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Abstract

Following the success of deep learning in a wide range of applications, neural network-based

machine-learning techniques have received significant interest for accelerating magnetic resonance

imaging (MRI) acquisition and reconstruction strategies. A number of ideas inspired by deep

learning techniques for computer vision and image processing have been successfully applied to

nonlinear image reconstruction in the spirit of compressed sensing for accelerated MRI. Given

the rapidly growing nature of the field, it is imperative to consolidate and summarize the large

number of deep learning methods that have been reported in the literature, to obtain a better

understanding of the field in general. This article provides an overview of the recent developments

in neural-network based approaches that have been proposed specifically for improving parallel

imaging. A general background and introduction to parallel MRI is also given from a classical

view of k-space based reconstruction methods. Image domain based techniques that introduce

improved regularizers are covered along with k-space based methods which focus on better

interpolation strategies using neural networks. While the field is rapidly evolving with plenty of

papers published each year, in this review, we attempt to cover broad categories of methods that

have shown good performance on publicly available data sets. Limitations and open problems are

also discussed and recent efforts for producing open data sets and benchmarks for the community

are examined.
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1. Introduction

Magnetic Resonance Imaging (MRI) is an indispensable clinical and research tool used

to diagnose and study several diseases of the human body. It has become a sine qua
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non in various fields of radiology, medicine, and psychiatry. Unlike computed tomography

(CT), it can provide detailed images of the soft tissue and does not require any radiation,

thus making it less risky to the subjects. MRI scanners sample a patient’s anatomy in

the frequency domain that we will call “k-space”. The number of rows/columns that are

acquired in k-space is proportional to the quality (and spatial resolution) of the reconstructed

MR image. To get higher spatial resolution, longer scan time is required due to the increased

number of k-space points that need to be sampled (Fessler, 2010). Hence, the subject has

to stay still in the MRI scanner for the duration of the scan to avoid signal drops and

motion artifacts. Many researchers have been trying to reduce the number of k-space lines to

save scanning time, which leads to the well-known problem of “aliasing” as a result of the

violation of the Nyquist sampling criteria (Nyquist, 1928). Reconstructing high-resolution

MR images from the undersampled or corrupted measurements was a primary focus of

various sparsity promoting methods, wavelet-based methods, edge-preserving methods, and

low-rank based methods. This paper reviews the literature on solving the inverse problem

of MR image reconstruction from noisy measurements using Deep Learning (DL) methods,

while providing a brief introduction to classical optimization based methods. We shall

discuss more about this in Sec. 1.1.

A DL method learns a non-linear function f:Y X from a set of all possible mapping

functions ℱ. The accuracy of the mapping function can be measured using some notion of

a loss function l:Y × X [0, ∞). The empirical risk (Vapnik, 1991), L(f), can be estimated

as L(f) = 1
2 ∑i = 1

m l f yi , xi  and the generalization error of a mapping function f(·) can be

measured using some notion of accuracy measurement. MR image reconstruction using deep

learning, in its simplest form, amounts to learning a map f from the undersampled k-space

measurement Y ∈ ℂN1 × N2, or Y ∈ ℝN1 × N2 × 2 to an unaliased MR image X ∈ ℂN1 × N2,

or Y ∈ ℝN1 × N2 × 2, where N1, N2 are the height and width of the complex valued image.

In several real-world cases, higher dimensions such as time, volume, etc., are obtained and

accordingly the superscripts of Y and X change to ℂN1 × N2 × N3 × N4 × ⋯. For the sake of

simplicity, we will use assume Y ∈ ℂN1 × N2 and X ∈ ℂN1 × N2.

In this survey, we focus on two broad aspects of DL methods, i.e. (i) generative models,

which are data generation processes capturing the underlying density of data distribution;

and (ii) non-generative models, that learn complex feature representations of images

intending to learn the inverse mapping from k-space measurements to MR images. Given

the availability and relatively broad access to open-source platforms like Github, PyTorch

(Paszke et al., 2019), and TensorFlow (Abadi et al., 2015), as well as large curated datasets

and high-performance GPUs, deep learning methods are actively being pursued for solving

the MR image reconstruction problem with reduced number of samples while avoiding

artifacts and boosting the signal-to-noise ratio (SNR).

In Sec. 1.1, we briefly discuss the mathematical formulation that utilizes k-space

measurements from multiple receiver coils to reconstruct an MR image. Furthermore, we

discuss some challenges of the current reconstruction pipeline and discuss the DL methods

(in Sec. 1.2) that have been introduced to address these limitations. We finally discuss the
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open questions and challenges to deep learning methods for MR reconstruction in sections

2.1, 2.2, and 3.

1.1 Mathematical Formulation for Image Reconstruction in Multi-coil MRI

Before discussing undersampling and the associated aliasing problem, let us first discuss the

simple case of reconstructing an MR image, x ∈ ℂN1 × N2, from a fully sampled k-space

measurement, yfull ∈ ℂN1 × N2, using the Fourier transform ℱ( ⋅ ):

yfull = ℱx + η, (1)

where η N(0, Σ) is the associated measurement noise typically assumed to have a Gaussian

distribution (Virtue and Lustig, 2017) when the k-space measurement is obtained from a

single receiver coil.

Modern MR scanners support parallel acquisition using an array of overlapping receiver

coils n modulated by their sensitivities Si. So Eqn. 1 changes to: yi
full = ℱSix + η, where

i = {1, 2, ⋯, n} is the number of receiver coils. We use yi for the undersampled k-space

measurement coming from the ith receiver coil. To speed up the data acquisition process,

multiple lines of k-space data (for cartesian sampling) are skipped using a binary sampling

mask ℳ ∈ ℂN1 × N2 that selects a subset of k-space lines from yfull in the phase encoding

direction:

yi = ℳ ⊙ ℱSix + η . (2)

An example of yfull, y, ℳ is shown in Fig 1.

To estimate the MR image x from the measurement, a data fidelity loss function is typically

used to ensure that the estimated data is as close to the measurement as possible. A typical

loss function is the squared loss, which is minimized to estimate x:

x = argmin
x

1
2 ∑

i
yi − ℳ ⊙ ℱSix 2

2 = argmin
x

y − Ax
2

2
. (3)

We borrow this particular formulation from (Sriram et al., 2020a; Zheng et al., 2019). This

squared loss function is quite convenient if we wish to compute the error gradient during

optimization.

However, the formulation in Eqn. 3 is under-determined if data is undersampled and does

not have a unique solution. Consequently, a regularizer ℛ(x) is typically added to solve such

an ill-conditioned cost function: 1

1.The regularization term, ℛ(x) is related to the prior, p(x), of a maximum a priori (MAP) extimation of x, i.e.
x = argminx( − log p(y ∣ x) − log p(x)). In fact, in Ravishankar et al. (2019) the authors loosely define βℛ(x) = − log p(x),
which promotes some desirable image properties such as spatial smoothness, sparsity in image space, edge preservation, etc. with a
view to get a unique solution.
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x = argmin
x

1
2 y − Ax

2

2
+ ∑

i
λiℛi(x) . (4)

Please note that each ℛi(x) is a separate regularizer, while the λis are hyperparameters

that control the properties of the reconstructed image x while avoiding over-fitting. Eqn.

3 along with the regularization term can be optimized using various methods, such

as (i) the Morozov formulation, x = min ℛ(x);  such that, Ax − y ≤ δ ; (ii) the Ivanov

formulation, i.e. x = min Ax − y ;  such that, ℛ(x) ≤ ϵ ; or (iii) the Tikonov formulation,

x = min Ax − y + λℛ(x) , discussed in (Oneto et al., 2016).

In general, the Tikonov formulation can be designed using a physics based, sparsity

promoting, dictionary learning, or a deep learning based model. But there are several

factors that can cause loss in data quality (especially small anatomical details) such as

inaccurate modeling of the system noise, complexity, generalizability etc. To overcome these

limitations, it is essential to develop inverse mapping methods that not only provide good

data fidelity but also generalize well to unseen and unexpected data. In the next section, we

shall describe how DL methods can be used as priors or regularizers for MR reconstruction.

1.2 Deep Learning Priors for MR Reconstruction

We begin our discussion by considering DL methods with learn-able parameters θ. The

learn-able parameters θ can be trained using some notion of a learning rule that we shall

discuss in Sec. 3. A DL training process helps us to find a function GDL(·) that acts as a

regularizer to Eqn. 4 with an overarching concept of an inverse mapping, i.e; (please note

that, we shall follow (Zheng et al., 2019) to develop the optimization formulation

x = argmin
x

1
2 y − Ax

2

2
+ λℒθ;  where, ℒθ = argmin

θ
∑

j
xj − GDL(x ∣ z, c, θ) 2

2
(5)

and z is a latent variable capturing the statistical regularity of the data samples, while c is a

conditional random variable that depends on a number of factors such as: undersampling of

the k-space (Shaul et al., 2020; Oksuz et al., 2019a; Shitrit and Raviv, 2017), the resolution

of the image (Yang et al., 2017; Yuan et al., 2020), or the type of DL network used (Lee et

al., 2019). Based on the nature of the learning, there are two types of DL methods known as

generative models, and non-generative models. We shall start with a basic understanding of

DL methods to a more in-depth study of different architectures in Secs. 4 and 5.

In generative modeling, the random variable z is typically sampled from a noisy Gaussian

distribution, z N(0, I) with or without the presence of the conditional random variable, i.e.;

x = arg min
x

1
2 y − Ax

2

2
+ λℒθg; ℒθg = arg min

θg

Ez N(0, I)
1
2 xj − GGEN x ∣ z, c, θg 2

2
(6)
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There are various ways to learn the parameters of Eqn. 6. For instance, the Generative

Adversarial Network (GAN) (Goodfellow et al., 2014) allows us to learn the generator

function GGEN(·) using an interplay between two modules, while the Variational

Autoencoders (VAEs) (Kingma and Welling, 2013) learns GGEN(·) by optimizing the

evidence lower bound (ELBO), or by incorporating a prior in a Bayesian Learning setup as

described in Section 4.2. It is shown in the literature that a generative model can efficiently

de-alias an MR image that had undergone a 4× or 8× undersampling in k-space (Zbontar et

al., 2018).

The non-generative models on the other hand do not learn the underlying latent

representation, but instead learn a mapping from the measurement space to the image space.

Hence, the random variable z is not required. The cost function for a non-generative model

is given by:

x = arg min
x

1
2 y − Ax

2

2
+ λℒθg; ℒθg = arg min

θg

Ex pdata
1
2 xj − GNGE x ∣ c, θg 2

2 .
(7)

The function GNGE(·) is a non-generative mapping function that could be a Convolutional

Neural Network (CNN) (Zheng et al., 2019; Akçakaya et al., 2019; Sriram et al., 2020b),

a Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), or any other

similar deep learning model. The non-generative models show a significant improvement

in image reconstruction quality compared to classical methods. We shall describe the

generative and the non-generative modeling based approaches in detail in Secs. 4 and

5 respectively. Below, we give a brief overview of the classical or the non-DL based

approaches for MR image reconstruction.

1.3 Classical Methods for MR Reconstruction

In the literature, several approaches can be found that perform an inverse mapping to

reconstruct the MR image from k-space data. Starting from analytic methods (Fessler

and Sutton, 2003; Laurette et al., 1996), there are several works that provide ways to do

MR reconstruction, such as the physics based image reconstruction methods (Roeloffs et

al., 2016;Tran-Gia et al., 2016; Maier et al., 2019;Tran-Gia et al., 2013; Hilbert et al.,

2018; Sumpf et al., 2011; Ben-Eliezer et al., 2016; Zimmermann et al., 2017; Schneider

et al., 2020), the sparsity promoting compressed sensing methods (Feng and Bresler, 1996;

Bresler and Feng, 1996; Candès et al., 2006), and low-rank based approaches (Haldar,

2013). All these methods can be roughly categorized into two categories, i.e. (i) GRAPPA-

like methods: where prior assumptions are imposed on the k-space; and (ii) SENSE-like

methods: where an image is reconstructed from the k-space while jointly unaliasing (or

dealiasing) the image using sparsity promoting and/or edge preserving image regularization

terms.

A few k-space methods estimate the missing measurement lines by learning kernels from an

already measured set of k-space lines from the center of the k-space (i.e., the autocalibration

or ACS lines). These k-space based methods include methods such as SMASH (Sodickson,
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2000), VDAUTOSMASH (Heidemann et al., 2000), GRAPPA and its variations (Bouman

and Sauer, 1993; Park et al., 2005; Seiberlich et al., 2008). The k-t GRAPPA (Huang et

al., 2005) takes advantage of the correlations in the k-t space and interpolates the missing

data. On the other hand, sparsity promoting low rank based methods are based on the

assumption that, when the image reconstruction follows a set of constraints (such as sparsity,

smoothness, parallel imaging, etc.), the resultant k-space should follow a structure that has

low rank. The low rank assumption has been shown to be quite successful in dynamic MRI

(Liang, 2007), functional MRI (Singh et al., 2015), and diffusion MRI (Hu et al., 2019). In

this paper we give an overview of the low-rank matrix approaches (Haldar, 2013;Jin et al.,

2016; Lee et al., 2016; Ongie and Jacob, 2016; Haldar and Zhuo, 2016; Haldar and Kim,

2017) in Sec. 2.1. While in k-t SLR (Lingala et al., 2011), a spatio-temporal total variation

norm is used to recover the dynamic signal matrix.

The image space based reconstruction methods, such as, the model based image

reconstruction algorithms, incorporate the underlying physics of the imaging system and

leverage image priors such as neighborhood information (e.g. total-variation based sparsity,

or edge preserving assumptions) during image reconstruction. Another class of works

investigated the use of compressed sensing (CS) in MR reconstruction after its huge success

in signal processing (Feng and Bresler, 1996; Bresler and Feng, 1996; Candès et al., 2006).

Compressed sensing requires incoherent sampling and sparsity in the transform domain

(Fourier, Wavelet, Ridgelet or any other basis) for nonlinear image reconstruction. We also

describe dictionary learning based approaches that are a spacial case of compressed sensing

using an overcomplete dictionary. The methods described in (Gleichman and Eldar, 2011;

Ravishankar and Bresler, 2016; Lingala and Jacob, 2013;Rathi et al., 2011; Michailovich

et al., 2011) show various ways to estimate the image and the dictionary from limited

measurements.

1.4 Main Highlights of This Literature Survey

The main contributions of this paper are:

• We give a holistic overview of MR reconstruction methods, that includes a

family of classical k-space based image reconstruction methods as well as the

latest developments using deep learning methods.

• We provide a discussion of the basic DL tools such as activation functions,

loss functions, and network architecture, and provide a systematic insight

into generative modeling and non-generative modeling based MR image

reconstruction methods and discuss the advantages and limitations of each

method.

• We compare eleven methods that includes classical, non-DL and DL methods on

fastMRI dataset and provide qualitative and quantitative results in Sec. 7.

• We conclude the paper with a discussion on the open issues for the adoption

of deep learning methods for MR reconstruction and the potential directions for

improving the current state-of-the-art methods.
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2. Classical Methods for Parallel Imaging

This section reviews some of the classical k-space based MR image reconstruction methods

and the classical image space based MR image reconstruction methods.

2.1 Inverse Mapping using k-space Interpolation

Classical k-space based reconstruction methods are largely based on the premise that the

missing k-space lines can be interpolated (or extrapolated) based on a weighted combination

of all acquired k-space measurement lines. For example, in the SMASH (Sodickson, 2000)

method, the missing k-space lines are estimated using the spatial harmonics of order m. The

k-space signal can then be written as:

y k1, k2 = ∑
i = 1

n
wimyi k1, k2 = ∬ dn1dn2 ∑

i = 1

n
wimSixe−jk1n1 − j k2 + mΔk2 n2 (8)

where, wim are the spatial harmonics of order m, Δk2 = 2π
FOV  is the minimum k-space interval

(FOV stands for field-of-view), and y(k1, k2) is the k-space measurement of an image x, (k1,

k2) are the co-ordinates in k-space along the phase encoding (PE) and frequency encoding

(FE) directions, and j represents the imaginary number. From Eqn. 8, one can note that the

mth-line of k-space can be generated using m-number of spatial harmonics and hence we

can estimate convolution kernels to approximate the missing k-space lines from the acquired

k-space lines. So, in SMASH a k-space measurement x, also known as a composite signal

in common parlance, is basically a linear combination of n number of component signals

(k-space measurements) coming from n receiver coils modulated by their sensitivities Si, i.e.

y = ∑
i = 1

n
wiℳ ⊙ ℱSix + η . (9)

We borrow the mathematical notation from (Sodickson, 2000) and represent the composite

signal in Eqn. 9 as follows:

y k1, k2 = ∑
i = 1

n
wiyi k1, k2 = ∬ dn1dn2 ∑

i = 1

n
wiℳSixe−jk1n1 − jk2n2 . (10)

However, SMASH requires the exact estimation of the sensitivity of the receiver coils to

accurately solve the reconstruction problem.

To address this limitation, AUTO-SMASH (Jakob et al., 1998) assumed the existence of a

fully sampled block of k-space lines called autocalibration lines (ACS) at the center of the

k-space (the low frequency region) and relaxed the requirement of the exact estimation of

receiver coil sensitivities. The AUTO-SMASH formulation can be written as:
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y k1, k2 + mΔk2 =

∑
i = 1

n
wi

0yiACS k1, k2 + mΔk2 = ∬ dn1dn2 ∑
i = 1

n
wi

0Sixe−jk1n1 − j k2 + mΔk2 n2 (11)

We note that the AUTO-SMASH paper theoretically proved that it can learn a kernel that is,

∑i = 1
n wimyi k1, k2 = ∑i = 1

n wimyiACS k1, k2 + mΔk2 , that is, it can learn a linear shift invariant

convolutional kernel to interpolate missing k-space lines from the knowledge of the fully

sampled k-space lines of ACS region. The variable density AUTO-SMASH (VD-AUTO-

SMASH) (Heidemann et al., 2000) further improved the reconstruction process by acquiring

multiple ACS lines in the center of the k-space. The composite signal x is estimated by

adding each individual component yi by deriving linear weights wim and thereby estimating

the missing k-space lines. The more popular, generalized auto calibrating partially parallel

acquisitions (GRAPPA) (Bouman and Sauer, 1993) method uses this flavour of VD-AUTO-

SMASH, i.e. the shift-invariant linear interpolation relationships in k-space, to learn the

coefficients of a convolutional kernel from the ACS lines. The missing k-space are estimated

as a linear combination of observed k-space points coming from all receiver coils. The

weights of the convolution kernel are estimated as follows: a portion of the k-space lines

in the ACS region are artificially masked to get a simulated set of acquired k-space points

yACS1 and missing k-space points yACS2. Using the acquired k-space lines yACS1, we can

estimate the weights of the GRAPPA convolution kernel K by minimizing the following cost

function:

K = argmin
K

yACS2 − K ⊛ yACS1 2
2

(12)

where ⊛ represents the convolution operation. The GRAPPA method has shown very good

results for uniform undersampling, and is the method used in product sequences by Siemens

and GE scanners. There are also recent methods (Xu et al., 2018; Chang et al., 2012) that

show ways to learn non-linear weights of a GRAPPA kernel.

The GRAPPA method regresses k-space lines from a learned kernel without assuming any

specific image reconstruction constraint such as sparsity, limited support, or smooth phase

as discussed in (Kim et al., 2019). On the other hand, low-rank based methods assume

an association between the reconstructed image and the k-space structure, thus implying

that the convolution-structured Hankel or Toeplitz matrices leveraged from the k-space

measurements must show a distinct null-space vector association with the kernel. As a result,

any low-rank recovery algorithm can be used for image reconstruction. The simultaneous

autocalibrating and k-space estimation (SAKE) (Shin et al., 2014) algorithm used the block

Hankel form of the local neighborhood in k-space across all coils for image reconstruction.

Instead of using correlations across multiple coils, the low-rank matrix modeling of local

k-space neighborhoods (LORAKS) (Haldar, 2013) utilized the image phase constraint and

finite image support (in image space) to produce very good image reconstruction quality.

The LORAKS method does not require any explicit calibration of k-space samples and can

work well even if some of the constraints such as sparsity, limited support, and smooth phase
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are not strictly satisfied. The AC-LORAKS (Haldar, 2015) improved the performance of

LORAKS by assuming access to the ACS measurements, i.e.:

y = argmin
y

y − P(ℳAx)N
2
2

(13)

where P( ⋅ ) is a mapping function that transforms the k-space measurement to a structured

low-rank matrix, and the matrix N is the null space matrix. The mapping P( ⋅ ) basically

takes care of the constraints such as sparsity, limited support, and smooth phase. In the

PRUNO (Zhang et al., 2011) method, the mapping P( ⋅ ) only imposes limited support and

parallel imaging constraints. On the other hand, the number of nullspace vectors in N is set

to 1 in the SPIRiT method (Lustig and Pauly, 2010). The ALOHA method (Lee et al., 2016)

uses the weighted k-space along with transform-domain sparsity of the image. Different

from them, the method of (Otazo et al., 2015) uses a spatio-temporal regularization.

2.2 Image Space Rectification based Methods

These methods directly estimate the image from k-space by imposing prior knowledge about

the properties of the image (e.g., spatial smoothness). Leveraging image prior through linear

interpolation works well in practice but largely suffers from sub-optimal solutions and as a

result the practical cone beam algorithm (Laurette et al., 1996) was introduced that improves

image quality in such a scenario. The sensitivity encoding (SENSE) method (Pruessmann

et al., 1999) is an image unfolding method that unfolds the periodic repetitions from the

knowledge of the coil. In SENSE, the signal in a pixel location (i, j) is a weighted sum of

coil sensitivities, i.e.;

Ik(i, j) = ∑
k = 1

Nc
∑
j = 1

N2
Skjx(i, j), (14)

where N2 is the height of image x ∈ RN1 × N2, Nc is the number of coils, and Sk is the

coil sensitivity of the kth coil. The Ik is the kth coil image that has aliased pixels at a

certain position, and i is a particular row and j = {1, ⋯, N2} is the column index counting

from the top of the image to the bottom. The S is the sensitivity matrix that assembles the

corresponding sensitivity values of the coils at the locations of the involved pixels in the full

FOV image x. The coil images Ik, the sensitivity matrix S, and the image x in Eqn. 14 can be

re-written as;

I = Sx . (15)

By knowing the complex sensitivities at the corresponding positions, we can compute the

generalized inverse of the sensitivity matrix:

x = SHS
−1

SH ⋅ I . (16)
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Please note that, I represents the complex coil image values at the chosen pixel and has

length Nc. In k-t SENSE and k-t BLAST (Tsao et al., 2003) the information about the

spatio-temporal support is obtained from the training dataset that helps to reduce aliasing.

The physics based methods allow statistical modeling instead of simple geometric modeling

present in classical methods and reconstruct the MR images using the underlying physics of

the imaging system (Roeloffs et al., 2016;Tran-Gia et al., 2016; Maier et al., 2019;Tran-Gia

et al., 2013; Hilbert et al., 2018; Sumpf et al., 2011; Ben-Eliezer et al., 2016; Zimmermann

et al., 2017; Schneider et al., 2020). These types of methods sometimes use very simplistic

anatomical knowledge based priors (Chen et al., 1991; Gindi et al., 1993; Cao and Levin,

1997) or “pixel neighborhood” (Szeliski, 2010) information via a Markov Random Field

based regularization (Sacco, 1990; Besag, 1986).

A potential function based regularization takes the form ℛ(x) = ∑i = 2
n ψ xi − xi − 1 , where

the function, ψ(·), could be a hyperbolic, Gaussian (Bouman and Sauer, 1993) or any

edge-preserving function (Thibault et al., 2007). The Total Variation (TV) could also be

thought of as one such potential function. The (Rasch et al., 2018) shows a variational

approach for the reconstruction of subsampled dynamic MR data, which combines smooth,

temporal regularization with spatial total variation regularization.

Different from Total Variation (TV) approaches, (Bostan et al., 2012) proposed a stochastic

modeling approach that is based on the solution of a stochastic differential equation

(SDE) driven by non-Gaussian noise. Such stochastic modeling approaches promote the

use of nonquadratic regularization functionals by tying them to some generative, continuous-

domain signal model.

The Compressed Sensing (CS) based methods impose sparsity in the image domain by

modifying Eqn. 2 to the following:

x = min
x

1
2 y − Ax

2

2
+ λ Γx

1
, (17)

where Γ is an operator that makes x sparse. The l1 norm is used to promote sparsity in

the transform or image domain. The l1 norm minimization can be pursued using a basis

pursuit or greedy algorithm (Boyd et al., 2004). However, use of non-convex quasinorms

(Chartrand, 2007; Zhao and Hu, 2008; Chartrand and Staneva, 2008; Saab et al., 2008)

show an increase in robustness to noise and image non-sparsity. The structured sparsity

theory (Boyer et al., 2019) shows that only O(M +MlogN) measurements are sufficient

to reconstruct MR images when M-sparse data with size N are given. The kt-SPARSE

approach of (Lustig et al., 2006) uses a spatio-temporal regularization for high SNR

reconstruction.

Iterative sparsity based methods (Ravishankar and Bresler, 2012; Liu et al., 2015, 2016)

assume that the image can be expressed as a linear combination of the columns (atoms) from

a dictionary Γ such that x = ΓT h and h is the coefficient vector. Hence Eqn. 4 becomes:
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x = min
x

1
2 y − Ax

2

2
+ λℛ(x); ℛ(x) = min

h
1
2 x − ΓTh 2

2 + α h
1

. (18)

The SOUP-DIL method (Bruckstein et al., 2009) uses an exact block coordinate descent

scheme for optimization while a few methods (Chen et al., 2008; Lauzier et al., 2012;

Chen et al., 2008) assume to have a prior image x0, i.e. ℛ x − x0 , to optimize Eqn. 4. The

method in (Caballero et al., 2014) optimally sparsifies the spatio-temporal data by training

an overcomplete basis of atoms.

The method in (Hongyi Gu, 2021) shows a DL based approach to leverage wavelets for

reconstruction.

The transform based methods are a generalization of the CS approach that assumes a sparse

approximation of the image along with a regularization of the transform itself, i.e., Γx = h
+ ϵ, where h is the sparse representation of x and ϵ is the modeling error. The method in

(Ravishankar and Bresler, 2015) proposed a regularization as follows:

ℛ(x) = min
Γ, ℎ

1
2 x − ΓTh 2

2 + αQ(Γ), (19)

where Q(Γ) = −log |detΓ| + 0.5∥Γ∥2 is the transform regularizer. In this context, the

STROLLR method (Wen et al., 2018) used a global and a local regularizer.

In general, Eqn. 5 is a non-convex function and cannot be optimized directly with gradient

descent update rules. The unrolled optimization algorithm procedure decouples the data

consistency term and the regularization term by leveraging variable splitting in Eqn 4 as

follows:

min
x, z

Ax − y
2
2 + μ x − h

2
2 + ℛ(h), (20)

where the regularization is decoupled using a quadratic penalty on x and an auxiliary

random variable z. Eqn 20 is optimized via alternate minimization of

hi = min
ℎ

λ xi − 1 − h 2
2 + ℛ(h) (21)

and the data consistency term:

xi = min
x

Axi − 1 − y 2
2 + λ hi − x 2

2
(22)

where the hi, hi−1 are the intermediate variables at iteration i. The alternating direction

method of multiplier networks (ADMM net) introduce a set of intermediate variables, h1,

h2, ⋯, hn, and eventually we have a set of dictionaries, Γ1, Γ2, ⋯, Γn, such that, hi = Γix,

collectively promote sparsity. The basic ADMM net update (Yang et al., 2018) is as follows:
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argmin
x

1
2 Ax − y

2

2
+ ∑

i
Γix + βi − zi 2

2; argmin
zi

∑
i

λig hi Γix + βi − hi 2
2

βi βi − 1 + αi Γix − hi
(23)

where g(·) can be any sparsity promoting operator and β is called a multiplier. The iterative

shrinkage thresholding algorithm (ISTA) solves this CS optimization problem as follows:

hi + 1 = xi − ΦH Φxi − y ; xi + 1 = argmin
x

1
2 x − hi + 1 2

2 + λ Γx
1

. (24)

Later in this paper, we shall show how ISTA and ADMM can be organically used within the

modern DL techniques in Sec. 5.3.

3. Review of Deep Learning Building Blocks

In this section, we will describe basic building blocks that are individually or collectively

used to develop complex DL methods that work in practice. Any DL method, by design,

has three major components: the network structure, the training process, and the dataset on

which the DL method is trained and tested. We shall discuss each one of them below in

detail.

3.1. Various Deep Learning Frameworks

Perceptron: The journey of DL started in the year 1943 when Pitts and McCulloch

(McCulloch and Pitts, 1943) gave the mathematical model of a biological neuron. This

mathematical model is based on the “all or none” behavioral dogma of a biological neuron.

Soon after, Rosenblatt provided the perceptron learning algorithm (Rosenblatt, 1957) which

is a mathematical model based on the behaviour of a neuron. The perceptron resembles the

structure of a neuron with dendrites, axons and a cell body. The basic perceptron is a binary

classification algorithm of the following form:

f(x) = 1 if w ⋅ x + b > 0,
0 otherwise (25)

where xi’s are the components of an image vector x, wi’s are the corresponding weights that

determine the slope of the classification line, and b is the bias term. This setup collectively

resembles the “all or none” working principle of a neuron. However, in the famous book

of Minsky and Papert (Minsky and Papert, 2017) called “Perpetron” it was shown that the

perceptron can’t classify non-separable points such as an exclusive-OR (XOR) function.

Multilayer Perceptron (MLP): It was understood that the non-separability problem of

perceptron can be overcome by a multilayer perceptron (Minsky and Papert, 2017) but

the research stalled due to the unavailability of a proper training rule. In the year 1986,

Rumelhart et al. (Rumelhart et al., 1986) proposed the famous “backpropagation algorithm”

that provided fresh air to the study of neural network. A Multilayer Perceptron (MLP)

uses several layers of multiple perceptrons to perform nonlinear classification. A MLP is
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comprised of an input layer, an output layer, and several densely connected in-between

layers called hidden layers:

h1 = ψ1 ∑W 1x + b1 ; hi = ψi ∑W ihi − 1 + bi ,  where, i ∈ 2, ⋯, n − 1
y = ψn ∑W nhn − 1 + bn − 1

.
(26)

Along with the hidden layers and the input-output layer, the MLP learns features of the

input dataset and uses them to perform classification. The dense connection among hidden

layers, input and output layers often creates a major computational bottleneck when the

input dimension is very high.

Neocognitron or the Convolutional Neural Network (CNN): The dense connection

(also known as global connection) of a MLP was too flexible a model and prone to

overfitting and sometimes had large computational overhead. To cope with this situation,

a local sliding window based network with shared weights was proposed in early 1980s

called neocognitron network (Fukushima and Miyake, 1982) and later popularized as

Convolutional Neural Network (CNN) in the year 1998 (LeCun et al., 1989). Similar to

the formulation of (Liang et al., 2020a), we write the feedforward process of a CNN as

follows:

C0 = x
Ci = ψi − 1 Ki − 1 ⋆ Ci − 1 ; i ∈ 1, ⋯, n − 1 , Cn = ψn − 1 Kn − 1 ⋆ Cn − 1 , (27)

where Ci ∈ Rh×w×d is the ith hidden layer comprised of d-number of feature maps each of

size h × w, Ki is the ith kernel that performs a convolution operation on Ci, and ψi(·) are

activation functions to promote non-linearity. We show a vanilla kernel operation in Eqn.

27. Please note that, the layers of the CNN can either be a fully connected dense layer, a

max-pooling layer that downsizes the input, or a dropout layer to perform regularization that

is not shown in Eqn. 27.

Recurrent Neural Networks (RNNs): A CNN can learn hidden features of a dataset

using its inherent deep structure and local connectivities through a convolution kernel.

But they are not capable of learning the time dependence in signals. The recurrent neural

network (RNN) (Rumelhart et al., 1986) at its basic form is a time series neural network

with the following form:

h0 = x
ht = ψt W hhht − 1 +W xhxt , t ∈ 1, ⋯, n − 1 ; hn = ψn W hyhn − 1 , (28)

where t is the time and the RNN takes the input x in a sequential manner. However, the

RNN suffers from the problem of “vanishing gradient”. The vanishing gradient is observed

when gradients from output layer of a RNN trained with gradient based optimization method

changes parameter values by a very small amount, thus effecting no change in parameter

learning. The Long Short Term Memory (LSTM) network (Hochreiter and Schmidhuber,

1997) uses memory gates, and sigmoid and/or tanh activation function and later ReLU
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activation function (see Sec. 3.2 for activation functions) to control the gradient signals and

overcome the vanishing gradient problem.

Transformer Networks: Although the LSTM has seen tremendous success in DL and

MR reconstruction, there are a few problems associated with the LSTM model (Vaswani

et al., 2017) such as: (i) the LSTM networks perform a sequential processing of input;

and (ii) the short attention span of the hidden states that may not learn a good contextual

representation of input. Such shortcomings are largely mitigated using a recent advancement

called the Transformer Network (Vaswani et al., 2017). A transformer network has a

self-attention mechanism2, a positional embedding and a non-sequential input processing

setup and empirically this configuration outperforms the LSTM networks by a large margin

(Vaswani et al., 2017).

3.2 Activation Functions

The activation function, ψ(·), operates on a node or a layer of a neural network and provides

a boolean output, probabilistic output or output within a range. The step activation function

was proposed by McCulloch & Pitts in (McCulloch and Pitts, 1943) with the following

form: ψ(x) = 1, if, x ≥ 0.5 and 0 otherwise. Several initial works also used the hyperbolic

tangent function, ψ(x) = tanh(x), as an activation function that provides value within the

range [−1, +1]. The sigmoid activation function, ψ(x) = 1
1 + e−x , is a very common choice

and provides only positive values within the range [0, 1]. However, one major disadvantage

of the sigmoid activation function is that its derivative, ψ′ (x) = ψ(x)(1 − ψ(x)), quickly

saturates to zero which leads to the vanishing gradient problem. This problem was addressed

by adding a Rectified Linear Unit (ReLu) to the network (Brownlee, 2019), ψ(x) = max(0,

x) with the derivative ψ′ (x) = 1, if, x > 0 or 0 elsewhere.

3.3 Network Structures

The VGG Network: In late 2015, Zisserman et al. published their seminal paper with

the title “very deep convolutional networks for large-scale image recognition” (VGG)

(Simonyan and Zisserman, 2014) that presents a 16-layered network called VGG network.

Each layer of the VGG network has an increasing number of channels. The network

2.Self-attention: The attention mechanism provides a way to know which part of the input is to be given more focus. The
self-attention, on the other hand, measures the contextual relation of an input by allowing it to interact with itself. Let’s assume

that we are at hi
tℎ ∈ Rc × N layer that has C number of channels and N number of locations on a feature map. We get two feature

vectors, f(hi) = Wfhi and g(hi) = Wghi, by transforming the hi
tℎ layer to a vector (typically done with a 1 × 1 convolution). The

contextual similarity of these to vectors f(hi) and g(hi) is measured by;

βk, l =
exp skl

∑l = 1
N exp skl

,  where, skl = f hi
Tg hi

The output is o = (o1, o2, ⋯,oN), where ok = v ∑l = 1
N βk, lm hil ), and m(hil) = Wmhi, v(hil) = Wvhil. Here, the Wv, Wm, Wf,

Wg are learnable matrices that collectively provide the self-attention vector oo = (o1, o2, ⋯, oN) for a given layer hi.
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was shown to achieve state-of-the-art level performance in Computer Vision tasks such

as classification, recognition, etc.

The ResNet Model: A recently developed model called Residual Networks or ResNet (He

et al., 2016), modifies the layer interaction shown in Eqn. 27 to the following form, Ci =

ψi−1(Ki−1 ⋆ Ci−1) + Ci−2 where, i ∈ {2, ⋯, n − 1}, and provides a “shortcut connection” to

the hidden layers. The identity mapping using the shortcut connections has a large positive

impact on the performance and stability of the networks.

UNet: A UNet architecture (Ronneberger et al., 2015) was proposed to perform image

segmentation task in biomedical images. The total end-to-end architecture pictorially

resembles the english letter “U” and has a encoder module and a decoder module. Each

encoder layer is comprised of unpadded convolution, a rectified linear unit (ReLU in Sec.

3.2), and a pooling layer, which collectively downsample the image to some latent space.

The decoder has the same number of layers as the encoder. Each decoder layer upsamples

the data from its previous layer until the input dimension is reached. This architecture has

been shown to provide good quantitative results on several datasets.

Autoencoders: The autoencoders (AE) are a type of machine learning models that capture

the patterns or regularities of input data samples in an unsupervised fashion by mapping

the target values to be equal to the input values (i.e. identity mapping). For example, given

a data point x randomly sampled from the training data distribution pdata(x), a standard

AE learns a low-dimensional representation z using an encoder network, z ~ D(z|x, θd),

that is parameterized by θd. The low-dimensional representation z, also called the latent

representation, is subsequently projected back to the input dimension using a decoder

network, x GGEN x ∣ z, θg , that is parameterized by θg. The model parameters, i.e. (θd, θg),

are trained using the standard back propagation algorithm with the following optimization

objective:

ℒθd, θg = arg min
θg, θd

Ez D x, θd
1
2 x − GGEN x ∣ z, θg 2

2 . (29)

From a Bayesian learning perspective, an AE learns a posterior density, p(z|x), using

the encoder network, GGEN(z|x, θg), and a decoder network, D(x|z, θd). The vanilla

autoencoder, in a way, can be thought of as a non-linear principal component analysis (PCA)

(Hinton and Salakhutdinov, 2006) that progressively reduces the input dimension using the

encoder network and finds regularities or patterns in the data samples.

Variational Autoencoder Networks: Variational Autoecoder (VAE) is basically an

autoencoder network that is comprised of an encoder network GGEN(z|x, θg) that estimates

the posterior distribution p(z|x) and the inference p(x|z) with a decoder network D(z, θd).

However, the posterior p(z|x) is intractable3 and several methods have been proposed to

3.Intractability: We can learn the density of the latent representation from the data points themselves, i.e. p(z|x) = p(z)p(x|z)|p(x),
by expanding the Bayes theorem of conditional distribution. In this equation, the numerator is computed for a single realization of
data points. However, the denominator is the marginal distribution of data points, p(x), which are complex and hard to estimate; thus,
leading to intractability of estimating the posterior.
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approximate the inference using techniques such as the Metropolis-Hasting (Metropolis et

al., 1953) and variational inference (VI) algorithms (Kingma and Welling, 2013). The main

essence of VI algorithm is to estimate an intractable probability density, i.e. p(z|x) in our

case, from a class of tractable probability densities, Z, with an objective to finding a density,

q(z), almost similar to p(z|x). We then sample from the tractable density q(z) instead of

p(z|x) to get an approximate estimation, i.e.

q*(z) = arg min
q(z) ∈ Q

DKL(q(z) p(z ∣ x)) . (30)

Here, DKL is the KL divergence (Kullback and Leibler, 1951). The VI algorithm,

however, typically never converges to the global optimal solution but provides a very fast

approximation. The VAE consists of three components: (i) the encoder network Eθe(z ∣ x)

that observes and encodes a data point x from the training dataset D(x) and provides the

mean and variance of the approximate posterior, i.e. N μθ xi , σθ xi  from a batch of n data

points xi i = 1
n ; (ii) a prior distribution G(z), typically an isotropic Gaussian N(0, I) from

which z is sampled, and (iii) a generator network Gθg(x ∣ z) that generates data points given

a sample from the latent space z. The VAE, however, cannot directly optimize the VI, i.e.

q*(z) = argminq(z) ∈ QDKL(q(z) p(z ∣ x)), as the KL divergence requires an estimate of the

intractable density p(x), i.e. DKL(q(z) p(z ∣ x)) = E[logq(z)] − E[log p(z, x)] + E[log p(x)]. As a

result, VAE estimates the evidence lower bound (ELBO) that is similar to KL divergence,

i.e.:

ELBO(q) = E[log p(z, x)] − E[logq(z)] = E[log p(z)] + E[log p(x ∣ z)] − E[logq
(z)]
= E[log p(x ∣ z)] − DKL(p(z ∣ x) q(z)) = Ez p(z ∣ x)[log p(x ∣ z)] − DKL(p(z ∣ x)
q(z))

(31)

Since ELBO(q) ≤ log p(x), optimizing Eqn. (31) provides a good approximation of the

marginal density p(x). Please note that, Eqn. 31 is similar to Eqn. 4 where the first term in

Eqn. 31 is the data consistency term and the KL divergenece term acts as a regularizer.

Generative Adversarial Networks: A vanilla Generative Adversarial Networks (GAN)

setup, by design, is an interplay between two neural networks called the generator, that

is GGEN(x|z, θg), and the discriminator Dθd( ⋅ ) parameterized by θg and θd respectively.

The GGEN(x|z, θg) samples the latent vector z ∈ ℝn × 1 × 1 and generates xgen. While the

discriminator, on the other hand, takes x (or xgen) as input and provides a {real, fake}

decision on x being sampled from a real data distribution or from GGEN(x|z, θg). The

parameters are trained using a game-theoretic adversarial objective, i.e.:

ℒθd, θg = − Ex pdata logD x ∣ θd − Ez N(0, I) log 1 − D GGEN x ∣ z, θg , θd
. (32)
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As the training progresses, the generator GGEN(z|θg) progressively learns a strategy to

generate realistic looking images, while the discriminator D(x, θd) learns to discriminate the

generated and real samples.

3.4 Loss Functions

In Sec. 1.1, we mentioned the loss function, L, that estimates the empirical loss and the

generalization error. Loss functions that are typically used in MR image reconstruction

using DL methods are the Mean Squared Error (MSE), Peak Signal to Noise Ratio

(PSNR) and the Structural Similarity Loss function (SSIM), or an l1 loss to optimize

Eqns. 3, 4, 5. The MSE loss between an image x and its noisy approximation x

is defined as, MSE(x, x) = 1
n ∑i = 1

n xi − xi
2, where n is the number of samples. The

root MSE (RMSE) is essentially the squared root of the MSE, MSE(x, x). The l1

loss, l1(x, x) = 1
n ∑i = 1

n xi − xi , provides the absolute difference and is typically used

as a regularization term to promote sparsity. The PSNR is defined using the MSE,

PSNR(x, x) = 20log10 MAXx − 10log10(MSE(x, x) , where MAXx is the highest pixel value

attained by the image x. The PSNR metric captures how strongly the noise in the data affects

the fidelity of the approximation with respect to the maximum possible strength of the signal

(hence the name peak signal to noise ratio). The main concern with MSE(x, x) and PSNR(x, x)
is that they penalize large deviations much more than smaller ones (Zhao et al., 2016) (e.g.,

outliers are penalized more than smaller anatomical details). The SSIM loss for a pixel i
in the image x and the approximation x captures the perceptual similarity of two images:

SSIM xi, xi =
2μxμx + c1
μx2 + μx

2 + c1

2σxx + c2
σx2 + σx2 + c2

, here c1, c2 are two constants, and μ is the mean and σ

is the standard deviation.

The VGG loss: It is shown in (Johnson et al., 2016) that the deeper layer feature maps

(feature maps are discussed in Eqn. 27) of a VGG-16 network, i.e. a VGG network that has

16 layers, can be used to compare perceptual similarity of images. Let us assume that, the

Lth layer of a VGG network has distinct NL feature maps each of size ML × ML. The matrix

FL ∈ ℝNL ×ML, stores the activations Fi, j
L  of the ith filter at position j of layer L. Then, the

method computes feature correlation using: Ci, j
L = ∑kFi, k

L Fj, k
L , where any Fn, o

m  conveys the

activation of the nth filter at position o in layer m. The correlation Ci, j
L  is considered as a

VGG-loss function.

4. Inverse Mapping using Deep Generative Models

Based on how the generator network, GGEN(x|z, θg), is optimized in Eqn. 6, we get different

manifestations of deep generative networks such as Generative Adversarial Networks,

Bayesian Networks, etc. In this section, we shall discuss specifics on how these networks are

used in MR reconstruction.
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4.1 Generative Adversarial Networks (GANs)

We gave a brief introduction to GAN in Sec. 3.3 and in this section we shall take a

closer look on the different GAN methods used to learn the inverse mapping from k-space

measurements to the MR image space.

Inverse Mapping from k-space: The current GAN based k-space methods can be

broadly classified into two categories: (i) methods that directly operate on the k-space y and

reconstruct the image x by learning a non-linear mapping and (ii) methods that impute the

missing k-space lines ymissing in the undersampled k-space measurements. In the following

paragraphs, we first discuss the recent GAN based direct k-space to MR image generation

methods followed by the undersampled k-space to full k-space generation methods.

The direct k-space to image space reconstruction methods, as shown in Fig. 3 (a), are based

on the premise that the missing k-space lines can be estimated from the acquired k-space

lines provided we have a good non-linear interpolation function, i.e.;

ℒθd, θg = − Ex pdata logD x ∣ θd − Ez N(0, I) log 1 − D GGEN x ∣ y, θg , θd
. (33)

This GAN framework was used in (Oksuz et al., 2018) for correcting motion artifacts in

cardiac imaging using a generic AUTOMAP network4. Such AUTOMAP-like generator

architectures not only improve the reconstruction quality but help in other downstream tasks

such as MR image segmentation (Oksuz et al., 2019a, 2020, 2019b). However, while the

“AUTOMAP as generator” based methods solve the broader problem of motion artifacts, but

they largely fail to solve the banding artifacts along the phase encoding direction. To address

this problem, a method called MRI Banding Removal via Adversarial Training (Defazio

et al., 2020) leverages a perceptual loss along with the discriminator loss in Eqn. 32. The

perceptual loss ensures data consistency, while, the discriminator loss checks whether: (i) the

generated image has a horizontal (0) or a vertical (1) banding; and (ii) the generated image

resembles the real image or not. With a 4x acceleration, a 12-layered UNet generator and a

ResNet discriminator, the methodology has shown remarkable improvements (Defazio et al.,

2020) on fastMRI dataset.

Instead of leveraging the k-space regularization within the parameter space of a GAN

(Oksuz et al., 2018, 2019a), the k-space data imputation using GAN directly operates

on the k-space measurements to regularize Eqn. 32. To elaborate, these type of methods

estimate the missing k-space lines by learning a non-linear interpolation function (similar to

GRAPPA) within an adversarial learning framework, i.e.

ℒθd, θg = − Ex pdata logD x ∣ θd − Ez N(0, I)
log 1 − D ℱGGEN yfull ∣ y, θg , θd .

(34)

4.AUTOMAP (Zhu et al., 2018): This is a two stage network resembling the unrolled optimization like methods (Schlemper et
al., 2017). The first sub network ensures the data consistency, while, the other sub network helps in refinement of the image. The
flexibility of AUTOMAP enables it to learn the k-space to image space mapping from alternate domains instead of strictly from a
paired k-space to MR image training dataset.
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The accelerated magnetic resonance imaging (AMRI) by adversarial neural network method

(Shitrit and Raviv, 2017) aims to generate the missing k-space lines, ymissing from y using

a conditional GAN, ymissing ~ G(ymissing|z, c = y). The combined y, ymissing is Fourier

transformed and passed to the discriminator. The AMRI method showed improved PSNR

value with good reconstruction quality and no significant artifacts as shown in Fig. 4. Later,

in subsampled brain MRI reconstruction by generative adversarial neural networks method

(SUBGAN) (Shaul et al., 2020), the authors discussed the importance of temporal context

and how that mitigates the noise associated with the target’s movement. The UNet-based

generator in SUBGAN takes three adjacent subsampled k-space slices yi−1, yi, yi+1 taken

at timestamps ti−1, ti, ti+1 and provides the reconstructed image. The method achieved a

performance boost of ~ 2.5 in PSNR with respect to the other state-of-the-art GAN methods

while considering 20% of the original k-space samples on IXI dataset (Rowland et al.,

2004). We also show reconstruction quality of SUBGAN on fastMRI dataset in Fig. 5.

Another method called multi-channel GAN (Zhang et al., 2018b) advocates the use raw

of k-space measurements from all coils and has shown good k-space reconstruction and

lower background noise compared to classical parallel imaging methods like GRAPPA

and SPIRiT. However, we note that this method achieved ~ 2.8 dB lower PSNR than the

GRAPPA and SPIRiT methods.

Despite their success in MR reconstruction from feasible sampling patterns of k-space, the

previous models we have discussed so far have the following limitations: (i) they need

unaliased images for training, (ii) they need paired k-space and image space data, or (iii) the

need fully sampled k-space data. In contrast, we note a recent work called unsupervised MR

reconstruction with GANs (Cole et al., 2020) that only requires the undersampled k-space

data coming from the receiver coils and optimizes a network for image reconstruction.

Different from AutomapGAN (Oksuz et al., 2019a), in this setup the generator provides the

undersampled k-space (instead of the MR image as in case of AutomapGAN) after applying

Fourier transform, sensitivity encoding and a random-sampling mask ℳ1 on the generated

image, i.e. ygen = ℳ1ℱS G x ∣ y, θg . The discriminator takes the k-space measurements

instead of an MR image and provides thee learned signal to the generator.

Image space Rectification Methods: Image space rectification methods operate on the

image space and learn to reduce noise and/or aliasing artifacts by updating Eqn. 4 to the

following form:

x = argmin
x

1
2 x − GGEN x ∣ xlow, θg 2

2 + λ yt − ℱGGEN x ∣ xlow, θg 2
2

+ ζℒθd, θg;
ℒθd, θg = − Ex pdata logD x ∣ θd − Ez N(0, I)
log 1 − D GGEN x ∣ xlow, θg , θd .

(35)

The GAN framework for deep de-aliasing (Yang et al., 2017) regularizes the reconstruction

by adopting several image priors such as: (i) image content information like object

boundary, shape, and orientation, along with using a perceptual loss function: 1
2 x − xlow 2

2,
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(ii) data consistency is ensured using a frequency domain loss 1
2 yt − yu 2

2, and (iii) a VGG

loss (see Sec. 3.4) which enforces semantic similarity between the reconstructed and the

ground truth images. The method demonstrated a 2dB improvement in PSNR score on IXI

dataset with 30% undersampling. However, it was observed that the finer details were lost

during the process of de-aliasing with a CNN based GAN network. In the paper called

self-attention and relative average discriminator based GAN (SARAGAN) (Yuan et al.,

2020), the authors show that fine details tend to fade away due to smaller size of the

convolution kernels, leading to poor performance. Consequently, the SARAGAN method

adopts a relativistic discriminator (Jolicoeur-Martineau, 2018) along with a self-attention

network (see Sec. 3.1 for self-attention) to optimize the following equation that is different

from Eqn. 35:

ℒθd, θg = − Ex pdata sigmoid D(x) − D G xlow

− Ez N(0, I) sigmoid D G xlow − D(x)
(36)

where, sigmoid(·) is the sigmoid activation function discussed in Sec. 3.2. This

method showed excellent performance in the MICCAI 2013 grand challenge brain MRI

reconstruction dataset and got an SSIM of 0.9951 and PSNR of 45.7536 ± 4.99 with 30%

sampling rate. Among other methods, sparsity based constraints are imposed as a regularizer

to Eqn. 35 in compressed sensing GAN (GANCS) (Mardani et al., 2018a), RefineGAN

(Quan et al., 2018), and the structure preserving GAN (Deora et al., 2020; Lee et al., 2018)

methods. Some qualitative results using the RefineGAN method are shown in Fig. 5. On the

other hand, methods like PIC-GAN (Lv et al., 2021) and (MGAN) (Zhang et al., 2018a) use

a SENSE-like reconstruction strategy that combines MR images reconstructed from parallel

receiver coils using a GAN framework. Such methods have also shown good performance

with low normalized mean squared error in the knee dataset.

Combined k-space and image space methods: Thus far, we have discussed k-

space (GRAPPA-like GAN methods) and image space (SENSE-like GAN methods) MR

reconstruction methods that work in isolation. However, both these strategies can be

combined together to leverage the advantages of both methods. Recently, a method called

sampling augmented neural network with incoherent structure for MR image reconstruction

(SANTIS) (Liu et al., 2019) was proposed that leverages a cycle consistency loss, ℒcyc in

addition to a GAN loss, ℒθd, θg i.e.,

ℒfull = ℒθd, θg + ℒcyc = λ1E x − G xlow, θg 2
2

+ λGAN E logD x, θd +E log 1 − D G xlow, θg , θd
+ λ2E y − F G xlow, θg , θf 2

2 ,
(37)

where the function F(·) is another generator network that projects back the MR image

to k-space. The method achieved an SSIM value of 91.96 on the 4x undersampled knee.

FastMRI dataset (see Fig. 5 and Table 1). In the collaborative GAN method (CollaGAN)

(Lee et al., 2019), instead of cycle consistency between k-space and the image domain from

a single image, they consider a collection of domains such as T1-weighted and T2-weighted
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data and try to reconstruct the MR images with cycle consistency in all domains. The

InverseGAN (Narnhofer et al., 2019) method performs cycle consistency using a single

network that learns both the forward and inverse mapping from and to k-space.

4.2 Bayesian Learning

Bayes’s theorem expresses the posterior p(x|y) as a function of the k-space data likelihood,

p(y|x) and the prior p(x) with the form p(x|y) ∝ p(y|x)p(x) also known as the “product-

of-the-experts” in DL literature. In (Tezcan et al., 2018), the prior is estimated with a

Monte Carlo sampling technique which is computationally intensive. To overcome the

computational cost, several authors have proposed to learn a non-linear mapping from

undersampled k-space to image space using VAEs. In these VAE based methods (Tezcan et

al., 2019; Gaillochet et al., 2020; Van Essen et al., 2012), the networks are trained on image

patches mj obtained from k-space measurement yi and the VAE network is optimized using

these patches with the following cost function: ∑j = 1
N ELBO mj ,

argmin
m

∥ Ex − y ∥2
2 − ∑

x ∈ Ω(m)
ELBO(x) ; ELBO(x)

= EDθd(z ∣ x) logGθg(x ∣ z) + log p(z)
Gθg(x ∣ z) .

(38)

These methods have mainly been evaluated on the Human Connectome Project (HCP) (Van

Essen et al., 2012) dataset and have shown good performance on 4x undersampled images

(see Fig 6).

Different from them, PixelCNN+ considers each pixel as random variable and estimates

the joint distribution of pixels over an image x as the product of conditional distribution,

i.e. p(x) = ∏i = 1
n2

p xi ∣ x1, x2, ⋯, xi − 1  The method proposed in (Luo et al., 2020) considers

a generative regression model called PixelCNN+ (Oord et al., 2016) to estimate the prior

p(x). This method demonstrated very good performance, i.e. they achieved more than 3

dB PSNR improvement than the current state-of-the-art methods like GRAPPA, variational

networks (see Sec. 5.3) and SPIRIT algorithms. The Recurrent Inference Machines (RIM)

for accelerated MRI reconstruction (Lonning et al., 2018) is an general inverse problem

solver that performs a step-wise reassessments of the maximum a posteriori and infers

the inverse transform of a forward model. Despite showing good results, the overall

computational cost and running time is very high compared to GAN or VAE based methods.

4.3 Active Acquisition Methods

Combined k-space and image methods: All of the above methods consider a fixed

k-space sampling that is predetermined by the user. This sampling process is isolated from

the reconstruction pipeline. Recent works have investigated if the sampling process itself

can be included as a part of the reconstruction optimization framework. A basic overview of

these works can be described as follows:

• The algorithm has access to the fully sampled training MR images {x1, x2, ⋯,

xN}

Pal and Rathi Page 21

J Mach Learn Biomed Imaging. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• The encoder, Gθg( ⋅ ), learns the sampling pattern by optimizing parameter θg.

• The decoder, Dθd( ⋅ ), is the reconstruction algorithm that is parameterized by θd

• The encoder Gθg( ⋅ ) is optimized by minimizing the empirical risk on the training

MR images, 1
N ∑i = 1

N Lq xi, Dθd Gθg(ℱ(x)) , where Lq is some arbitrary loss of

the decoder.

This strategy was used in LOUPE (Bahadir et al., 2019) where a network was learnt to

optimize the under-sampling pattern such that Gθg( ⋅ ) provided a probabilistic sampling

mask ℳ( ⋅ ) assuming each line in k-space as an independent Bernoulli random variable by

optimizing:

arg min
θg, θd

Eℳ Gθg Dθd(ℳℱx) − x 1 + λℳ , (39)

where Dθd is an anti-aliasing deep neural network. Experiments on T1-weighted structural

brain MRI scans show that the LOUPE method improves PSNR by ~ 5% with respect

to the state-of-the-art methods that is shown in Fig. 7, second column. A follow-up work

to LOUPE (Bahadir et al., 2020) imposed a hard sparsity constraint on Gθg( ⋅ ) to ensure

robustness to noise. In the deep active acquisition method (Zhang et al., 2019b), Gθg( ⋅ )

is termed the evaluator and Dθd( ⋅ ) is the reconstruction network. Given a zero-filled MR

image, Dθd xZF  provides the reconstructed image and the uncertainty map. The evaluator

Gθg( ⋅ ) decomposes the reconstructed image and ground truth image into spectral maps and

provides a score to each k-space line of the reconstructed image. Based on the scores, the

methodology decides to acquire the appropriate k-space locations from the MR scanner.

The Deep Probabilistic Subsampling (DPS) method in (Huijben et al., 2019) develops a

task-adaptive probabilistic undersampling scheme using a softmax based approach followed

by MR reconstruction. On the other hand, the work on joint model based deep learning

(J-MoDL) (Aggarwal and Jacob, 2020) optimized both sampling and reconstruction using

Eqns 21 and 22 to jointly optimize a data consistency network and a regularization network.

The data consistency network is a residual network that acts as a denoiser, while the

regularization network decides the sampling scheme. The PILOT (Weiss et al., 2021)

method also jointly optimizes the k-space sampling and the reconstruction. The network

has a sub-sampling layer to decide the importance of a k-space line, while the regridding

and the task layer jointly reconstruct the image. The optimal k-space lines are chosen either

using the greedy traveling salesman problem or imposing acquisition machine constraints.

Joint optimization of k-space sampling and reconstruction also appeared in recent methods

such as (Heng Yu, 2021; Guanxiong Luo, 2021).

5. Inverse Mapping using Non-generative Models

In this section we discuss non-generative models that use the following optimization

framework:

Pal and Rathi Page 22

J Mach Learn Biomed Imaging. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



x = argmin
x

1
2 ∥ y − Ax ∥2

2 + λℒθg; ℒθg = argmin
θg

Ex pdata
1
2 ∥ xj

− GNGE x ∣ c, θg ∥ 2
2 .

(40)

The non-generative models also have a data consistency term and a regularization term

similar to Eqn. 4. As discussed earlier in section 1.2, however, the non-generative models

do not assume any underlying distribution of the data and learn the inverse mapping by

parameter optimization using Eqn. 7. Below, we discuss the different types of non-generative

models.

5.1 Perceptron Based Models

The work in (Kwon et al., 2017; Cohen et al., 2018) developed a multi-level perceptron

(MLP) based learning technique that learns a nonlinear relationship between the k-space

measurements, the aliased images, and the desired unaliased images. The input to an MLP is

the real and imaginary part of an aliased image and the k-space measurement, and the output

is the corresponding unaliased image. We show a visual comparison of this method (Kwon

et al., 2017) with the SPIRiT and GRAPPA methods in Fig. 8. This method showed better

performance with lower RMSE at different undersampling factors.

5.2 Untrained Networks

So far, we have talked about various deep leraning architectures and their training strategies

using a given training dataset. The most exciting question one can ask “is it always

necessary to train a DL network to obtain the best result at test time?”, or “can we solve

the inverse problem using DL similar to classical methods that do not necessarily require

a training phase to learn the parameter priors”? We note several state-of-the-art methods

that uses ACS lines or other k-space lines of the k-space measurement y to train a DL

network instead of an MR image as a ground truth. The robust artificial neural network

for k-space interpolation (RAKI) (Akçakaya et al., 2019) trains a CNN by using the ACS

lines. The RAKI methodology shares some commonality with GRAPPA. However, the main

distinction is the linear estimation of the convolution kernel in GRAPPA which is replaced

with a non-linear kernel in CNN. The CNN kernels are optimized using the following

objective function:

x = argmin
x

1
2 ∥ y − Ax ∥2

2 + λℒθg; ℒθg = ∥ yACS − GNGE yACS; θg ∥ F
2

(41)

where, yACS are the acquired ACS lines, and GNGE(·) is the CNN network that performs

MRI reconstruction. The RAKI method has shown 0%, 0%, 11%, 28%, and 41%

improvement in RMSE score with respect to GRAPPA on phantom images at {2x, 3x, 4x,

5x, 6x} acceleration factors respectively. A followup work called residual RAKI (rRAKI)

(Zhang et al., 2019a) improves the RMSE score with the help of a residual network

structure. The LORAKI (Kim et al., 2019) method is based on the low rank assumption

of LORAKS (Haldar, 2013). It uses a recurrent CNN network to combine the auto-calibrated

LORAKS (Haldar, 2013) and the RAKI (Akçakaya et al., 2019) methods. On five different
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slices of a T2-weighted dataset, the LORAKI method has shown good improvement in SSIM

scores compared to GRAPPA, RAKI, AC-LORAKS among others. Later, the sRAKI-RNN

(Hosseini et al., 2019b) method proposed a unified framework that performs regularization

through calibration and data consistency using a more simplified RNN network than

LORAKI.

Deep Image Prior (DIP) and its variants (Ulyanov et al., 2018; Cheng et al., 2019;

Gandelsman et al., 2019) have shown outstanding results on computer vision tasks such

as denoising, in-painting, super resolution, domain translation etc. A vanilla DIP network

uses a randomly weighted autoencoder, Dθd Gθg(z) , that reconstructs a clean image x ∈

RW×H×3 given a fixed noise vector z ∈ RW×H×D. The network is optimized using the

“ground truth” noisy image x. A manual or user chosen “early stopping” of the optimization

is required as optimization until convergence overfits to noise in the image. A recent work

called Deep Decoder (Heckel and Hand, 2018) shows that an under-parameterized decoder

network, Dθd( ⋅ ), is not expressive enough to learn the high frequency components such as

noise and can nicely approximate the denoised version of the image. The Deep Decoder

uses pixel-wise linear combinations of channels and shared weights in spatial dimensions

that collectively help it to learn relationships and characteristics of nearby pixels. It has

been recently understood that such advancements can directly be applied to MR image

reconstruction (Mohammad Zalbagi Darestani, 2021). Given a set of k-space measurements

y1, y2, ⋯, yn from receiver coils, an un-trained network Gθ(z) uses an iterative first order

method to estimate parameters θ  by optimizing;

minℒθ = 1
2 yi − ℳℱG(z; θ) 2

2 . (42)

The network is initialized with random weight θ0 and then optimized using Eqn.

42 to obtain θ . The work in (Dave Van Veen, 2021) introduces a feature map

regularization: 1
2 ∑j = 1

L Djyi − ℳℱGj, i(z; θ) 2
2, in Eqn. 42 where Dj matches the features of

jth layer. This term encourages fidelity between the network’s intermediate representations

and the acquired k-space measurements. The works in (Heckel, 2019; Heckel and

Soltanolkotabi, 2020) provide theoretical guarantees on recovery of image x from the k-

space measurements. Recently proposed method termed “Scan-Specific Artifact Reduction

in k-space” or SPARK (Arefeen et al., 2021) trains a CNN to estimate and correct k-space

errors made by an input reconstruction technique. The results of this method are also

quite impressive given that only ACS lines are used for training the CNN. Along similar

lines, the authors in (Yoo et al., 2021) used the Deep Image Prior setup for dynamic MRI

reconstruction.

In the self supervised approach, a subset of the undersampled k-space lines are typically

used to validate the DL network in addition to the acquired undersampled k-space lines

that are used to optimize the network. Work in this direction divides the total k-space lines

into two portions:(i) k-space lines for data consistency ydc and (ii) k-space lines yloss for

regularization. In (Yaman et al., 2020), the authors use a multi-fold validation set of k-space

data to optimize the DL network. Other methods such as SRAKI (Hosseini et al., 2020,
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2019a) use the self-supervision to reconstruct the images. A deep Reinforcement learning

based approach is studied in (Jin et al., 2019) that deploys a reconstruction network and

an active acquisition network. Another method such as (Yaman et al., 2021b) provides an

unrolled optimization algorithm to estimate the missing k-space lines. Other methods that

fall under this umbrella include the transformer based method (Korkmaz et al., 2021) and a

scan specific optimization method (Yaman et al., 2021a; Tamir et al., 2019).

5.3 Convolutional Neural Networks

Spatial models are mostly dominated by the various flavours of CNNs such as complex-

valued CNN (Wang et al., 2020b;Cole et al., 2019), unrolled optimization using CNN

(Schlemper et al., 2017), variational networks (Hammernik et al., 2018), etc. Depending on

how the MR images are reconstructed, we divide all CNN based spatial methods into the

following categories.

Inverse mapping from k-space: The AUTOMAP (Zhu et al., 2018) learns a

reconstruction mapping using a network having three fully connected layers (3 FCs) and

two convolutional layers (2 Convs) with an input dimension of 128 × 128. Any image of size

more than 128 × 128 is cropped and subsampled to 128 × 128. The final model yielded a

PSNR of 28.2 on FastMRI knee dataset outperforming the previous validation baseline of

25.9 on the same dataset. Different from these methods, there are a few works (Wang et

al., 2020b;Cole et al., 2019) that have used CNN networks with complex valued kernels to

reconstruct MR images from complex valued k-space measurements. The method in (Wang

et al., 2020a) uses a complex valued ResNet (that is a type of CNN) network and is shown

to obtain good results on 12-channel fully sampled k-space dataset (see Fig. 9 for a visual

comparison with other methods). Another method uses a Laplacian pyramid-based complex

neural network (Liang et al., 2020b) for MR image reconstruction.

Inverse Mapping for Image Rectification: In CNN based sequential spatial models

such as DeepADMM net models (Sun et al., 2016; Schlemper et al., 2017) and Deep

Cascade CNN (DCCNN) (Schlemper et al., 2017), the regularization is done in image space

using the following set of equations:

argmin
x

1
2 ∥ Ax − y ∥2

2 + ∥ x + β − z ∥2
2 ; argmin

zi
∑

i
λig Γizi ∥ x + β − z ∥2

2

β β + α(x − z)
.

(43)

Here, α and β are Lagrange multipliers. The ISTA net (Zhang and Ghanem, 2018) modifies

the above image update rule as follows, xi = argminx
1
2 C(x) − C zi 2

2 + λ ∥ C(x) ∥1, using a

CNN network C(·). Note that the DeepADMM network demonstrated good performance

when the network was trained on brain data but tested on chest data. Later, MODL

(Aggarwal et al., 2019) proposed a model based MRI reconstruction where they used a

convolution neural network (CNN) based regularization prior. Later, a dynamic MRI using

MODL based deep learning was proposed by (Biswas et al., 2019). The optimization,

i.e. argminx
1
2 ∥ Ax − y ∥2

2 + λ ∥ C(x) ∥2
2 ,, denoises the alias artifacts and noise using a CNN
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network C(·) as a regularization prior, and λ is a trainable parameter. To address this

concern, a full end-to-end CNN model called GrappaNet (Sriram et al., 2020b) was

developed, which is a nonlinear version of GRAPPA set within a CNN network. The CNN

network has two sub networks; the first sub network, f1(y), fills the missing k-space lines

using a non-linear CNN based interpolation function similar to GRAPPA. Subsequently, a

second network, f2, maps the filled k-space measurement to the image space. The GrappaNet

model has shown excellent performance (40.74 PSNR, 0.957 SSIM) on the FastMRI dataset

and is one of the best performing methods. A qualitative comparison is shown in Fig. 10.

Along similar lines, a deep variational network (Hammernik et al., 2018) is used to MRI

reconstruction. Other works, such as (Wang et al., 2016;Cheng et al., 2018; Aggarwal et

al., 2018) train the parameters of a deep network by minimizing the reconstruction error

between the image from zero-filled k-space and the image from fully sampled k-space.

The cascaded CNN network learns spatio-temporal correlations efficiently by combining

convolution and data sharing approaches in (Schlemper et al., 2017). The (Seegoolam et al.,

2019) method proposed to use a CNN network to estimate motions from undersampled MRI

sequences that is used to fuse data along the entire temporal axis.

5.4 Recurrent Neural Networks

Inverse mapping from k-space: We note that a majority of the iterative temporal

networks, a.k.a the recurrent neural network models, are k-space to image space

reconstruction methods and typically follow the optimization described in Section 5.3. The

temporal methods, by design, are classified into two categories, namely (i) regularization

methods, and (ii) variable splitting methods.

Several state-of-the-art methods have considered temporal methods as a way to regularize

using the iterative hard threshold (IHT) method from (Blumensath and Davies, 2009) that

approximates the l0 norm. Mathematically, the IHT update rule is as follows:

xt + 1 = Hk xt − αΦT Φxt − y , (44)

where α is the step-size parameter, Hk[·] is the operator that sets all but k-largest values

to zero (proxy for l0 operation), and the dictionary Φ satisfies the restricted isometry

property (RIP)5. The work in (Xin et al., 2016) shows that this hard threshold operator

resembles the memory state of the LSTM network. Similar to the clustering based sparsity

pattern of IHT, the gates of LSTM inherently promotes sparsity. Along similar lines, the

Neural Proximal Gradient Descent work (Mardani et al., 2018b) envisioned a one-to-one

correspondence between the proximal gradient descent operation and the update of a RNN

network. Mathematically, an iteration of a proximal operator Pf given by: xt+1 = Pf(xt

+αΦH(y − Φx)), resembles the LSTM update rule:

st + 1 = g xt; y ; xt + 1 = Pf st + 1 , (45)

5.Restricted Isometry Property (RIP): The projection from the measurement matrix E in Eqn. 17 should
preserve the distance between two MR images x1 and x2 bounded by factors of 1 − δ and 1 + δ, i.e.

(1 − δ) x1 − x2 2
2 ≤ E x1 − x2 2

2 ≤ (1 + δ) x1 − x2 2
2, where δ is a small constant.
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where g(xt; y) = xt + αΦH(y − Φx) is the update step, st+1 is the hidden state and Φ is

a dictionary. Different from these, a local-global recurrent neural network is proposed in

(Guo et al., 2021) that uses two recurrent networks, one network to capture high frequency

components, and another network to capture the low frequency components. The method in

(Oh et al., 2021) uses a bidirectional RNN and replaces the dense network structure of (Zhu

et al., 2018) while removing aliasing artifacts in the reconstructed image.

The Convolutional Recurrent Neural Networks or CRNN (Qin et al., 2018) method

proposed a variable splitting and alternate minimisation method using a RNN based model.

Recovering finer details was the main challenge of the PyramidRNN (Wang et al., 2019) that

proposed to reconstruct images at multiple scales. Three CRNNs are deployed to reconstruct

images at different scales, i.e. x0 = CRNN(xzero, y, θ1), x1 = CRNN(x0, y, θ2), x2 =

CRNN(x1, y, θ3), and the final data consistency is performed after x0, x1, x2 are combined

using another CNN. The CRNN is used as a recurrent neural network in the variational

approach of VariationNET (Sriram et al., 2020a), i.e.

xt + 1 = xt − αΦH(y − Φx) + D xt , (46)

where D(·) is a CRNN network that provides MR reconstruction. In this unrolled

optimization method, the CRNN is used as a proximal operator to reconstruct the MR

image. The VariationNET is a followup work of Deep Variational Network of (Hammernik

et al., 2018) that we discussed in Sec. 5.3. The VariationalNET unrolls an iterative algorithm

involving a CRNN based recurrent neural network based regularizer, while the Deep

Variational Network of (Hammernik et al., 2018) unrolls an iterative algorithm involving

a receptive field based convolutional regularizer.

5.5 Hypernetwork Models

Hypernetworks are meta-networks that regress optimal weights of a task network (often

called as data network (Pal and Balasubramanian, 2019) or main network (Ha et al., 2016)).

The data network GNGE(xlow, θg) performs the mapping from aliased or the low resolution

images xlow to the high resolution MR images xgen. The hypernetwork H(α, θhyp) estimates

weights θg of the network GNGE(θg) given the random variable α sampled from a prior

distribution α ~ p(α). The end-to-end network is trained by optimizing:

argmin
ψ

Eθg H α, θℎyp ∥ GNGE xlow, θg − x ∥2
2 + ℛ GNGE xlow, θg . (47)

In (Wang et al., 2021), the prior distribution p(α) is a uniform distribution U[ − 1, + 1] (and

the process is called Uniform Hyperparameter Sampling) or the sampling can be based on

the data density (called data-driven hyperparameter sampling). Along similar lines, the work

in (Ramanarayanan et al., 2020) trained a dynamic weight predictor (DWP) network that

provides layer wise weights to the data network. The DWP generates the layer wise weights

given the context vector γ that comprises of three factors such as the anatomy under study,

undersampling mask pattern and the acceleration factor.
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6. Comparison of state-of-the-art methods

Given the large number of DL methods being proposed, it is imperative to compare these

methods on a standard publicly available dataset. Many of these methods have shown

their effectiveness on various real world datasets using different quantitative metrics such

as SSIM, PSNR, RMSE, etc. There is, however, a scarcity of qualitative and quantitative

comparison of these methods on a single dataset. While the fastMRI challenge allowed

comparison of several methods, yet, several recent methods from the categories discussed

above were not part of the challenge. Consequently, we compare a few representative MR

reconstruction methods both qualitatively and quantitatively on the fastMRI knee dataset

(Zbontar et al., 2018). We note that, doing a comprehensive comparison of all the methods

mentioned in this review is not feasible due to non-availability of the code as well as

the sheer magnitude of the number of methods (running into hundreds). We compared the

following representative models:

• Zero filled image reconstruction method

• Classical image space based SENSE method (Pruessmann et al., 1999)

• Classical k-space based GRAPPA method (Griswold et al., 2002)

• Unrolled optimization based method called DeepADMM (Sun et al., 2016)

• Low rank based LORAKI (Kim et al., 2019)

• Generative adversarial network based RefineGAN (Quan et al., 2018) network

• Variational network called VariationNET (Sriram et al., 2020a)

• The deep k-space method GrappaNet (Sriram et al., 2020b)

• Active acquisition based method J-MoDL (Aggarwal and Jacob, 2020)

• Untrained network model Deep Decoder (Heckel and Hand, 2018) and

• Deep Image Prior DIP (Ulyanov et al., 2018) method.

The fastMRI knee dataset consists of raw k-space data from 1594 scans acquired on four

different MRI machines. We used the official training, validation and test data split in our

experiments. We did not use images with a width greater than 372 and we note that such

data is only 7% of the training data split. Both the 4x and 8x acceleration factors were

evaluated.

We used the original implementation6 of GrappaNet, VariationaNET, SENSE, GRAPPA,

DeepADMM, Deep Decoder, and DIP method. Similar to GrappaNET, we always use the

central 30 k-space lines to compute the training target. Treating the real and imaginary as

two distinct channels, we dealt with the complex valued input, i.e. we have 30 channel

6.Below are the official implementations of various methods we discussed:
VariationaNET: https://github.com/VLOGroup/mri-variationalnetwork/
GrappaNET: https://github.com/facebookresearch/fastMRI.git RefineGAN: https://github.com/tmquan/RefineGAN.git
DeepADMM: https://github.com/yangyan92/Deep-ADMM-Net.git
SENSE, GRAPPA: https://mrirecon.github.io/bart/
Deep Decoder: https://github.com/MLI-lab/ConvDecoder.git
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input k-space measurements for the 15-coil complex-valued k-space. Where applicable, the

models were trained with a linear combination of L1 and SSIM loss, i.e.

J(x, x) = − SSIM(G(y), x) + λ ∥ G(y) − x ∥1 (48)

where λ is a hyperparameter, G(y) is the model prediction, and x is the ground truth.

Quantitative results are shown in Table 1 for several metrics such as NMSE, PSNR, and

SSIM scores. We observe that GrappaNET, J-MoDL and VariationNET outperformed the

baseline methods by a large margin. We note that the zero-filled and SENSE reconstructions

in Fig 11 (a), (b) show a large amount of over-smoothing. The reconstruction of SENSE

and zero-filled model also lack a majority of the high frequency detail that is clinically

relevant, but fine details are visible in case of GrappaNET, VariationNET, J-MoDL, and

RefineGAN methods. The comparable performance of Deep Decoder and DIP advocates

the importance of letting untrained neural network figure out how to perform k-space to

MR image reconstruction. The J-MoDL method makes heavy use of training data and the

joint optimization of k-space lines and the reconstruction of MR images to get good results

both for 4× and 8× as shown in Table 1. On the other hand, the Deep Decoder and DIP

methods achieve good performance using untrained networks as discussed in Sec. 5.2, which

is advantageous as it generalizes to any MR reconstruction scenario.

7. Discussion

In this paper, we discussed and reviewed several classical reconstruction methods, as well

as deep generative and non-generative methods to learn the inverse mapping from k-space

to image space. Naturally, one might ask the following questions given the review of several

papers above: “are DL methods free from errors?”, “do they always generalize well?”,

and “are they robust?”. To better understand the above mentioned rhetorical questions,

we need to discuss several aspects of the performance of these methods such as (i)

correct reconstruction of minute details of pathology and anatomical structures; (ii) risk

quantification; (iii) robustness; (iv) running time complexity; and (v) generalization.

Due to the blackbox-like nature of DL methods, the reliability and risk quantification

associated with them are often questioned. In a recent paper on “risk quantification in Deep

MRI reconstruction” (Edupuganti et al., 2020), the authors strongly suggest for quantifying

the risk and reliability of DL methods and note that it is very important for accurate patient

diagnoses and real world deployment. The paper also shows how Stein’s Unbiased Risk

Estimator (SURE) (Metzler et al., 2018) can be used as a way to assess uncertainty of the

DL model:

SURE = − nσ2 + ∥ x − x ∥2 + σ2trace ∂x
∂x , (49)

where the second term represents the end-to-end network sensitivity to small input

perturbations. This formulation works even when there is no access to the ground truth

data x. In this way, we can successfully measure the risk associated with a DL model. In

addition to the SURE based method, there are a few other ways to quantify the risk and
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reliability associated with a DL model. The work “On instabilities of deep learning in image

reconstruction” (Antun et al., 2019) uses a set of pretrained models such as AUTOMAP

(Zhu et al., 2018), DAGAN (Yang et al., 2017), or Variational Network (Sriram et al.,

2020a) with noisy measurements to quantify their stability. This paper as well as several

others (Narnhofer et al., 2021; Antun et al., 2019) have discussed how the stability of

the reconstruction process is related to the network architecture, training set and also the

subsampling pattern.

Whether a DL method can capture high frequency components or not is also another area

of active research in MR reconstruction. The robustness of a DL based MR reconstruction

method is also studied in various papers such as (Raj et al., 2020; Cheng et al., 2020a; Calivá

et al., 2020; Zhang et al., 2021). For example, the (Cheng et al., 2020a; Calivá et al., 2020;

Cheng et al., 2020b) works perceived adversarial attack as a way to capture minute details

during sMR reconstruction thus showing a significant improvement in robustness compared

to other methods. The work proposed to train a deep learning network with a loss that pays

special attention to small anatomical details. The methodology progressively adds minuscule

perturbation δ to the input x not perceivable to human eye but may shift the decision of a DL

system. The method in (Raj et al., 2020) uses a generative adversarial framework that entails

a perturbation generator network G(·) to add minuscule distortion on k-space measurement

y. The work in (Zhang et al., 2021) proposed to incorporate fast gradient based attack on a

zero filled input image and train the deep learning network not to deviate much under such

attack. The FINE (Zhang et al., 2020) methodology, on the other hand, has used pre-trained

recon network that was fine-tuned using data consistency to reduce generalization error

inside unseen pathologies. Please refer to the paper (Darestani et al., 2021) which provides a

summary of robustness of different approaches for image reconstruction.

Optimizing a DL network is also an open area of active research. The GAN networks

suffer from a lack of proper optimization of the structure of the network (Goodfellow et

al., 2014). On the other hand, the VAE and Bayesian methods suffer from the large training

time complexities. We see several active research groups and papers (Salimans et al., 2016;

Bond-Taylor et al., 2021) in Computer Vision and Machine Learning areas pondering upon

these questions and coming up with good solutions. Also, the work in (Hammernik et al.,

2017) has shown the effectiveness of capturing perceptual similarity using the l2 and SSIM

loss to include local structure in the reconstruction process. Recently, work done in (Maarten

Terpstra, 2021) shows that the standard l2 loss prefers or biases the reconstruction with lower

image magnitude and hence they propose a new loss function between ground truth xgt and

the reconstructed complex-valued images x, i.e. Lperp = P(x, xgt) + l1(x, xgt) where P(x,

xgt) = |Real(x)Imaginary(xgt) − Real(xgt)Imaginary(x)|/|xgt| which favours the finer details

during the reconstruction process. The proposed loss function achieves better performance

and faster convergence on complex image reconstruction tasks.

Regarding generalization, we note that some DL based models have shown remarkable

generalization capabilities, for example: the AUTOMAP work was trained on natural

images but generalized well for MR reconstruction. However, current hardware (memory)

limitations preclude from using this method for high resolution MR reconstruction. On the

other hand, some of the latest algorithms that show exceptional performance on the knee
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dataset have not been extensively tested on other low SNR data. In particular, these methods

also need to be tested on quantitative MR modalities to better assess their performance.

Another bottleneck for using these DL methods is the large amount of training data required.

While GAN and Bayesian networks produce accurate reconstruction of minute details of

anatomical structures if sufficient data are available at the time of training, it is not clear as

to how much training data is required and whether the networks can adapt quickly to change

in resolution and field-of-view. Further, these works have not been tested in scenarios where

changes in MR acquisition parameters such as relaxation time (TR), echo time (TE), spatial

resolution, number of channels, and undersampling pattern are made at test time and are

different from the training dataset.

Most importantly, MRI used for diagnostic purposes should be robust and accurate in

reconstructing images of pathology (major and minor). While training based methods have

demonstrated their ability to reconstruct normal looking images, extensive validation of

these methods on pathological datasets is needed for adoption in clinical settings. To

this end, the MR community needs to collaborate and collect normative and pathological

datasets for testing. We specifically note that, the range of pathology can vary dramatically

in the anatomy being imaged (e.g., the size, shape, location and type of tumor). Thus,

extensive training and unavailability of pathological images may present significant

challenges to methods that are data hungry. In contrast, untrained networks may provide

MR reconstruction capabilities that are significantly better than the current state-of-the-art

but do not perform as well as highly trained networks (but generalize well to unknown

scenarios).

Finally, given the exponential rate at which new DL methods are being proposed, several

standardized datasets with different degrees of complexity, noise level (for low SNR

modalities) and ground truth availability are required to perform a fair comparison between

methods. Additionally, fully-sampled raw data (with different sampling schemes) needs to

be made available to compare for different undersampling factors. Care must be taken not

to obtain data that have already been “accelerated” with the use of standard GRAPPA-like

methods, which might bias the results (Efrat Shimron, 2021).

Nevertheless, recent developments using new DL methods point to the great strides that have

been made in terms of data reconstruction quality, risk quantification, generalizability and

reduction of running time complexity. We hope that this review of DL methods for MR

image reconstruction will give researchers a unique viewpoint and summarize in succinct

terms the current state-of-the-art methods. We however humbly note that, given the large

number of methods presented in the literature, it is impossible to cite and categorize each

one of them. As such, in this review, we collected and described broad categories of methods

based on the type of methodology used for MR reconstruction.
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Figure 1:
(Left to Right) An example of a fastMRI (Zbontar et al., 2018) knee image x, fully sampled

k-space yfull, corresponding reconstructed image xfull from yfull, the sampling mask ℳ
of fastMRI that we apply on fully sampled k-space yfull, the sampled k-space y, and the

corresponding aliased reconstructed image xaliased.
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Figure 2: MRI Reconstruction Methods:
We shall discuss various MR reconstruction methods with a main focus on Deep Learning

(DL) based methods. Depending on the optimization function, a DL method can be

classified into a Generative (discussed in Sec. 4) or a Non-Generative model (discussed

in Sec. 5). However, for the sake of completeness, we shall also discuss classical k-space

(GRAPPA-like) and image space based (SENSE-like) methods.
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Figure 3: Deep Learning Models:
We visually demonstrate various DL models such as Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Autoencoders, Residual Layer, Generative

Adversarial Networks (GANs) and Variational Autoencoders (VAEs) discussed in Sec. 3.

The Convolutional Neural Network is comprised with many layers {C0, C1, ⋯, Cn} and

the network gets input for layer Ci+1 from its previous layer Ci after imposing non-linearity,

i.e. Ci+1 = ψi(Ki ⋆ Ci), using a non-linear function ψi. The Recurrent Neural Network is

a time varying memory network. On the other hand, the Autoencoders perform non-linear

dimensionality reduction by projecting the input x to a lower dimensional variable z using

an encoder network and projects back z to the image space x using a decoder network.

The ResNet uses the Residual Layer to solve problems like vanishing gradient, slow

convergence, etc. The Generative Adversarial Network and the Variational Autoencoder
are generative models that are discussed in Sec. 4.
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Figure 4: Reconstruction using k-space Imputation:
We show qualitative comparison of a few methods with the AMRI method (Shitrit and

Raviv, 2017). The first row are the reconstructed images and the second row images are

zoomed-in version of the red boxes shown in first row. The Zero-filled, compressed sensing

MRI (CS-MRI), CNN network trained with l2 loss (CNN-L2) have lesser detail as compared

to the AMRI (proposed) method. The images are borrowed from AMRI (Shitrit and Raviv,

2017) paper.
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Figure 5: Comparison of GAN Methods:
Qualitative comparison of (i) k-space interpolation based method, i.e. SUBGAN; (ii) Image

space rectification method, i.e. RefineGAN; and (iii) the combined k-space and image space

rectification method, i.e. SANTIS
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Figure 6: MR Reconstruction using VAE Based Methods:
Qualitative comparison of (a) original; (b) zero-filled; and (c) VAE based DDP method

(Tezcan et al., 2019). Also shown are the difference maps in (d) between DDP and the

original images. These results are borrowed from the DDP (Tezcan et al., 2019) paper.
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Figure 7: MR Reconstruction using Active Acquisition Method:
Variable mask learned by the active acquisition method LOUPE (Bahadir et al., 2019) can

improve the image quality of a UNet based MR image reconstruction task. The leftmost

image is the ground truth, the second image shows the reconstruction using an optimized

mask, the next image is the variaable mask, that is followed by the uniformly random and

Cartesian mask. The images are borrowed from the LOUPE (Bahadir et al., 2019) paper.
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Figure 8: Visual Comparison with Perceptron, SPIRiT and GRAPPA methods.
We note the dealiasing capability of the perceptron based method at different sampling

rates, i.e. row (a) and row (b), for a T2-weighted image are visibly better than the classical

methods. The figure is borrowed from (Kwon et al., 2017) paper.
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Figure 9: Comparison of a Complex-valued CNN with other state-of-the-art methods:
We show visual comparison of SPIRiT (Lustig and Pauly, 2010), GRAPPA (Bouman and

Sauer, 1993), VariationalNet, and the ComplexCNN. We note from the difference map that

the ComplexCNN performed well with respect to the other state-of-the-art methods. The

PSNR and SSIM values are given at the bottom for each method.
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Figure 10:
GrappaNet Comparison with VariationalNET, UNet methods
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Figure 11: Qualitative Comparison:
Comparison for 8x acceleration using “Zero Filled”, SENSE, DeepADMM (Sun et al.,

2016), LORAKI (Kim et al., 2019), RefineGAN (Quan et al., 2018), VariationNET (Sriram

et al., 2020a), GrappaNet (Sriram et al., 2020b), J-MoDL (Aggarwal and Jacob, 2020)

results on fastMRI dataset. We show qualitative results for (a) knee and (b) brain datasets

and also report the corresponding SSIM scores.
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Table 1:

Normalized mean squared error (NMSE), PSNR and SSIM over the test data with 1000 samples using eight

different methods at 4-fold and 8-fold acceleration factors.

Acceleration Model NMSE PSNR SSIM Acceleration Model NMSE PSNR SSIM

4-fold

Zero Filled 0.0198 32.51 0.811

8-fold

Zero Filled 0.0352 29.60 0.642

SENSE
(Pruessmann et al.,
1999)

0.0154 32.79 0.816 SENSE (Pruessmann
et al., 1999) 0.0261 31.65 0.762

GRAPPA (Griswold
et al., 2002) 0.0104 27.79 0.816 GRAPPA(Griswold et

al., 2002) 0.0202 25.31 0.782

RfineGAN(Quan et
al., 2018) 0.0138 34.00 0.901 RefineGAN(Quan et

al., 2018) 0.0221 32.09 0.792

DeepADMM (Sun
et al., 2016) 0.0055 34.52 0.895 DeepADMM(Sun et

al., 2016) 0.0201 36.37 0.810

LORAKI (Kim et
al., 2019) 0.0091 35.41 0.871 LORAKI (Kim et al.,

2019) 0.0181 36.45 0.882

VariationNET
(Sriram et al.,
2020a)

0.0049 38.82 0.919 VariationNET (Sriram
et al., 2020a) 0.0211 36.63 0.788

GrappaNet (Sriram
et al., 2020b) 0.0026 40.74 0.957 GrappaNet (Sriram et

al., 2020b) 0.0071 36.76 0.922

J-MoDL (Aggarwal
and Jacob, 2020) 0.0021 41.53 0.961 J-MoDL (Aggarwal

and Jacob, 2020) 0.0065 35.08 0.928

Deep Decoder
(Heckel and Hand,
2018)

0.0132 31.67 0.938 Deep Decoder (Heckel
and Hand, 2018) 0.0079 29.654 0.929

DIP (Ulyanov et al.,
2018) 0.0113 30.46 0.923 DIP (Ulyanov et al.,

2018) 0.0076 29.18 0.912
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