. However, the efficacy of
immunotherapy varies among individuals with glioma, which drives researchers to
consider the modest levels of immunity in the central nervous system, as well as the
immunosuppressive tumor immune microenvironment (TIME). Considering the highly
conserved property for sustaining energy homeostasis in mammalian cells and
repeatedly reported links in malignancy and drug resistance, autophagy is determined
as a cutting angle to elucidate the relations between glioma and the TIME. In this review,
heterogeneity of TIME in glioma is outlined along with the reciprocal impacts between
them. In addition, controversies on whether autophagy behaves cytoprotectively or
cytotoxically in cancers are covered. How autophagy collapses from its homeostasis
and aids glioma malignancy, which may depend on the cell type and the cellular context
such as reactive oxygen species (ROS) and adenosine triphosphate (ATP) level, are briefly
discussed. The consecutive application of autophagy inducers and inhibitors may improve
the drug resistance in glioma after overtreatments. It also highlights that autophagy plays a
pivotal part in modulating glioma and the TIME, respectively, and the intricate interactions
among them. Specifically, autophagy is manipulated by either glioma or tumor-associated
macrophages to conform one side to the other through exosomal microRNAs and thereby
adjust the interactions. Given that some of the crosstalk between glioma and the TIME
highly depend on the autophagy process or autophagic components, there are
interconnections influenced by the status and well-being of cells presumably associated
with autophagic flux. By updating the most recent knowledge concerning glioma and the
TIME from an autophagic perspective enhances comprehension and inspires more
applicable and effective strategies targeting TIME while harnessing autophagy
collaboratively against cancer.
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INTRODUCTION

Gliomas originate from supportive glial cells in people with
dichotomy prognosis and limited treatment responses (1).
Generally, its prognosis depends on the pathologic grade and
genetic mutation profile, whose level of concern is checked
through isocitrate dehydrogenase (IDH) and 1p/19q status (2).
Lower-grade glioma (LGG,WHO II-III grade) with prognostically
favorable mutations yields the most benefits from multimodality
approaches like early surgical resection, radiotherapies,
chemotherapies, and other anti-tumor comprehensive therapies,
while it remains a challenge to extend survival for other malignant
types (3). The median survival time of patients with glioblastoma
multiforme (GBM, WHO IV grade) is merely 14 months and the
H3 Lys27Met-mutant glioma holds the worst prognosis: a 2-year
survival rate less than 10%, among all diffuse gliomas (4). Recent
advances have been made in exploring potential therapies by
targeting the tumor immunemicroenvironment (TIME) in glioma.

As immunotherapies prevail in cancers, the limited responses
in glioma to treatment lead to a reexamination of the core of
immunotherapy: the infiltrating immunocytes and their local
microenvironment. Immune infiltration in glioma through the
disrupted blood-brain barrier (BBB) deprives the central nervous
system (CNS) of “immune privilege” - restrictive entry of
circulatory immune cells (5, 6). It is reported to be pertinent to
glioma oncogenesis, progression, and therapy resistance (7, 8).
The infiltrative immune cells, including tumor-associated
macrophages/microglia (TAM), myeloid-derived suppressor
cells (MDSCs), dendritic cells (DCs), neutrophils, and tumor-
infiltrating lymphocytes, are meant to maintain intercellular
homeostasis by eliminating abnormalities though the initial
targets which ultimately somehow compromise (5, 9). Together
with a few exhausted T cells, nonfunctional natural killer cells
(NK cells), inflammatory mast cells, cancer-associated
fibroblasts, diffusely distributed astrocytes, immunosuppressive
cytokines, insufficient nutrient supply, and hypoxia, the glioma
immune microenvironment is roughly characterized (10).

The immune microenvironment plays a dual role in glioma.
Both innate and adaptive immune responses exert influence to
retain control of glioma, whilst glioma inversely manipulates
immune cells to attain immune suppression and evasion (11). It
warrants more studies unraveling the potential mechanisms that
glioma utilizes to shift functional immune cells towards being
tumorigenic. Thus, it becomes possible to restore immune efficacy
and revive the success of immunotherapies. Specifically, one way
that could be employednot only by gliomabut also by immune cells
to adapt to both intrinsic and extrinsic alterations is autophagy.

Autophagy ensures cellular homeostasis and recycles cytoplasmic
entities for energy supply when under stress (1). It typically includes
three primary subtypes: macroautophagy, microautophagy, and
chaperone-mediated autophagy (CMA). Despite the three
morphologically unique forms, they all end up in the degradation
of targets within lysosomes consonantly (12). In brief,
macroautophagy, widely known as autophagy, uses autophagy
adaptor proteins like p62/SQSTM1 to label cytoplasmic cargo for a
double-membrane vesicle called autophagosome and lysosome
degradation (13). In contrast, microautophagy directly encapsulates
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cellular cargos with endosomal membranes or invagination of
lysosomal. CMA is characterized by the chaperone-binding cargos
with Lys-Phe-Glu-Arg-Gln (KFERQ) -like pentapeptide motif
entering lysosomes via lysosomal-associated membrane protein 2a
(LAMP2a) (14). The detailed autophagy phases and machinery for
each subtype are beyond the scope of this review and have already
been extensively reviewed (15).

A myriad of evidence show that autophagy is exploited by
glioma to resist therapies and by immune cells to dampen anti-
tumor responses (16, 17).A studymanifests that it is autophagy that
is blocked by chloroquine (CQ), thereby enhancing cytotoxicity of
temozolomide (TMZ) to glioma cells (18). Additionally, by analogy
to the mammalian target of rapamycin (mTOR) inhibitor
rapamycin, indoleamine 2,3-dioxygenase (IDO) -mediated
tryptophan depletion educates T cells towards immune tolerance
through triggeringautophagy (19).Concerning the complexnature,
it might be more informative and illuminating to integrate into a
summarywith the updatedworks of literature relative to autophagy
in the glioma immune microenvironment.

In this review, the heterogeneity of tumor immune
microenvironment in glioma is discussed, along with the
reciprocal impacts on both sides. It also unveils the way that
autophagy aids malignancy by switching itself between a
cytoprotective role and a cytotoxic one within glioma. The fact
that autophagy plays a pivotal part in modulating glioma cells and
the members in the TIME, and thereby influencing the subtle
interactions among the components of the microenvironment,
are specifically highlighted. Overall, this review aims to pave the
way for a resounding success of immunotherapies adjuvant with
autophagy modulators for glioma in the near future.
THE INTERACTIVE TUMOR IMMUNE
MICROENVIRONMENT IN GLIOMA

Despite a paucity of immune cells and limited lymphatic
drainage, immunosurveillance within a healthy brain with
brain-specific microglia is capable of stimulating a modest and
highly regulated immune response (20). Circulating immune
cells should have infiltrated in the CNS across the impaired BBB
in the presence of glioma (21). Still, glioma displays a “cold
tumor” phenotype with a low number of immunogenic effector
immune cells compared with other tumors, which might be
related to the limited efficacy of immunotherapies (22). Given the
paradox of immune responses before and after glioma
development, the intricate regulations of the immune
microenvironment involved with both cellular and molecular
mechanisms deserve more attention and discussion (Figure 1).

Tumor-Associated Macrophage/Microglia
TAMs dominate the infiltrative immune cells, which comprise
up to 30% ~ 50% of glioma constituents (23, 24). It is initially
conceived that TAMs shoulder tumor clearance through pro-
inflammatory cytokine release and phagocytosis, which is
validated by a recent study that uses activated TAMs for tumor
containment (25). However, TAMs are one of the numerous
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culprits to be blamed in the immunosuppressive TIME glioma,
whose reasons may lie in its components (26). The bone-
marrow-derived macrophages (BMDMs) appear to be defined
as CD11b+- CD45+ CD49d+ macrophage population and
recruited from peripheral circulating monocytes by glioma,
whereas the tissue-resident CD11b+ CD45- CD49d- microglia
(MG) are derived from erythro-myeloid progenitors (EMPs) in
embryonic yolk sac without postnatal replenishment from
peripheral mononuclear hematopoiesis (5, 8, 27). Of distinct
ontogenies, infiltrating TAMs may lead to varying outcomes in
patients (28). The gene signature of BMDM, rather than MG, is
observed to be negatively associated with survival in LGG (29).
To better comprehend the complex mechanisms, further studies
are conducted concerning the interplay between TAMs
and glioma.

Glioma attracts TAMs, especially BMDMs, by secreting
chemoattractants, including C-C motif chemokine ligand 2
(CCL2), C-C motif chemokine ligand 3 (CCL3), C-X-C motif
chemokine ligand 12 (CXCL12), C-X3-C motif chemokine
Frontiers in Immunology | www.frontiersin.org 3
ligand 1(CX3CL1), colony-stimulating factor 1 (CSF-1), and
granulocyte-macrophage colony-stimulating factor (GM-CSF)
(30–33). Typically, CCL2 and CX3CL1 are regarded as the two
of the most important chemokines in directing BMDMs and MG
migration, respectively. A study reports that low-grade glioma
stem-like cells (GSCs) harboring BRAF kinase gene mutations
(KIAA1549:BRAF fusion) express Ccl2 for circulating monocytes
recruitment (34). In parallel, MG highly expressing Cx3cr1 are
led towards glioma by Cx3cl1, which is secreted by glioma cells
with NF1 mutation (35). Moreover, intercellular adhesion
molecule 1 (ICAM1) silencing in the IDH1 wild-type glioma
cells is demonstrated to increase macrophage infiltration and
potentially enhance anti-tumor functions like phagocytosis.
There are alternative ways for TAMs to be recruited, of which
the composition could be chemokine-dependent (8). For
example, lysyl oxidase (LOX) expression is activated by yes1
associated transcriptional regulator (YAP1) in a PTEN-deficient
GBM model to recruit macrophages, which in turn supports the
GBM with Secreted Phosphoprotein 1 (SPP1) (36).
FIGURE 1 | The interconnections between glioma and its immune microenvironment. Both innate and adaptive immune systems contribute to the suppressive
immune microenvironment in glioma. The intricate interconnections among the members of the glioma immune microenvironment work synergistically to facilitate
tumor progression without disturbance, especially from anti-tumor immunity.
October 2021 | Volume 12 | Article 746621
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Heavily dependent on the specific environmental signals,
such as interferon-g (IFN-g), tumor necrosis factor (TNF), and
IL-4, macrophages usually polarize but are not confined to
binary phenotypes, antitumor M1 and protumor M2 subtypes
(37). CD68+ and CD163+ M2 polarized cells are more prevalent
in the TIME, which is in line with their immunosuppressive
properties (38). However, there are difficulties in applying the
predefined dual classification to TAMs. The expression profiles
of TAMs in the GL261 glioma model and RCAS transgenic
system, known as murine glioma models, resemble other
specialized macrophage subgroups rather than matching with
either the M1 or the M2 polarity (39). Consistently, TAMs
isolated from the patients’ biopsies co-express M1 and M2 genes
frequently (29, 40). It may give rise to a novel classification suitable
for TAMs, but the current paradigm distinguishing M1/M2 lays a
solid basis for future refinement, which is CD40, CD74, CD80,
CD86, MHC-II, and phosphorylated Signal Transducer and
Activator Of Transcription 1 (STAT1) for the M1-like, while it is
CD163, CD204, CD206, arginase-1(ARG-1), and phosphorylated
STAT3 and STAT6 for the M2-like (30, 41).

Not only do the genetic alterations in TAMs result in new
lineages, but they also involve glioma progression and lead to
immunosuppression in the glioma microenvironment. The
finding that the mouse GL261 glioma cells inoculated in Tlr2
knockout mice grow a smaller tumor leading to longer survival of
the host compared to the control indicates that the TAMs
promote glioma progression via TLR2 signaling (42). TLR2
upregulates membrane type 1 matrix metalloprotease (MT1-
MMP) and metallopeptidase 14 (MMP14) in MG to activate
glioma-sourced MMP2 when responding to TLR2 endogenous
ligands and thereby facilitate glioma invasion (43). TLR2 also
increases matrix metalloproteinase 9 (MMP9) production,
resulting in extracellular matrix (ECM) degradation (44). Of
note, platelet-derived growth factor receptor (PDGFR) in glioma
cells is induced by MG exclusively, which also promotes glioma
progression (45). As for immunosuppression, TAMs produce
CCL2 for recruiting CCR2+ MDSCs and CCR4+ Tregs (46).

Apart from the genetic influences, the distinct distribution of
TAM components in glioma could be listed as a major factor
contributing to immunosuppression as well. Recent single-cell
RNA sequencing analyses reiterates that the BMDMs are more
responsible for immunosuppression and unfavorable outcomes
in glioma in contrast to the MG that mostly resides in the tumor
periphery (29, 47–49). It also indicates that IDH mutation may
correlate with TAM infiltration when the critical shift in the
proportion of MG to BMDM between IDH mutation and IDH
wild type is observed (49). Consistent with previous findings, it is
ascribed to the BMDMs in the glioma center rather than the
brain-resident MG occupying the peritumor area in terms of
inhibited immunity in glioma (50). It leaves MG a dearth of
credits since most effects are pinned on migratory macrophages.
Indeed, the resident MG is capable of phagocytosis when
meeting with glioma cells in response to myeloid checkpoint
CD47- Signal regulatory proteina (SIRPa) blockade in vivo. The
MG even shows a dampened inflammatory response, making
specific reeducation of the MG a promising strategy in glioma
Frontiers in Immunology | www.frontiersin.org 4
management (51). These reports indicate that specific and
distinct roles of the TAM compartments are emerging with
more in-depth investigations ongoing at single-cell resolution.

Moreover, studies reveal the crucial role of TAMs in glioma
tumorigenesis, stemness, angiogenesis, invasion, and migration
(52–55). Interleukin 1b (IL-1b) released by TAMs reprograms
cellular metabolism by boosting glycolysis of glioma through the
IL-1b-protein kinase-delta (PKCd)-glycolytic enzyme glycerol-3-
phosphate dehydrogenase (GPD2) axis, which promotes tumor
proliferation and tumorigenesis (56). Specifically, it is C-C motif
chemokine ligand 8 (CCL8) highly expressed by TAMs that
promotes stem-like traits of GBM cells via the activation of
ERK1/2 (54). Glioma angiogenesis is induced via vascular
endothelial growth factor (VEGF) secretion (57). The fact that
C-C motif chemokine ligand 5 (CCL5) modulates invasive and
migratory behaviors of glioma through the phosphorylation of
calmodulin-dependent protein kinase II (CaMKII) renders CCL5
and CaMKII interesting targets to halt glioma progression (55).
More related reports are needed for an improved understanding
of how TAMs interact with glioma and modulate the TIME so
that therapies targeting TAMs would be boosted.

Myeloid-Derived Suppressive Cells
As a critical part of the suppressive network, myeloid-derived
suppressive cells usually accumulate under pathologic conditions
(58). The enrichment of MDSCs predicts glioma malignancy,
poor prognosis, and low responses to treatments (59).
Interestingly, the Bruyère group finds that the inhibition of
chemokine C-X-C motif chemokine ligand 2 (CXCL2)
expression in Hs683 glioma cells results in impaired cell
proliferation (60). There is a related report showing that it is
the CXCL2-CXCR2 axis that mediates MDSCs recruitment in
the tumor (61). Targeting CCR2 with CCX872 not only reduces
infiltrated MDSCs but also augments immunotherapy efficacy
(62). Still, more mechanism studies uncovering how MDSCs are
recruited to glioma are encouraged.

MDSCsmainly consist ofCD14+CD15-monocyticMDSCs (M-
MDSCs) and CD14- CD15+ granulocytic or polymorphonuclear
MDSCs (PMN-MDSCs). Some evidence shows that PMN-MDSCs
predominates the blood and M-MDSCs mainly distribute
throughout glioma tissue, while others supported the opposite,
which may require more studies to corroborate (63–65). The two
subsets ofMDSCs could be differentiated from each other based on
genomic entities, biochemical markers, and biological functions,
especially the capacity to inhibit immune responses. Interestingly,
hypoxia-stimulated glioma-derived exosomes containing
microRNAs are reportedly associated with MDSC proliferation,
differentiation, and activation (66, 67).

MDSCs suppress immunological reactivities in a variety of
ways. They cripple TAMs and DCs for antigen presentation
impairment, inhibit anti-tumor responses by NK cells and
cytotoxic T cells, and induce inhibitory regulatory T cells
(Tregs) (68–71). MDSCs modulate TAMs, the most common
immune cells in glioma, to attain the suppressive goal. Through
crosstalk with MDSCs releasing IL-10, macrophages are skewed
towards the M2 phenotype producing less IL-12 and more
October 2021 | Volume 12 | Article 746621
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IL-10 (72). Similarly, it claims that MDSCs also disturb DC-
mediated T cell stimulation by IL-10 (73). MDSCs additionally
inhibited NK cells with ROS, TGF-b1, and NKp30 (74–76). The
main strategy that MDSCs employed to interfere with T cells is
through signal transducer and activator of transcription 3
(STAT3)-induced ROS and reactive nitrogen species (RNS) as
oxidative stress, which leads to an increased level of arginase 1
(ARG1) and inducible nitric oxide synthase (iNOS) and thereafter
L-arginine depletion, cell cycle arrest, and even apoptosis (70, 77,
78). The oxidative stress additionally renders T cells anergic and
suppressive by reducing CD3 z chain expression and inducing
nitrosylation of the IL-2 pathway (78). It also inhibited T cell
migration when CCL2 is under nitration (70).

Beyondmodulation of immune cells, somemolecules, like nitric
oxide (NO), prostaglandin E2 (PGE2), and programmed cell death
1 ligand 1 (PD-L1), are also associated with MDSC-mediated
immunosuppression (79–82). The suppressive function of
regulatory B cells (Bregs) is augmented by PD-L1 derived from
MDSCs and thereby impeding CD8+ T cell activation (82).
Moreover, tumor-associated macrophages (TAM) can be
renewed by M-MDSCs or monocytes differentiation, which is
facilitated by HIF-1a along with CD45 tyrosine phosphate and
STAT3 regulation in hypoxia (83–85).

Neutrophils
As the first-line sentinel of host defense for tissue homeostasis,
neutrophils rapidly migrate to the tumor site in response to many
signals like IL-8 and IL-1b (86). Glioma-derived IL-8 recruits
neutrophils to infiltrate, while the recruited ones produce a
magnitude of neutrophil extracellular traps (NETs) stimulating
the NF-kB signaling pathway in GBM cells and promote IL-8
secretion via HMGB1 binding to the receptor for advanced
glycation end products (RAGE) (87). Glioma progression
accompanying neutrophil recruitment is also mediated by the
long non-coding RNA LINC01116-triggered IL-1b upregulation
(88). It is observed that both circulating and infiltrative neutrophils
increase with glioma pathological grade, which predicts poor
prognosis for patients (78). Besides, a recent study proposes that
ferroptosis could be the nature of “necrosis” typically identified in
GBM, which is mediated by the infiltrating neutrophils and the
myeloperoxidase-containing granules (89). In contrast to their
proinflammatory role, activated neutrophils (or granulocytic
MDSCs) characterized by high plasma levels of IL12p70 promote
glioma malignancy (90). Elastases secreted by infiltrative
neutrophils nearby also accelerate the infiltration in glioma (91).

When treating glioblastoma with anti-VEGF therapy, increased
neutrophil infiltration advances glioma mesenchymal transition
and promotes proliferation of GSCs through upregulation of
S100A4 (92). Targeting S100A4 can also sensitize glioma cells to
bevacizumab treatment. Theprotumor role ofneutrophils is further
strengthened since depleting glioma-associated neutrophils with a
monoclonal antibody against Ly6G+ neutrophils prolongs survival
in a preclinical GBM murine model (93). Neutrophils are also
involved in the resistance to PD-1 inhibitors, which is revealed by
the improved therapeutic efficacy of combinational treatment with
antineutrophil and PD-1 inhibitors (94). However, more in-depth
studies concerning the molecular mechanism mediated by
Frontiers in Immunology | www.frontiersin.org 5
neutrophils would provide better comprehension for the
development of glioma therapy resistance.

Yet the detailed mechanism for neutrophil recruitment to
glioma remains largely elusive. How the interaction between
neutrophils and glioma in the local immune microenvironment
works still needs to be intensively investigated. Since tumor-
associated neutrophils generally exhibit functional plasticity and
polarization, represented by anti-tumor N1-like and pro-tumor
N2-like states, it would inspire more treatment strategies if the
stimuli for neutrophil reprogramming and differentiation
were uncovered.

Dendritic Cells
Due to the overestimation of MG as major antigen-presenting
cells in CNS, DCs have not been gaining sufficient attention until
recently (95, 96). DCs serve as indispensable sentinels of adaptive
immune responses through internalizing surrounding antigens
for presentation (97, 98). DCs are well-known for their activation
of NK cells, T cells, and Tregs. One majority subtype of DCs is
mostly CD11c+ myeloid conventional dendritic cells (cDCs),
another group is CD11c- plasmacytoid dendritic cells (pDCs) (99,
100). Relative to cDCs aidingCD4+Th1differentiation andCD8+T
cell activation, pDCs are more of interest because of their secretion
of IFN-a, whichdirectly stimulates antitumor immunity (100, 101).

Nonetheless, there are some studies casting doubts on
immunogenicity generated by pDCs. The compromised
elaboration of IFN-a, impaired antigen presentation, and increased
Treg infiltration are witnessed in a murine glioma model (96). As
restoration, the survival of the tumor-bearing mice extends and
infiltrative Treg cells diminish when pDCs are selectively excluded.
Asimilar report alsoargues thatpDCsare atplay inpromoting tumor
progression and immunosuppression under the influence of
granulocyte-macrophage colony-stimulating factor (GM-CSF)
(102). DCs are induced to produce IL-10 and thereby inhibit T cell
via its poliovirus receptor (PVR) -immunoreceptor tyrosine-based
inhibitory motif (ITIM) interaction with T cells (103). Further,
immature DCs characterized by low expression of CD80 and CD86
contribute to tolerance in T cells (104).

Mast Cells
The presence of mast cell (MC) in mouse and human glioma
mirrors the entanglement of inflammation and cancer (105). It is
demonstrated that the endogenous stem cell factor (SCF) largely
contributes not only to the expansion of the glioma-associatedMCs
but also to the localization of the MCs in the vicinity of the tumor
blood vessel and glioma cells along with the CXCL12/CXCR4 axis
(105). Glioma-derived macrophage migration inhibitory factor
(MIF) also recruits MCs to glioma through signal transducer and
activator of transcription 5 (STAT5) signaling in a malignancy-
dependent manner (106). Interactively, recruited MCs release a
varietyofmediators to inhibit gliomaprogressionand induce tumor
differentiation by downregulating GSK3b expression (107).

T Cells and Regulatory T Cells
Standing in as infiltrative T cells are CD4+ helper T cells (Th),
CD8+ cytotoxic T cells, and CD4+/CD25+/FoxP3+ Tregs which
lead an exhausting life in the suppressive microenvironment of
October 2021 | Volume 12 | Article 746621
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glioma (9). Although constantly releasing quantities of
proinflammatory IFN-g for T cell recruitment, CD4+ T cells
upregulate the expression of inhibitory co-receptors like
programmed cell death protein 1 (PD-1), cytotoxic T
lymphocyte-associated antigen (CTLA), lymphocyte-activation-
gene-3 (LAG-3), and T cell immunoglobulin domain and mucin
domain-3 (TIM-3) (108). CD8+ T cells remained largely inactive,
being in line with their counterparts. The inactivation of T cells
may also come from IL-10 and TGF-b released by glioma cells
(9). In addition, attracted by mediators such as CCL2 and IDO,
Tregs contribute greatly to immunosuppression (108, 109).

Increased T cell infiltration is related to favorable outcomes in
glioblastoma patients (110). However, only limited immune
response mediated by T cells is permitted in CNS, especially in
the glioma microenvironment. The maturation of T cells is
inhibited by tumor-derived Fas ligand (111). The activation of T
cells is also inhibited by the IDO and TGF-b released from MG.
Lack of co-stimulatory CD40, CD80, and CD86 expression on
TAMs andglioma cell surface disengageT cell binding (112). T cell-
mediated immunity in glioma is further drained through apoptosis
induced by PD-1 and CTLA (9). An additional observation shows
thatGCN2kinase results inT cell anergy and lackofproliferation in
response to tryptophan depletion by IDO (113). Another GCN2-
focused report highlights the importance ofGCN2as an amino acid
sensor preventingCD8+T cell apoptosis under amino acid stress in
a murine glioma model (114).

Like two sides of the same coin, regulatory T cells ordinarily
orchestrate balance and keep hyperactive immunity, including
overactivated T cells, in control. In contrast to the T cells,
infiltrative Tregs increase with glioma grade, predicts poor
survival, and relates to recurrence (115, 116). It recruits Treg
cells towards glioma using attractants such as CCL2 and IDO
(46). The IDO expression not only involves Treg recruitment
and immunosuppression thereafter but also plays a critical role
in the Treg cell expansion by interacting with mTOR (117).
Although it seems obvious and solid to conclude the interplay
between the Treg and glioma, it is of great importance to dig
deeper into the encouraging topic.

Furthermore, largely dependent onTregs for either pro- or anti-
tumor polarization are T helper 17 (Th17) cells (118). Tregs may
induceTh17polarization towards IL-10 producing cells rather than
IFN-g secretion in the context of TGF-b in vitro (118). Another
Th17 study consistently reports that the TGF-b1 stimulated Th17
cells may lead to the permissive TIME in glioma by releasing IL-10
(119). The confirmation of Th17 cell infiltration in the glioma
tissues gives rise to the investigation of the role of IL-17, one of the
major mediators and hallmarks of the Th17 cells, which promotes
glioma proliferation andmigration through the activation of PI3K/
Akt1/NF-kB-p65 axis (120).

Natural Killer Cells
NK cells detect and precisely execute cancer cells. They act under
the balance between activating and inhibitory signals once
approaching the susceptible (75). Given the minor proportion
of infiltrative CD45+ cells, NK cell activity is blunted close to
non-functional. Glioma cells utilize MHC-I molecules binding
with the inhibitory killer cell immunoglobulin-like receptor
Frontiers in Immunology | www.frontiersin.org 6
(KIR) to evade termination (121). As previously mentioned,
NK cells are also inhibited by MDSCs via NKp30/NRC3 or
NKG2D, and ensuing reduced IFN-g production (75).

Cancer-Associated Fibroblasts
Given the fact that fibroblasts are associated with the progression
and metastasis of many malignancies, it is reasonable to postulate
that the cancer-associated fibroblasts (CAF) in the tumor niche
of glioma may contribute to the proliferation or invasion of
glioma (122–124). However, pieces of evidence related to
fibroblast entities and existence in the brain remain scarce. A
study claims that tumor-associated mesenchymal stem-like cells
(tMSLCs), presumably as reminiscent of fibroblasts in other
tumors, correlate with the poor prognosis of the GBM and
enhance the invasiveness of GBM by force-mediated ECM
remodeling through CCL2/JAK1/MLC2 signaling (125). And
this pro-invasive effect brought by CAFs in glioma could also
be mediated by the secretion of CXCL14 (126). Furthermore, it
reveals that long non-coding RNA (lncRNA) HOXA transcript
antisense RNA, myeloid-specific 1 (HOTAIRM1), is upregulated
in the malignantly transformed fibroblasts derived from an
orthotopic model and regulates TGF-b via miR-133b-3p to
promote malignancy (127).

Cytokines, Chemokines, and
Extracellular Molecules
Elevated levels of inhibitory cytokines, such as IL-10 and TGF-b,
overthrow thebalancewithproinflammatorymolecules contributing
to the immunosuppressive microenvironment around glioma. It is
interesting that IDO produced by glioma cells or pDC activates Treg
cells and impedes T cell activity through tryptophan depletion (109).
Besides, kynurenine, a metabolite of tryptophan, induces T cell
apoptosis and polarizes Tregs by upregulating Foxp3 expression
(128, 129). However, preclinical trials targeting IDO hold less
promise than is expected (130).

Moreover, interference with LGALS1 expression, which encoded
Galectin-1 in the immune system, reduces MDSCs infiltration and
immunosuppressive cytokine secretion (131). LAG3 binds to
Galectin-3 (Gal-3) and MHC-II for CD8+ T cell inhibition and
inhibitory signal transmission, respectively (132, 133). It is reported
that LAG-3 overexpression depletes CD8+ T cells (134). By binding
to Galectin-9 (Gal-9), TIM-3 regulates T cell depletion and
contributes to immunosuppression and even immune evasion.
Limited arginine resulted from high levels of infiltrative myeloid
cells-derived arginase also restrains immunocytes’ survival.
AUTOPHAGY MODIFIES THE INTERPLAY
BETWEEN GLIOMA AND THE TUMOR
IMMUNE MICROENVIRONMENT

Autophagy becomes an interesting element in glioma due to
paradoxical roles in glioma oncogenesis, progression, metastasis,
and therapy resistance. Whether autophagy favors or hinders
tumors may highly depend on stimuli, cell type, and specific
stage of tumor cells. As a physiological part working at a base
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level, autophagy degrades misfolded proteins and recycles
organelles to reduce unsolicited ROS production, protein
aggregates, and further damages DNA especially under stress
(135). Ironically, it may apply the used tricks for normal survival
to nurture tumor growth once the cells trend towards
malignancy (136, 137). Herein, autophagy in glioma cells per
se suits the case, as well as each component of its surrounding
immune microenvironment, and thereby tweaking the interplay
between glioma and the TIME (Figure 2).

Autophagy in Glioma Cells
As one hypothesizes an “inhibition-loss-promotion”model in an
attempt to unify the conflicting roles of autophagy in cancer
development, the model may apply to glioma with some
Frontiers in Immunology | www.frontiersin.org 7
revisions (12). Proficient autophagy may counteract the
accumulated genetic defects when glioma cells are undergoing
malignant transformation. Autophagy exhibits suppression on
oncogenesis by degrading p62, so that mitochondrial damages,
ROS-mediated oxidized molecules, and unstable genome
mutations are averted (138, 139). Given that autophagy
degrades carbohydrates, proteins, and lipids into sugars, amino
acids, and fatty acids, respectively, to fuel cellular metabolism
maintaining homeostasis, it still displays bipolar effects in glioma
initiation after transitory “loss” or compromises at a very early
phase of malignant transformation from healthy cells (140).
Once glioma is established, autophagy responds more variably
to cellular and environmental stimuli than expected with glioma
growing and progressing.
FIGURE 2 | Autophagy involvement in the regulation of the glioma immune microenvironment. As one of the evolutionarily conserved processes, autophagy keeps cellular
homeostasis not only for immunocytes but also for tumor cells. It may be manipulated by conflicting sides in favor of their profits. However, it seems that autophagy
somehow is not capable of either ensuring the physiological function of immune cells or restraining glioma growth in the glioma immune microenvironment. The
interconnections between the cells in the TIME are colored if autophagy is involved, where red indicates protumor effects and blue indicates antitumor effects.
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In a KRAS-driven GBM mouse model, autophagy inhibited
by downregulating Ulk1, Atg7, and Atg13 disrupts tumor growth
and development. The capacity of KRAS-expressing glial cells for
colony formation and survival in low-serum conditions is
inhibited when autophagy is inhibited (141). It indicates that
autophagy is vital to facilitate oncogenic transformation. The
malignant, heterogeneous, and recurrent properties of GBMmay
source from GSCs, whose pluripotency and proliferation highly
implicate autophagy (142–145). For instance, autophagy is
manifested to degrade Notch1 and thereby modulate GSC
tumorigenicity (146). The GSC tumorigenicity is also
restrained by the overexpression of microRNA-93 (miR-93)
targeting autophagic regulators, including Beclin-1, ATG5,
ATG4B, and p62 (147).

Furthermore, GSCs activate autophagy through Bcl-2 nineteen-
kilodalton interacting protein 3 (BNIP3) to habituate themselves to
hypoxia (148, 149). More than adapting to hypoxia, BNIP-3-
mediated autophagy facilitates GBMs thriving and contributes to
resistance to chemotherapies via the MT1-MMP-JAK-STAT axis
(150). As confirmation of autophagy modifying GSC survival,
autophagy inhibitor quinacrine sensitizes GSCs to TMZ by
triggering ferroptosis (146). However, autophagy induction via
mTOR inhibition in GSCs promotes differentiation and disrupted
autophagy increases stemness, which suggests thatmanipulation of
autophagy influences GSCs formation and further GBM
malignancy (151–153).

Emerging evidence shows that autophagy is implicated in glioma
progression. Autophagy-related protein LC3 and p62 expression
levels are negatively associated with glioma prognosis, especially
with high-grade glioma prognosis, suggesting potential links
between autophagy and glioma progression (154). Knockdown of
autophagy-related 4C cysteine peptidase (ATG4C) repressed glioma
progression by arresting tumor cells at the G1 phase and promoting
apoptosis (155). Overexpression of maternal expression gene 3
(Meg3) encoding a critical non-coding RNA promotes epithelial
to mesenchymal transition, migration, invasion, and autophagy in
glioma. The employment of autophagy inhibitor CQ partially
hampers glioma progression, suggesting autophagy involvement
(156). Silencing of lysosome enzyme alpha-l-fucosidase 1 (FUCA1)
impedes U87 and U251 glioma cell proliferation, whereas the
growth inhibition appears less significant when the cells are co-
incubating with 3-MA (157). It implies that downregulation of
FUCA1 may lead to autophagy-associated cell death, considering
increased LC3-II/LC3-I ratio, Beclin-1, and ATG-12 expression
level. Interestingly, antidepressant imipramine augmented with
P2Y12 inhibitor ticlopidine elicits autophagy-associated cell death,
which limits glioma cell growth in vitro, hinders tumor progression
in vivo, and prolongs survival of glioma-bearing mice (158).
Together, autophagy closely involves glioma progression, while its
reputation mostly lies in therapy resistance.

The point that autophagy mainly contributes to glioma
resistance to therapies prevails and is corroborated by a
majority of studies. TMZ stands as a clinical routine for GBM
treatment because of its high efficacy, BBB permeation, and
tolerable adverse effects (16, 159). As suggested, cytoprotective
autophagy saves cells from stresses, including drug, radiation,
and hypoxia cytotoxicity from death (160–162). In the case of
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drug resistance, for instance, GSC−derived PD−L1−containing
exosomes activate AMPK/ULK1-mediated autophagy to increase
TMZ−resistance in GBM (163). And ATG4C depletion impairs
TMZ-resistance and improves the susceptibility of glioma
to TMZ (155). Similarly, autophagy is transiently induced by
acute TMZ treatment via transitory activation of the AMPK-ULK1
axis, while CQ blocks the autophagy and enhances the efficacy of
TMZ in glioma cells (18, 164). CQ and its analogs have therefore
been an alternative adjuvant to potentiate the TMZ treatment.
Moreover, T-LAK cell-originated protein kinase (TOPK) inhibits
autophagy by phosphorylating ULK1 in glioma cells and promotes
glioma resistance toTMZ (165). TMZ-stimulated autophagy is also
inhibited by the lncRNA DLEU1 knockdown, which increases
glioma susceptibility to the drug cytotoxicity at the same time
(166). In addition, lncRNACASC2 spongesmiR-193a-5p to reduce
autophagy and potentiate TMZ efficacy via mTOR upregulation
(167). LncRNA AC023115.3 induced by chemotherapy, in turn,
improves chemosensitivity of glioma to cisplatin by competingwith
miR-26a, thereby releasing GSK3b to inhibit autophagy (168).

The role of autophagy in glioma radiation therapy is currently
controversial. Autophagy is triggered to shelter glioma cells from
death due to the toxicity of free radicals, misfolded proteins, and
damaged organelles mediated by radiotherapy (169–171). It is
demonstrated that radiation augments autophagic flux by
upregulating mammalian sterile-20-like kinase 4 (MST4), which
phosphorylates andmotivates ATG4B inGBM, whereas inhibition
of autophagy viaATG4B blockade improves sensitivity to radiation
(170). Targeting Beclin-1-mediated autophagy with miR-17-5p
expression also improves the radiosensitivity of glioma (172).
However, radiation-induced autophagy may also promote
apoptosis in glioma (173). There could be an explanation for the
conflicting results that glioma cells respond variably to radiation
simply out of distinct individual sensitivity, but the intensity and
duration of radiation should also be considered (174).

A large body of literature regarding autophagy-mediated
therapy resistance predisposes autophagy to be cytoprotective,
but the fact that overactivated or insufficient autophagy under
drug perturbation drives glioma cells to death should not be
neglected. It is demonstrated that autophagy-associated cell
death after TMZ or ionizing radiation treatment is relieved by
downregulation of Beclin-1 or ATG7 with siRNA (175). In light of
the extent of triggering autophagy-associated death, coordinated
autophagy modulation with autophagy inducers followed by
inhibitors and TMZ treatment may overcome chemotherapeutic
resistance in GBM. It is noticeable that mitochondrial respiration
and oxidative phosphorylation is greatly interfered with by the
disrupted autophagic system under autophagy modulation (176).
Though more clinical translation is in need, tweaks in the
autophagic system using autophagy inducers and consecutive
inhibitors would doubtlessly galvanize autophagic intervention
for chemoresistance.

How autophagy shuttles between cytoprotective and cytotoxic
roles in glioma, especially in terms of therapeutic resistance,
probably depends on doses and duration of treatment to decide a
compatible pathway (16). It indicates that autophagy may act as a
survival strategy under relatively mild therapies, such as low dose
and short term, but consistent treatment with maximum dosage
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could induce autophagy-associated cell death (164). Of all the
possible mediators for protective autophagy initiation, surging
adenosine triphosphate (ATP) is observed to have a key role in
promoting autophagy for drug toxicity adaption, especially in
glioma cells on TMZ administration (177). Disruption of energy
balance with drug targeting mitochondria activity is
demonstrated to induce AMPK phosphorylation and inactivate
mTORC1 and thereby suppress aggressive properties of glioma
cells (178). Since TMZ in co-treatment with autophagy inhibitor
CQ induces ROS production and augments cytotoxicity, it is also
reasonable to hypothesize that ROS level may drive the shift of
autophagy from cytoprotection to cytotoxicity with the
additional consideration that hydrogen peroxide accumulation
leads to apoptosis or necrosis (179, 180).

Although the hypothetical theory seems to coordinate
autophagy’s conflicting roles in therapy resistance, autophagy in
glioma development remains misunderstood. How to determine
any mediators or specific markers for autophagy altering from the
beneficial to the lethal is yet to be answered in gliomaprogression. It
may display context-dependency, such as the ROS andATP level in
the intra- or intercellular microenvironment (181). Or, it is
reasonable to speculate that mild stimuli give rise to
cytoprotective autophagy, whereas harsher conditions lead to
autophagy-associated death.

Autophagy in TAMs
It remains controversial to assess the contribution of autophagy in
the components of the glioma-related immunemicroenvironment.
Based on the currently incomplete understanding, autophagy
mainly involves TAM generation, function, and polarization (182,
183). Autophagy induced by c-Jun N-terminal Kinase (JNK)
activation and disruption of ATG5 cleavage promotes monocytes
differentiation intomacrophages, produces cytokines, and prevents
monocyte apoptosis (184).Forphagocytosisofdebris,macrophages
degrade phagocytosed cells via LC3-associated phagocytosis, of
which blockade would improve anti-tumor immunity (185).
Interestingly, disrupting the CD47-SIRPa axis (“don’t eat me”
signal) with specific fusion protein binding augments
phagocytosis of macrophages, triggers cytoprotective autophagic
flux in glioma cells, and further improves not onlymacrophage but
also CD8+ T cell infiltration if combinedwith autophagy inhibitors
(186, 187).

Impairment of the autophagy-mediated phagocytosis in MG
also stimulates inflammation (188). A study shows that Beclin-1-
mediated autophagy may regulate neuroinflammation via NRLP3
degradation inmurineMG(189).On top of that, rapid loss of IKKb
protein andTNF-a ismediatedbyCMAinmicroglia, indicating the
critical role of CMA in controlling inflammation (190). These
discussed studies suggest that impaired autophagy in TAMs may
enhance inflammation, but it should be reconsidered for the
simultaneous inhibition of phagocytosis.

In an immunosuppressive microenvironment, TAMs incline to
polarize toward theM2phenotype facilitating tumorprogressionand
metastasis. Interestingly, autophagy contributes greatly to the M2
polarization, namely via the STAT3 pathway (191–193). Several
studies modify the TAM state into a specific activation state by
targeting autophagy (194–196). Monocytes respond to colony-
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stimulating factor-1 (CSF-1) through AMPK-mediated autophagy
activation and differentiate into M2 macrophages (188, 197).
Nonetheless, there are always exceptions to predisposing TAM to
the M2 phenotype, which presumably depends on tumor types and
localmilieu. For instance, it is reported that inhibitionofmTOR,akey
switch of the autophagy pathway, skewsTAMpolarization to theM1
phenotype, resulting in increased IL-12,decreasedIL-10, andreduced
tumor angiogenesis (195). Collectively, it may hold promise in
targeting autophagy to modulate TAM polarization and function,
but more investigations are required.

Autophagy in MDSCs and Neutrophils
MDSCs contribute greatly to the suppressive environment
around glioma and contrive autophagy to maintain themselves
under inhospitable conditions. It is understood that autophagy
promotes MDSC viability. Either neutralization of high mobility
group box protein-1 (HMGB1), a damage-associated molecular
pattern, induces autophagy, or inhibiting autophagy directly
increases apoptosis in MDSCs. Furthermore, interference with
autophagy in MDSCs hampers tumor growth by endorsing
antitumor responses. MDSCs enhance MHC II expression due
to compromised autophagy and reduced lysosomal degradation
so that tumor-specific CD4+ T cells are efficiently activated (198).

Neutrophils exist and survive in the suppressed environment
of glioma although the mechanisms of neutrophil recruitment to
glioma are poorly defined (199). The specific role that autophagy
plays in the context of glioma is worthy of reevaluation, even if
the implication of autophagy in neutrophil granulopoiesis,
phagocytosis, degranulation, and neutrophil extracellular trap
(NET) formation is well-documented (200). In particular,
neutrophils also require autophagy as a key regulator for
building NADPH-oxidase-mediated reactive oxygen species
(ROS) and inflammatory activity (201).

Autophagy in Tumor-Infiltrating Lymphocytes
Autophagy generally maintains cellular homeostasis and relieves
lymphocytes from accumulating stress (202, 203). Notably,
reports are claiming that autophagy-mediated metabolism in T
cells modulates T cell activity (204, 205). That T cells heavily rely
on autophagy for ATP supply is not limited to survival
guarantee, but is also essential when T cell receptor (TCR)
engagement and CD4+ The cell activation cause an increased
demand for energy (205). Following activation of CD4+ Th cell,
common g-chain cytokines represented by IL-2 and IL-4 also
mediate regulation of autophagy in Th cell with JAK signaling
involvement (206). It indicates that induction of autophagy in
CD4+ T cells in response to TCR activation secures the T cell
engaging in effector responses accordingly, and exempts itself
from the energy otherwise (207). Upon TCR stimulation,
however, the planned entry to the S phase is unexpectedly
perturbed thanks to accumulated cyclin-dependent kinase
inhibitor CDKN1B in autophagy-deficient T cell, suggesting a
key role of autophagy in T cell proliferation (208).

Autophagy fuels CD4+ T cells and it meets the energy demands
of other T cell populations as well. It is dynamically regulated
throughout CD8+ T cell activities, including proliferation, memory
generation, function, and survival (209). In particular, CD8+ T cells
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depleted of Atg5 or Atg14 are metabolically reprogrammed to
glycolytic consumption and display an enhanced effector memory
cell activity against the tumor (210, 211). The report implies that the
shift towards glycolytic metabolism instead of autophagy inAtg5-/-

T cells leaves less carbon available for methylation and results in
epigenetic alterations.

Not does autophagy only adjust to activity or environmental
cues but also to distinct T cell lineages (212). Tregs depleted of
Atg5 or Atg7 show upregulation of mTOR complex 1(mTORC1)
and glycolysis, defective functional integrity, and increased
apoptosis (213). Interestingly, it rescued the Foxp3 instability
phenotype in autophagy-deficient Tregs by inhibiting pyruvate
dehydrogenase kinase and glycolysis.

Overall, those studies imply that autophagy fulfilling the energy
needs of lymphocytes is subject to specific environmental context,
or exact activity, or cell type in a variety of pathways (212). It is
plausible tohypothesize thatautophagy in those infiltratingTcells is
occluded, at least partially, or are diverted to degrade anti-tumor
molecules only, or other undiscovered mechanisms contribute to
the “non-functional” T cells in the glioma immune
microenvironment. Therefore, studies at a single-cell resolution
are required for a complete understanding of autophagy in shaping
the protumor microenvironment.
REDEFINE THE INTERCONNECTION
BETWEEN GLIOMA AND THE IMMUNE
MICROENVIRONMENT FROM AN
AUTOPHAGIC PERSPECTIVE

Autophagy is generally deployed by multiple types of cells in glioma
not only for energy gratification and integrity maintenance, but also
for essential functions, such as cytokine production, phagocytosis,
and antigen presentation (182). Therefore, the interconnections
between glioma and the TIME would be impacted if the energy
supply or the cellular context of these cells alters with malignancy
progressing. Substantial bioinformatic analyses raise awareness of
the autophagy-associated links between glioma and the components
of TIME predicting a wide area of intensive basic research (214–
219). It has been anticipated by distinct autophagy gene signature-
based prognostic risk models that there is more immune cells
infiltration in the sets with higher autophagy risk scores, implying
latent autophagy-involved associations between autophagy and
immunity in glioma (214, 218, 220). However, interpretation for
the “coincidental” intertwinement between autophagy and immune
responses may require future experimental evidence. It is also
worthy of investigation to determine whether it is a cause-effect
relation or coincidence and to identify specific cell populations that
manipulate autophagy and thereby renovate the immune
microenvironment in glioma.

Hypoxia stimulates glioma cells to release exosomes into the
peritumor area for intercellular communication. Since TAMs
dominates the infiltrating immunocytes and autophagy is highly
involved inM2-likemacrophage, a piece of evidence illustrates that
the glioma-derived exosomesmainly containing IL-6 andmiR-155-
3p initiate autophagic activities in TAMs and promote M2-like
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polarization via IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3
positive feedback loop (221, 222). It exposes the bridging role that
autophagy plays in glioma-sourced immunosuppression. M2
macrophage-sourced exosomal miR-15a and miR-92a are
reversely corroborated to inhibit glioma invasion and migration
via phosphatidylinositol-3-kinase (PI3K)-AKT-mTOR pathway
(223). On the other hand, LPS/IFN-g-stimulated MG can trigger
autophagy-dependent death in glioma cells that are resistant to
death ligands, like TNF a and TRAIL (224). Although the specific
molecular elements restoring the anti-tumor function ofMG are of
utmost interest, the report exposes that MG-mediated autophagic
death may overcome apoptosis resistance in glioma (225).

In addition to exosomal microRNA-mediated autophagic
activities, the researchers shed light on the employment of classic
autophagy modulators to improve the therapeutic efficacy of
immune checkpoint inhibitors (41). According to the report,
rapamycin treatment combined with hydroxychloroquine (HCQ)
reducesM2-like polarizedmacrophages in vitro and augments both
M1/M2 and CD8/CD4 ratio in the GL261 model. The phagocytic
capacity of treated macrophages is also enhanced (41). Further,
dropping the expression level of CD47 and SIRPa on glioma cells
and macrophages resulted from the combination treatment
suggests the deteriorating anti-phagocytic ability of glioma (41,
186). Other mechanisms influencing the TIME may include the
evidence that glioblastoma promotes CMA and therebywearing off
the immunogenicity of pericytes, which is reversed by the CMA
inhibition (226).

Besides, a novel nanodiamond carrying doxorubicin (Nano-
DOX) is designed and corroborated to trigger autophagy instead
of apoptosis in GBM. The Nano-DOX further stimulates GBM
cells to emit antigens and damage-associated molecular patterns
(DAMPs) leading to the boosted activation of DCs (227).
Moreover, the liposomal honokiol and disulfiram/copper
codelivery system (CDX-LIPO) is demonstrated to be a
remarkable autophagy initiator in glioma cells and induces
immunogenic cell death which results in enhanced activation
of anti-tumor immunity. The CDX-LIPO is developed to inhibit
the mTOR signaling pathway to promote autophagy, shift the
M2 TAM towards the M1 type, and even interfere with glucose
metabolism and lactate production. It also triggers immunogenic
cell death, promoting the maturation of antigen-presenting cells
and, further, the activation of T cells. The TIME in glioma is thus
remodeled, marked by M2-polarized TAMs, matured DCs and
NK cells, activated cytotoxic T cells, and repressed MDSCs, along
with diminished glycolysis and lactate metabolism (228).

Current Autophagy-Adjuvant and
Autophagy-Related Therapies
Against Glioma
As is shown in the extensive studies discussed previously, there
are generally two directions to manipulate autophagy against
glioma. One method of autophagy intervention is to overcome
protective autophagy stimulated by drugs and repurpose the
lethal condition to induce cell death. For instance, it has long
been discussed that TMZ treatment at clinically available dosage
induces autophagy in glioma cells for survival in adverse
conditions (229). The TMZ-induced autophagy may require
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ERK1/2 signaling (230). The therapeutic efficacy of TMZ is
further improved with later autophagy inhibitor bafilomycin or
CQ administration. Recent studies unravel the mechanisms of
TMZ-stimulated autophagy including, but not limited to,
mitochondrial and endoplasmic stress, O6-methylguanine
adducts generation, and ATP surge (177, 231, 232).

The addition of CQ or HCQ to the conventional glioma
treatment TMZ represents a breakthrough. These quinolone
derivatives initially used as antimalarial and rheumatological
drugs are the only autophagy modulators that have been
extensively researched and even tested in clinical trials for glioma
combinational therapies (NCT02378532 andNCT00486603) (233,
234). Particularly, CQ in combination with TMZ renders U87,
U251, and LN229 cells susceptible to TMZ by interfering with
GRP78-dependent and PI3KC3-BECN1-dependent autophagy
and cleaving poly ADP-ribose polymerase (PARP) (18). It is
revealed that mitophagy is additionally inhibited by the CQ
cotreatment with TMZ resulting in ROS accumulation (179).
Other synergistic effects of combinations of CQ and TMZ may lie
in the p53-mediated apoptosis induction or p53-independent cell
cycle arrest in glioma cell lines (235). However, CQ- orHCQ-based
conclusions merit further consideration due to their autophagy-
independent off-target effects (137). Research focusing on more
precisely targeted inhibitors of autophagy are highly welcomed for
antitumor drug development.

However, a few clinical trials have been conducted to translate
the promising treatment efficacy of CQ and TMZ into the
application. A total of 30 postoperative GBM patients are
recruited into a randomized, double-blinded, and placebo-
controlled trial to evaluate the efficacy of CQ as adjuvant therapy
for glioma (234). Despite the lack of statistical significance, the
median survival of CQ-treated patients being 24 months is
approximately two times longer than the control group being 11
months, which may be more definitive and more generalized if
enlarging the sample size is permitted. A more recent phase I/II
cohort focuses on the efficacy of HCQ along with concurrent
radiotherapy and TMZ administration in newly diagnosed GBM
(233). Nevertheless, the maximum tolerated dose for HCQ is 600
mg/d due to severe dose-limiting toxicity, at which autophagy may
not be sufficiently and consistently inhibited in patients. As a result,
any significant improvement in overall survival is hardly detected
(233).The conflicting results betweenbasic studies andclinical trials
encourage the development ofmore tolerable, BBB-penetrable, and
potent autophagy modulators. More novel options in conjunction
withTMZfor gliomamanagement are currently being exploredand
evaluated, such as combined TMZ/SAHA therapy (Table 1) (236).

Apart from inhibiting protective autophagy, another direction
may involve the agents triggering cytotoxic autophagy. Delta-9-
tetrahydrocannabinol (THC) and cannabidiol (CBD) are both
cannabinoids utilized as anticancer agents due to their ability to
induce lethal autophagy (244).The systemic administrationofTHC
+CBD at a 1:1 ratio in combinationwith TMZ strongly reduces the
subcutaneous and the intracranial tumor volume in the preclinical
models of glioma, which results in complete tumor regression in
over half of the animals (237). Indeed, the TMZ/THC/CBD therapy
has already been proposed to be evaluated through a clinical trial
(NCT03529448). Although microRNAs are mostly regarded as
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biomarkers for diagnosis or prognosis, the synergistic effect of
miR-450a-5p overexpression combined with epidermal growth
factor receptor (EGFR) inhibitor gefitinib confers the sensitivity
to chemotherapy in glioma through the EGFR-stimulated PI3K/
AKT/mTOR signaling pathway and further pro-death autophagy
activation (245). Furthermore, the application of rapamycin
induces autophagy and results in an increase of radiosensitivity in
EGFR-silencing GBM cell lines (246).

With the additionof carnosic acid (CA), an abietanediterpenoid
extracted from rosemary or common sage, the U251 and LN229
cells are resensitized to TMZ incubation showing Cyclin B1-
mediated cell cycle arrest, cellular apoptosis induction by cleavage
of PARP and Caspase-3, and enhanced autophagy through
inhibition of phosphorylated AKT (238). This is similar to how
pan-PI3K inhibitor GDC-0941 combined with TMZ arrests cell
cycle, exerts a pro-apoptotic effect, and augments autophagymainly
through the PI3K-AKT signaling pathway (239). The Janus kinase
(JAK) inhibitor momelotinib (MTB) also potentiates TMZ efficacy
via apoptosis and autophagy induction (240). Although TMZ/CA,
theTMZ/GDC-0941, and theTMZ/MTBtherapy fail to identify the
relationbetween the relationshipbetweenapoptosis andautophagy,
it is plausible to think that the “apoptotic” cell death could be
ascribed to autophagy-associated impacts. Some of the autophagy-
related agents treating glioma are summarized inTable 1, while the
other autophagy modulating chemicals or autophagy-related
molecular targets have been discussed elsewhere (181, 247, 248).
CONCLUSION AND FUTURE PERSPECTIVE

Autophagy represents not merely a way for cellular maintenance,
but also a key point of regulation in finely adjusting interplays
between glioma and the TIME. It supports glioma typically by
enhancing the adaptability of glioma cells to the extent of
progressive, invasive, and drug-resistant malignancy, and also by
rendering prevailing TAMs differentiating towards the M2
phenotype through exosomes and reduce phagocytosis.
Neutrophils use autophagy for proper immunity against glioma.
The intercellular engagement, activation, and anti-glioma
activities of T cells are ensured with autophagy involvement.

Conclusively, the ultimate effect of autophagy in glioma and
the TIME may highly depend on the cell type, the intensity of the
surrounding signal, and the stage of the lesion and progression.
Autophagy can be utilized to cater to a variety of demands, but it
seemingly turned out to be tumor-promoting cumulatively with
glioma progression. It also should be reiterated that autophagy
may influence the status and well-being of glioma cells and the
members of TIME, and thereby modulate their interconnections
in the permissive environment. Some interplays may rely on the
whole process of autophagy while others are involved with some
of the autophagic components instead of the entire flux.

Beyond glioma cells, autophagy in any peritumor cells would be
influenced when autophagy is manipulated systemically.
Considering the promising efficacy of autophagy modulators and
the definite number of related clinical trials and basic studies, it is of
great importance to shed more light on the entire supervision of
glioma cells and their environment at a single-cell level, ofwhich the
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members in the suppressive immune environment should be
prioritized. Therefore, more profound insights will be acquired
for novel autophagy-related therapy development.

The reason why it deserves more attention not only comes
from the trend that autophagy modulators might be part of
regular use for glioma treatment one day but also lies in the
autophagy-related drugs that are being clinically employed.
However, the mechanism challenges regarding autophagy in
glioma and its TIME are pressing. How autophagy contributes
to oncosuppression and turns itself into an indispensable part
of glioma malignancy remains to be determined. It is also
critical to identify specific and easily-tested indicators for
autophagy status so that the dependency on autophagy for a
certain type of cells in glioma is characterized before
autophagy therapies.
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TABLE 1 | Autophagy-related therapy against glioma.

Autophagy-Related
Therapy

Mechanism Effects on
Autophagy

Autophagy
Type

Experiment Setting Refs

TMZ ROS induction Activation Protective
autophagy

In vitro: U87 and U251 (177)

TMZ + CQ PARP cleavage, apoptosis induction Inhibition Protective
autophagy

In vitro: LN229 and U251 In vivo:
U251

(18)

ROS induction Inhibition Protective
autophagy

In vitro: U87 and C6 (179)

Induction of p53-dependent apoptosis and cell cycle
arrest

Inhibition Protective
autophagy

In vitro: U87 and U373 (235)

Induction of toxicity Inhibition Protective
autophagy

Clinical trial Phase I (234)

TMZ + HCQ Induction of toxicity Inhibition Protective
autophagy

Clinical trial Phase I/II (233)

TMZ + SAHA + CQ Induction of apoptosis, H3 and H4 histone acetylation Inhibition Protective
autophagy

In vitro: U251 (236)

TMZ + Curcumin + CQ Induction of DNA damage, inhibition of PI3K/AKT ERK1/2 Inhibition Protective
autophagy

In vitro: U87, C6, and U251In vivo:
C6

(230)

TMZ + Irradiation Increase of Beclin-1, ATG5 Activation Lethal
autophagy

In vitro: T98 and U373 (175)

TMZ + THC + CBD Induction of autophagy-associated apoptosis and toxicity Activation Lethal
autophagy

In vivo: U87 (237)

TMZ + CA Induction cell cycle arrest and apoptosis, inhibition of p-
AKT

Activation – In vitro: U251 and LN229 (238)

TMZ + GDC-0941 Induction of cell cycle arrest and apoptosis, inhibition of p-
AKT and MGMT

Activation – In vitro: A172, T98, and SHG44 (239)

TMZ + MTB Induction of apoptosis, inhibition of JAK2/STAT3 Activation – In vivo: U251 (240)
CQ + Galunisertib Inhibition of TGF-b2-induced autophagy Inhibition Protective

autophagy
In vitro: U87, T98, and U251 In vivo:
U87

(241)

CQ + BAFA1 ROS induction Inhibition Protective
autophagy

In vitro: U87 and C6 (179)

2DG + CP ER stress induction, induction of apoptosis Inhibition Protective
autophagy

In vitro:LN229 and A172 (242)

IM + TIC Induction of non-apoptosis cell death via AC/cAMP/
EPAC1 signaling pathway

Activation Lethal
autophagy

In vitro: LN71, LN229, and LN443
In vivo: LN229

(158)

Erlotinib + Sorafenib Inhibition AKT and ERK signaling Activation Lethal
autophagy

In vitro: U87, LNZ308, LN428, and
GSC

(243)
October 2021 | Volume 12 | Article 74
TMZ, temozolomide; CQ, chloroquine; HCQ, hydroxychloroquine; SAHA, suberoylanilide hydroxamic acid; THC, delta-9-Tetrahydrocannabinol; CBD, cannabidiol; CA, carnosic acid;
MTB, momelotinib; BAFA1, bafilomycin A1; 2DG, 2-deoxy-D-glucose; CP, cisplatin; IM, imipramine; TIC, ticlopidin.
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