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Abstract

Background: An important application of high dimensional gene expression measurements is the risk prediction
and the interpretation of the variables in the resulting survival models. A major problem in this context is the
typically large number of genes compared to the number of observations (individuals). Feature selection
procedures can generate predictive models with high prediction accuracy and at the same time low model
complexity. However, interpretability of the resulting models is still limited due to little knowledge on many of the
remaining selected genes. Thus, we summarize genes as gene groups defined by the hierarchically structured
Gene Ontology (GO) and include these gene groups as covariates in the hazard regression models. Since
expression profiles within GO groups are often heterogeneous, we present a new method to obtain subgroups
with coherent patterns. We apply preclustering to genes within GO groups according to the correlation of their
gene expression measurements.

Results: We compare Cox models for modeling disease free survival times of breast cancer patients. Besides
classical clinical covariates we consider genes, GO groups and preclustered GO groups as additional genomic
covariates. Survival models with preclustered gene groups as covariates have similar prediction accuracy as models
built only with single genes or GO groups.

Conclusions: The preclustering information enables a more detailed analysis of the biological meaning of
covariates selected in the final models. Compared to models built only with single genes there is additional
functional information contained in the GO annotation, and compared to models using GO groups as covariates
the preclustering yields coherent representative gene expression profiles.

Background
We present prediction models for survival times built
from high dimensional gene expression data. The chal-
lenge is to construct models that are complex enough to
have high prediction accuracy but that at the same time
are simple enough to allow biological interpretation.
Univariate approaches use single genes as covariates in
survival time models, whereas multivariate models per-
form dimension reduction through gene selection (see,
e.g., [1]). In addition, the combination of clinical data
and gene expression data is a hot topic of research [2,3]
and is included in our model building procedure. Analy-
sis of the prognostic index [4] and the Brier Score [5,6]
can be used to assess the predictive performance of the
models.

Here, we present models with higher interpretability
by combining genes to gene groups (e.g. biological pro-
cesses) and then using these groups as covariates in the
survival models. The hierarchically ordered ‘GO groups’
(Gene Ontology) are particularly suitable [7]. The Gene
Ontology (GO) project provides structured, controlled
vocabularies and classifications according to molecular
and cellular biology. The current ontologies of the GO
project are biological process, molecular function, and
cellular component. These three areas are considered
rather independent of each other and we make use of
the biological process ontology.
A problem when relating gene groups with gene

expression profiles is that the genes in each gene group
may have different expression profiles: interesting sub-
groups may not be detected due to heterogeneous or
anti-correlated expression profiles within one gene
group. We propose to cluster the expression profiles of
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genes in every gene group and preselect relevant clusters
(preclustering).
For statistical analysis, the Cox regression model [8] is

a well-known method for modeling censored survival
data. It can be used for identifying covariates that are
significantly correlated with survival times. Due to the
high-dimensional nature of microarray data we cannot
obtain the parameter estimates directly with the Cox log
partial likelihood approach. However, we can combine
the Cox model with selection and shrinkage procedures
and compare the prediction performance of the
obtained models. Based on these models statistical selec-
tion procedures are applied. Univariate selection and
forward selection have been shown to have problematic
performance in highdimensional settings. Therefore we
do not show their results in this work. We focus on pre-
senting the results for ridge regression [9] and lasso
regression [10,11] as shrinkage methods. Note that lasso
regression is a variable selection method as well.
In order to integrate the clinical information and

microarray data in survival models properly, it is a com-
mon approach to handle the clinical covariates as unpe-
nalized mandatory variables [3,12]. In addition to the
genomic information, clinical covariates like age, tumor
size and tumor stage may be important predictors for
survival times of patients. These approaches show that
the combination of genomic and clinical information
may also improve predictions.
Our aim is the combination of methods for survival

prediction with biological a priori knowledge. On real
gene expression data sets we evaluate the potential of
including preclustered gene groups as covariates in sur-
vival models. Models built with gene groups alone have
equal or decreased prediction accuracy since many
genes are not yet annotated to their corresponding func-
tions. However, we will show that after adding the pre-
clustering information to the gene groups the resulting
models have improved interpretability while prediction
performance remains stable.
In the next chapter we introduce the methods for ana-

lyzing survival data, for preclustering genes, for model
selection, and for evaluating the prediction accuracy of
the resulting survival models. Then we present and dis-
cuss results on two real gene expression data sets.

Methods
We first present the notation, the Cox model and how
the covariates are defined that are used in the Cox mod-
els - especially the preclustering Algorithm is presented.
Then we describe the log partial likelihood concept
derived for the Cox model and introduce model selec-
tion/shrinkage methods. Since most methods for dimen-
sion reduction or shrinkage require the selection of a
tuning parameter that determines the amount of

shrinkage, finally, we describe how to choose the tuning
parameter for each method.

Cox model
In the following, we assume that we have a sample size
of n patients, and a (possibly right-censored) survival
time for the response. In order to cope with censored
survival times data we use the Cox model, also known
as proportional hazards regression model [8]. Cox sug-
gested that the risk of an event (e.g. cancer recurrence,
death or any date of interest) at time t for a patient with
given covariate vector x = (x1,..., xp) is modeled as

h(t|x) = h0(t) exp(β ′x), (1)

where h0(·) is an arbitrary baseline hazard function
and b = (b1,..., bp) a vector of regression coefficients. In
the classical setting with n > p, the regression coeffi-
cients are estimated by maximizing the log partial likeli-
hood

l(β) =
n∑

i=1

δi

⎡
⎣β ′xi − log

⎛
⎝ ∑

j∈R(ti)

exp(β ′xj)

⎞
⎠

⎤
⎦ . (2)

For patient i, this expression contains the possibly
censored failure time ti, the (non-censoring-)indicator δi
(equal to 1 if ti is a true survival time and to 0 if it is
censored) and the vector of gene (or summarized gene
group) expression values xi.
Further, R(ti) is the risk set at time ti; this is the set of

all patients who have not yet failed nor been censored.
The value of b′xi is called prognostic index or risk score
of patient i.

Definition of covariates
In the following, we assume that the data consists of
two different categories of covariates
clinical covariates Z = (Z1 , ..., Zq): e.g. tumor size,

tumor grade, age
genomic covariates X = (X1, ..., Xp): gene expression

values of single genes or combined gene expression
values for gene groups.
For a detailed analysis we consider three different

types of Cox models. We start with the simple model
using only the clinical covariates

h(t|Z) = h0(t) exp(γ ′Z). (3)

The second model consists of p genomic covariates X
= (X1,..., Xp). In our genetic regression models we use
single genes, gene groups as well as preclustered gene
groups as covariates. A gene group must be appropri-
ately summarized in order to obtain one representative
value for each individual (patient). We summarize the
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gene expression measurements from all genes belonging
to one GO group or cluster via the first principle com-
ponent of all genes that belong to this gene group. In
the following we will consider three types of genomic
models:
genes
groups
preclustered GO groups.
In the last step, we combine the genomic models with

the clinical model, which can be written as

h(t|X, Z) = h0(t) exp (β ′X + γ ′Z) (4)

Due to the small number of clinical covariates, the
shrinkage and dimension reduction procedures will only
be applied to the genomic covariates.

Preclustering with PAM
In order to find K homogeneous subgroups of genes
within one GO group containing N genes, we use the
partitioning around medoids (PAM) cluster analysis (cf.
[13]). The PAM procedure is based on the search for K
representative genes, the medoids, among the N genes
to be clustered. To achieve the goal of finding K
medoids that minimize the sum of dissimilarities of the
genes to their closest medoid

N∑
i=1

min
j=1,...,K

d(i, j), (5)

where d(i, j) is the dissimilarity of the ith and jth gene,
the two following steps are carried out iteratively until
convergence, starting with K sequentially selected genes
as initial solution:
Build: Select sequentially K initial clusters and assign

each gene to its closest medoid.
Swap: Minimize the objective function (5) by switch-

ing medoids with other genes of the same cluster.
To find correlated subgroups, the dissimilarity

d(i, j) = 1 − Cor(xi, xj)

of the ith and jth gene with the gene expressions xi
and xj is based on their Pearson correlation. This yields
small dissimilarities between positively correlated genes
and large values for negatively correlated genes,
respectively.
The number of clusters K for the PAM algorithm has

to be chosen in advance. To find tight clusters of highly
correlated genes, [14] suggest using the Intra Cluster
Correlation:

ICC =
2

n(n − 1)

∑
i

Ci.

Here, the values Ci are the elements of the lower tri-
angle of the correlation matrix of the Nj genes within a
single cluster. The maximum mean ICC among the K =
2,..., N - 1 possible cluster configurations corresponds to
the optimal number of clusters within one GO group.

Methods for dimension reduction
For comparing our results to those being published in
the literature, we make use of the following two most
established and successful shrinkage procedures: L1
(lasso) and L2 (ridge) penalized regression. Univariate
and forward stepwise selection do not produce satisfac-
tory results for our high dimensional settings. We have
compared these two methods in our analysis, and in
agreement with previous results from Boevelstad et al.
[4,12] prediction performance was always worse (data
not shown). We present the methods for the model con-
taining clinical and genomic information.
L1 (lasso) and L2 (ridge) penalized estimation methods

shrink the estimates of the regression coefficients
towards zero relative to the maximum likelihood esti-
mates. Both methods are similar in nature, but the
results of L1 and L2 penalization can be very different.
We perform the penalization only on the high-dimen-
sional genomic covariates, the clinical covariates are
handled as unpenalized mandatory variables.
The lasso shrinks the regression coefficients toward

zero by penalizing the absolute values instead of their
squares. The penalized log partial likelihood thus

becomes l(β , γ ) − λ
∑p

j=1 |βj| .[11].

Ridge regression [9] shrinks the regression coefficients
by imposing a penalty on their squared values. The
regression coefficients are estimated by maximizing the

penalized log partial likelihood λ
∑p

j=1 β2
j where

λ
∑p

j=1 β2
j is the penalty term and l(b, g) is given by (2).

Applying an L2 penalty tends to result in many small
but non-zero regression coefficients, whereas penalizing
with the absolute values has the effect that many regres-
sion coefficients are shrunk exactly to zero. Thus the
lasso also is a variable selection method.
We applied both methods using the R package pena-

lized [15]. In both methods the tuning parameter l con-
trols the amount of shrinkage and is obtained again by
cross-validation.

Choosing the tuning parameter
The model complexity of the prediction methods
depends on a tuning parameter l. We use M-fold cross-
validation as proposed by [16] for estimating l. The M-
fold cross-validated log partial likelihood (CVPL) is
given by
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CVPL(λ) =
M∑

m=1

[
l
(
β̂m(λ), γ̂m

)
− lm

(
β̂m(λ), γ̂m

)]
, (6)

where l(b, g) denotes the log partial likelihood given in
(2) and lm(b, g) the log partial likelihood when the mth
fold (m = 1,..., M) is left out.
The difference of the two terms compared in the for-

mula is that in the right term the likelihood is evaluated
without the mth fold, and on the left side it is evaluated
with all patients. In both cases the parameters b and g
are estimated without the mth fold. The estimate of b
and g when the mth fold is left out is denoted by β̂m

and γ̂m . The optimal value of l is chosen to maximize
the sum of the contributions of each fold to the log par-
tial likelihood.

Evaluation
Next we describe how we evaluate the prediction perfor-
mance of the models. We make use of three different
model evaluation criteria. The whole procedure is
applied to two well-known data sets. The basic idea is
to split the data into a training set for model fitting and
a test set for model evaluation, i.e. for determining the
prediction performance. It is important to note that we
have to consider several splits of the data into training
and test sets due to the extreme dependence of the
results on such a split (cf. [4,17]).

Evaluation Procedure
In order to obtain a fair comparison of the prediction
methods, we divide the data 100 times at random in a
training and test set at the ratio of 2:1. After computing
the optimal tuning parameter λ̂train by 10-fold cross-
validation using the training data, we estimate the
regression coefficients β̂train and γ̂trainon the whole

training data set. For each split into training data and
test data, we calculate on the test set the three evalua-
tion criteria explained in the next subsections. The
results are compared with the help of boxplots and pre-
diction error curves.

Logrank Test
We assign patients to subgroups based on their prog-
nosis, into one with good and one with bad prognosis. If
the prognostic index β̂xi + γ̂ zi of patient i is higher, the
survival time is expected to be shorter. For this reason,
a patient i in the test set is assigned to the high-risk
group if its prognostic index is above the median of all
prognostic indices calculated on the test set. We apply a
logrank test on the two prognostic groups and use the
p-value as an evaluation criterion for the usefulness of
the grouping. Boevelstad [4] points out that a

disadvantage of this criterion is that it does not consider
the ranking of the patients within the groups and it may
not be biologically meaningful.

Prognostic Index

The prognostic index β̂xi + γ̂ zi is used as a single con-
tinuous covariate in a Cox model. We fit the model

hi(t|xi, zi) = h0(t) exp
(
α

(
β̂xi + γ̂ zi

))
. Using the likeli-

hood ratio test, we test the null hypothesis a = 0 versus
a ≠ 0 and assess the prediction performance with the
obtained p-value. A small p-value indicates ability of the
prognostic index to discriminate between short and long
survivors.

Brier Score
The prediction performance can also be assessed based
on the (integrated) Brier Score that was introduced by
[5] in survival context. The consistent estimate of the
expected Brier Score BS(t) is defined as a function of
time t >0 by

BS(t) =
1
n

n∑
i=1

[
Ŝ(t|Xi, Zi)

2 · 1(ti ≤ t ∧ δi = 1)

Ĝ(ti)

+
(1 − Ŝ(t|Xi, Zi))

2 · 1(ti > t)

Ĝ(t)

]
,

(7)

where Ŝ (·| Xi, Zi) stands for the estimated survival for

patient i and Ĝ denotes the Kaplan-Meier estimate of

the censoring distribution. The estimation of Ŝ (·|Xi, Zi)

is performed via the Breslow estimator of the cumulative
baseline hazard function (see, e.g., [18], Chapter 8.8).
Good predictions at time t are reflected by small Brier
Scores. Note that the Brier Score BS(t) is dependent on
the point in time t. The integrated Brier Score IBS,
given by

IBS =
1
t∗

∫ t∗

0
BS(t)dt, (8)

is a score for the average predition performance for all
time points in the interval [0, t*]. In accordance with
[6], we calculate the IBS for the two data sets for t* = 10
years due to high censoring after 10 years of survival.

Results
For investigating the relationship between microarray
gene expression data and censored survival data, we
analyze two published breast cancer data sets with the
methods described above. In this section, we present the
results for the evaluation procedure applied to these two
data sets. Standard approaches focus on single genes as
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covariates [1,4,19]. We integrate additional biological
knowledge by building models with preclustered GO
groups as covariates. In order to assess the merit of this
approach, we also present results for models using only
genes or only GO groups as explanatory variables and
combine the genomic information with the clinical data.
In order to obtain a fair comparison of models with dif-
ferent types of genomic covariates, we only use those
genes that are annotated to GO groups. We have to
consider several splits of the data into training and test
set due to the dependence of the results on such a split.
We first present detailed results for one specific random
split, then we present comprehensive results summariz-
ing 100 random splits.
At this point we want to highlight that the proposed

methods are computationally intensive. Due to the
nested cross-validation procedure for obtaining the opti-
mal tuning parameter l and the preclustering approach,
we performed all computations on the LiDOng high
performance computing cluster of TU Dortmund Uni-
versity with 432 nodes and up to 64 GB RAM per node.
The calculation takes several weeks to accumulate all
results for one high dimensional data set.

Data sets
The Dutch breast cancer (DBC) data set is a subset of
the original data set with 24 885 gene expression mea-
surements from n = 295 women with breast cancer [20].
After data pre-processing as proposed by [21] our analy-
sis is performed with 1 890 genes, that are annotated to
at least one GO group, according to the biological pro-
cess ontology. We obtained the data from the website
https://www.msbi.nl/dnn/People/Houwelingen.aspx. In
total, there are 5 560 GO groups to which at least one
of these genes is annotated. The mean number of genes
included in these GO groups is approximately 17 genes,
90% of all GO groups contain at most 30 genes. For 79
patients an event was observed. The clinical covariates
are age, size, nodes and grade.

The Mainz cohort (MC) study consists of n = 200
node-negative breast cancer patients who were treated
at the Department of Obstetrics and Gynecology of the
Johannes Gutenberg University Mainz between the years
1988 and 1998 [22]. All patients underwent surgery and
did not receive any systemic therapy in the adjuvant set-
ting. Gene expression profiling of the patients’ RNA was
performed using the Affymetrix HG-U133A array, con-
taining 22 283 probe sets, and the GeneChip System.
The normalization of the raw data was done using RMA
from the Bioconductor package affy. The raw. cel files
are deposited at the NCBI GEO data repository with
accession number GSE11121. For covariates in the sur-
vival models, 17 834 genes and 8 587 GO groups are
available. The mean number of genes included in these
GO groups is approximately 102 genes, 90% of all GO
groups contain at most 146 genes. There have been 47
events observed. The clinical data covers age at diagno-
sis, tumor size and grade as well as the estrogen recep-
tor status.

Exemplary analysis: One split into training and test data
We apply the model selection methods and three eva-
luation criteria to one specific random split of the
Mainz cohort study into training and test data. Model
building and evaluation are performed as explained in
the evaluation procedure section. We split the 200
breast cancer patients into training set and test set,
where 2/3 of the patients (in this case 133) are assigned
to the training set and 1/3 (here 67) to the test set. We
use the training data for estimating the tuning para-

meter λ̂train and the regression coefficients β̂traintrain

and γ̂train and the test data for evaluation. Table 1
shows the results for the two prediction methods, using
genes, GO groups, or preclustered gene groups as
covariates.
This example indicates that the predictive perfor-

mance of models built with GO groups alone and of
models with preclustered GO groups is comparable with

Table 1 One random split into training and test data for the Mainz cohort study

Method Covariates pLR pPI pIBS l sel.cov

L1 genes 0.0190 0.0017 0.1042 11.72 19

L1 GO 0.0176 0.0018 0.1103 10.75 16

L1 clustered 0.0092 0.0002 0.0830 28.53 5

L2 genes 0.0098 0.0003 0.0877 5112.08 17834

L2 GO 0.0541 0.0097 0.1022 11749.16 6530

L2 clustered 0.0690 0.0006 0.0896 96499.04 31229

Results for the two prediction methods using (i) genes, (ii) GO groups, and (iii) preclustered GO groups. For ridge regression, nearly all covariates are kept in the

model since parameter estimates are unlikely to get shrunken exactly to 0.LR=̂logrank test ,

sel.cov=̂number of selected covariates ,IBS=̂Integrated Brier Score ,sel.cov=̂number of selected covariates .
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classical models using only genes as covariates. The p-
values for model assessment are similar, but in addition,
we have more information in the final model; annota-
tions of preclustered GO groups can help clinicians to
investigate the selected genes according to their biologi-
cal function.
For illustration of the results presented in Table 1 we

show Kaplan-Meier curves for two prognostic groups of
patients derived by dividing all patients according to the

median prognostic index of the patients in the test set.
Here we used lasso regression for model selection and
the logrank test for evaluation. We compare models
with genes, GO groups, and preclustered GO groups as
covariates (see Figure 1).
For all three types of genomic covariates the two

prognostic groups are clearly separated on the test data,
with significant differences in overall survival (p <0.02)
between the high-risk group and the low-risk group.

Figure 1 Kaplan-Meier curves for the high-risk and low-risk groups. Kaplan-Meier curves for the high-risk and low-risk groups defined by
the estimated prognostic indices of the 67 patients in the test data set, the cutoff is defined as the median prognostic index on the test data.
Genes, GO groups, and preclustered GO groups are used as covariates, respectively, and lasso regression is applied as model selection method.
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The separation between the two groups is best when
using a model containing preclustered GO groups (p =
0.0092).

Comprehensive analysis: 100 splits into training and test
data
We have observed high variability of the chosen tuning
parameters and the parameter estimates depending on
the split into training and test data. In order to quantify
which covariates are consistently selected in different
splits and how stable the evaluation measures are, we
calculated results for 100 random splits and compared
the selected genes and GO groups.
In Figures 2 (DBC) and 3 (MC), we present boxplots

for the results for the two cancer data sets, after

applying the evaluation procedure for lasso and ridge
regression for each of the three types of genomic covari-
ates (genes, GO groups, preclustered GO groups).
Results for the clinical model are presented as a
reference.
Rows of the plots correspond to two model evaluation

criteria, the prognostic index and the Integrated Brier
Score, and the columns correspond to two types of
models: the genomic model and the genomic model
with clinical covariates. Results for the logrank test are
nearly the same as for the prognostic index and there-
fore not shown here. In each plot we show the results
for the two model selection methods. The p-values for
the prognostic index are shown on the - log10 scale,
thus a value of 2, e.g., corresponds to a p-value of 0.01.

−
(

)

−
(

)

Figure 2 Results: Dutch breast cancer data set. The boxplots show results for lasso and ridge regression applied to 100 training/test splits for
genes, GO groups, and preclustered GO groups for the Dutch breast cancer data set. P-values of the prognostic index are presented on - log10
scale. A small value of a criterion corresponds to a good prediction performance. The Brier Scores are calculated for 10 years follow-up. Small
values of the Integrated Brier Score correspond to good prediction performance. L1=̂lasso regression ,L2=̂ridge regression .
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Small values for the integrated Brier Score correspond
to good prediction performance. For both evaluation cri-
teria in all plots the horizontal line at the median indi-
cates the reference model containing only clinical
information.
The following main statements can be deduced from

the plots:
Lasso regression with preclustered GO groups has the

best prediction performance for the DBC data set, see
the median of the p-values across 100 splits in Figure 2.
In the Mainz cohort study, we see the same result for
the genomic model using the Brier Score for evaluation
(see Figure 3).
Methods using GO groups or preclustered GO groups

as covariates perform in general as well as models using
only genes.

The prognostic index and the Brier Score yield similar
results.
It is noticeable that for the MC study and prognostic

index as performance measure the model using only
genomic information is worse than the clinical model
(Figure 3, upper left), but the clinical-genomic model is
comparable to the clinical model.
The optimal tuning parameter varies considerably

between the splits. The interquartile range for the number
of chosen covariates for L1 regression and for all three dif-
ferent types of covariates ranges approximately from 5 to
12 for the Mainz cohort study and from 3 and 20 for the
DBC data set (see Figure 4). There is a higher variance on
the number of chosen covariates for the DBC data set.
Next, we have a closer look at the run of the curves of the
Brier Score over time for L1 models with preclustered GO

−
(

)

−
(

)

Figure 3 Results: Mainz cohort study. The boxplots show results for lasso and ridge regression applied to 100 training/test splits for genes,
GO groups, and preclustered GO groups for the Mainz cohort study. P-values of the prognostic index are presented on - log10 scale. A small
value of a criterion corresponds to a good prediction performance. The Brier Scores are calculated for 10 years follow-up. Small values of the
Integrated Brier Score correspond to good prediction performance. L1=̂lasso regression ,L2=̂ridge regression .
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groups in comparison to the other models. Prediction
error curves [5,23] (averaged values for the Brier Score cal-
culated at each time point for 100 splits) for models with
the three different types of genomic covariates are shown
in Figure 5 and 6 for the DBC data set and the MC study,
respectively. The performance of the clinical model serves
as reference. For both data sets, the model with preclus-
tered GO groups has in comparison with the clinical
model a better prediction performance over time. The pre-
clustered models outperform the clinical models, starting
at four years for the DBC data set and at three years for
the MC study. The other two genomic models are also
inferior to the preclustered models. Furthermore, we
investigate which preclustered groups are most frequently
selected across all 100 splits. Table 2 contains the numbers
of the most frequently selected covariates, the correspond-
ing GO groups with GO IDs [7] and further information
concerning the medoid gene, the cluster size and the
annotation for the GO groups that are helpful for the biol-
ogist. We observe that most of the chosen cluster are sub-
groups of large GO groups and consist of more 100 genes.
The value of the effect indicates whether a high value of
the corresponding covariate has an increasing (+1) or
decreasing (-1) influence on patients’ risk to die. For a
detailed analysis of the effects the boxplots in Figure 7
show the variation of the estimated regression coefficients
in the cox regression model for the most frequently

Figure 4 Number of selected covariates. Boxplots showing the
number of selected covariates for lasso regression, 100 training/test
splits, models with genes, GO groups and preclustered GO groups,
applied to the Mainz cohort study (MC) and the Dutch breast
cancer data set (DBC).

Figure 5 Prediction error curves: Dutch breast cancer data set. Prediction error curves for the DBC data set for L1 evaluation procedure. We
show averaged values for the Brier Score calculated at each time point for 100 splits for models with the three different types of genomic
covariates and the clinical model. A better prediction performance leads to lower curves.
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chosen clusters, represented via medoid genes. First of all,
the direction of the effect among all splits into training
and test data is stable. From this it follows that a detected
cluster has a consistent effect on patients’ survival - either
positive or negative. The first two clusters (from

GO:0043170 and GO:0007049) shown in Table 2 are cho-
sen in more than 80 percent of the splits into training and
test data. Their parameter estimates are negative, i.e. high
expression values of the included genes lead to reduced
risk to die and thus to longer survival.

Figure 6 Prediction error curves: Mainz cohort study. Prediction error curves for the MC for L1 evaluation procedure. We show averaged
values for the Brier Score calculated at each time point for 100 splits for models with the three different types of genomic covariates and the
clinical model. A better prediction performance leads to lower curves.

Table 2 Top 10 selected covariates for preclustered GO-groups according to 100 splits into training and test data

count GO effect medoid clustersize annotation

85 GO:0043170 -1 209258_s_at 410 macromolecule metabolic process

81 GO:0007049 -1 210052_s_at 222 cell cycle

74 GO:0050896 +1 211908_x_at 102 response to stimulus

52 GO:0032501 +1 212195_at 310 multicellular organismal process

40 GO:0032501 +1 210935_s_at 362 multicellular organismal process

21 GO:0050794 +1 210417_s_at 312 regulation of cellular process

18 GO:0043170 -1 211693_at 434 macromolecule metabolic process

18 GO:0050896 +1 204118_at 230 response to stimulus

16 GO:0006952 +1 203535_at 27 defense response

15 GO:0042221 -1 219140_s_at 39 response to chemical stimulus

Names are GenBank IDs for the medoid genes and GO IDs for GO groups [7]. The first column corresponds to the selected number for the covariate across 100
splits into training and test data for L1 regression on the Mainz cohort study. The value of the effect indicates whether the covariate has an increasing(+1) or
decreasing (-1) effect on patients’ risk to die.
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Discussion
The typical challenge when relating survival times to
gene expression measurements is a relatively small
number of individuals compared to a large number of
predictors. In this case the use of classical approaches
is not possible. In accordance with [4], the lasso
regression method seems most suitable and promis-
ing: its prediction performance is slightly better com-
pared to ridge regression and the solution is sparse
[4] and [12]. show that ridge regression performs bet-
ter than all the other methods. In our analysis, ridge
regression leads in general to comparable but not bet-
ter results compared to the lasso. However, an impor-
tant disadvantage of this method is that it does not
select variables. We observe relevant differences
between high-risk and low-risk patients, but there are
too many genes or GO groups to be further investi-
gated. The preclustering approach is beneficial con-
cerning prediction performance in the lasso setting
and leads to comparable results in the other models.
However, a main benefit of preclustering is that we
detect genes with similar expression patterns and that

these gene subgroups are correlated with survival. In
addition, we can have a detailed view on the GO
groups containing the preclustered subgroups. Table 2
shows that the cluster sizes as well as the correspond-
ing GO groups are quite large. However, in this case
the selection of the top 4 clusters is quite stable. For
gaining further biological insight a more detailed ana-
lysis of the composition of these clusters is required
and promising.
In terms of the Brier Score, we showed that the pre-

diction performance of models using clinical, genomic
or both information is comparable. It seems that these
different kind of covariates contain an overlap of infor-
mation for predicting survival.

Conclusions
Our comparative study shows that different model selec-
tion procedures can be used to identify genes and (pre-
clustered) GO groups related to survival outcomes and
to build models for predicting survival times of future
patients.
The integration of GO groups is useful, since they

contain aggregated information of biological function
and thus are often more informative than single genes.
It is encouraging that in terms of prediction perfor-
mance, our results obtained with (preclustered) GO
groups as predictors are comparable to those using only
genes as predictors. Thus the potentially improved inter-
pretability makes these models with GO groups compe-
titive. We demonstrated that this result holds true also
for models using GO groups and not only genes. Our
agenda in the present work was:
Constructing models with a relatively small subset of

relevant covariates that are enriched with additional
gene group information in terms of the Gene Ontology.
Presenting a new approach of preclustering genes

from one functional group due to different expression
profiles within one GO group.
Comparing prediction rules for the three types of cov-

ariates (genes, gene groups, preclustered gene groups).
Adding clinical information and comparing the results

to single use of genomic data.
The next step for improving our models is to inte-

grate more detailed information concerning the hier-
archically structured gene ontology. For coping with
high correlations between GO groups one can follow
the approach of [24] where correlations between
neighboring GO groups in the GO graph are iteratively
removed. Finally, in future projects, the biological
interpretation of the identified gene groups will include
not only the interpretation of the (preclustered) GO
groups according to overall function, but it is also
helpful to take a closer look at the single genes con-
tained in these gene groups.

β

Figure 7 Variation of estimated regression coefficients. Boxplots
show variation of estimated regression coefficients in the cox
regression model for the most frequently chosen clusters from
Table 2, represented via medoid genes.
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Availability
We make use of the R package penalized [15] that pro-
vides algorithms for penalized estimation in Cox propor-
tional hazards models. The package is freely available
from http://cran.r-project.org[25]. R code for model
selection and evaluation is available at http://www.statis-
tik.tu-dortmund.de/survivalGO.html.
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