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Abstract: Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs),
serve as the sentinel cells of the immune system and are responsible for presenting antigen in-
formation. Moreover, the role of DCs derived from monocytes (moDCs) in the development of
inflammation has been emphasized. Several studies have shown that the function of DCs can be
influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in
intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD)
and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this
review, we summarized the physiological functions of DCs in the intestinal micro-environment,
their regulatory relationship with intestinal microorganisms and their regulatory mechanism in
intestinal diseases.
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1. Introduction

In 1973, Steinman and Cohn described a population of cells in the spleen of mice
that exhibited a different cellular appearance and behavior from that of monocytes and
Mϕs, which were hence named dendritic cells (DCs) [1]. DCs were observed to be highly
capable of initiating and regulating immune responses with a high level expression of
major histocompatibility complex II (MCH-II) and integrin X (complement component 3
receptor 4 subunit) [2,3]. As professional antigen-presenting cells (APC), DCs interact with
other innate and adaptive immune cells to ensure the specificity of the adaptive immune
response. DCs can largely recognize pathogen-associated molecular patterns (PAMPs)
through many receptors, like toll-like receptors (TLRs), which bind to a large number of
molecules produced by bacteria, viruses, and fungi. At the same time, circulating DCs have
been proven to exhibit intestinal homing characteristics and were found to be regulated by
different gliadin-derived peptides in celiac patients [4,5]. During the process of embryonic
development and postnatally, DC progenitors migrate into non-lymphoid organs so as to
differentiate into immature DCs, which gradually develop a dense network of sentinel cells
from the body to the viscera [6].

Many studies have demonstrated that several common diseases are associated with
changes in DC distribution or functions [7–12]. DCs can be regulated to restore T-cell
tolerance and modulate autoantibody production, and functional heterogeneity exists
within each DC subset [7]. For example, it was shown that the function of DCs lacking
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TIR-domain-containing adapter-inducing interferon-β (TRIF) is altered and T cell activa-
tion is reduced, which facilitates the progression of diabetes induced by diabetogenic T
cells [8]. DCs were also proven to have an influence on the process of diseases like trans-
missible spongiform encephalopathy [9], autoimmune uveitis [10], acute graft-versus-host
disease [11], inflammatory bowel disease (IBD) [12], and intestinal tumors. Therefore,
it is of great importance to exhaustively survey the interaction between the physiological
characteristics of DCs and diseases.

2. Types of DC

The DC family is very heterogeneous and consists of different DC subsets, each with
specific functional characteristics. In general, two different DC subtypes can be distin-
guished, for example, myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). These dis-
tinct subsets express various surface receptors and pattern recognition receptors (PRRs),
which determine their specialized functions. The cDC subset can be identified and subdi-
vided into three different subtypes by the expression of CD11c, in combination with their
unique surface molecules CD1c (BDCA1), CD141 (BDCA3), and CD16. In addition, there are
several special classifications, such as dendritic cells responding to specific microorganisms,
CD14+ DC, microglia, moDCs, etc. Recently, another subset of DC, termed merocytic DCs
(mcDCs), was defined and was found to likely resemble the cDC subset in mice [12]. It was
shown that CD34+ hematopoietic stem cells produce granulocytes, monocytes, and pro-
genitor cells of human DCs [13]. Rapamycin (mTOR) networks, which combine pattern
recognition and growth factor receptor activation with nutritional information in cells and
surrounding tissues, are critical in the proper development of mouse DCs [14]. In this
section, we selectively focus on three subtypes of DCs, which may play a vital role in
intestinal diseases.

2.1. cDCs

Conventional DCs, also called myeloid DCs (mDCs), express typical myeloid anti-
gens CD11c, CD13, CD33, and CD11b in mice and CD11c in humans [15]. Mouse cDCs
derive from common DC precursors in the bone marrow and comprise two main sub-
sets, the CD8α+ and/or CD103+ cDC1 subset and the more heterogeneous CD11b+ cDC2
subset [16,17]. Human cDC1 expressed CD141/BDCA-1, CLEC9A, CADM1, and XCR1,
and cDC2 expressed CD1c/BDCA-1, CD11c, CD11b, CD2, and FCER1 [18].

In mice, cDC1s expressed TLR2–TLR4, TLR11–TLR13, and C-type lectin-like recep-
tor (CLEC)12A, and cDC2s expressed TLR1, TLR2, TLR4–TLR9, TLR13, retinoic acid-
inducible gene I-like receptor (RLR), NOD-like receptor (NLR), STING, CLEC4A, CLEC6A,
and CLEC7A [17]. In humans, cDC1s expressed TLR1, TLR3, TLR6, TLR8, TLR10, STING,
and CLEC12A, and cDC2s expressed TLR1–TLR9, RLR, NLR, STING, CLEC4A, CLEC6A,
CLEC7A, CLEC10A, and CLEC12A [17]. Tomer Granot [19] combined the technology of
flow cytometry and fluorescence imaging, and indicated that human tissue CD13hi CD141hi

Clec9A+ cells are cDC1s which maintain a stable quantity, whereas CD1c+Sirp-α+ cells are
cDC2s with the specific ability to act as sentinel cells of mucosal tissues.

In the development of cDCs, basic leucine zipper ATF-like transcription factor 3 [20]
and RELB proto-oncogene, which is also known as NF-κB subunit, are of great impor-
tance [21]. Mice lacking IFN-regulatory factor 8 (IRF8) [22], DNA-binding protein inhibitor
ID2 [23], or nuclear factor IL-3-regulated protein (NFIL3) [24] exhibit a severe defect in the
development of cDC1s. Some researchers found that although all these factors are required
for CD103+ DC development, only IRF8 is essential for CD8α+ DCs [25]. Furthermore,
cDC2 development is controlled by RELB63 and PU.1 [26].

cDC precursors travel through the blood to the lymphatic organs and peripheral tis-
sues and then develop into immature DCs and migratory DCs, respectively [27]. These im-
mature cDCs are dedicated to antigen sampling and are characterized by low levels of
the expression of T cell co-stimulated molecules and MHCII classes, and then they may
remain in resident tissues until an activation signal is encountered [28]. Recent research
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revealed that tissue-specific factors, including ATF-like transcription factor 3 and RELB
proto-oncogene, program the expression levels of different proteases during DC differen-
tiation, thus conferring tissue-specific functions to the different DC subsets in the spleen
or thymus [29].

2.2. pDCs

In mice, pDC expressed Siglec-H, bone marrow stromal antigen-2 (BST2), lymphocyte
activation marker 3 (LAG-3), B220, Ly6C, CD11c, CD8α, and Ly49Q [29]. Human pDCs are
usually short of myeloid antigen, expressing CD45RA, CD4, and variable CD2 and CD7,
and are distinguished by the expression of CD123, CD303, CD304, and ILT7 [15,30,31].

Research revealed that human pDCs are composed of two subsets, which can be dis-
tinguished by the expression of CD2. CD2hi pDCs are involved in initiating T cell immune
responses and can be detected in some tumor biopsies, whereas CD2low pDCs display a
limited capacity to induce allogeneic T cell proliferation [32]. pDCs are mainly developed
from IL-7R+ lymphoid progenitor cells with the assistance of transcription factors E2-2
and IRF8 [19,33]. pDCs selectively express TLR2, TLR7, TLR9, TLR11, amd TLR12, and it
is endosomal sensors TLR7 and TLR9 that mainly mediate the recognition of microbial
pathogens [34].

Compared to cDCs, pDCs have a limited effect on antigen presentation and are always
regarded as immunomodulating cells [35]. pDCs sense and respond to viral infection by
rapidly generating numerous type I and III interferons and secreting cytokines [18,36].
Instead of leaving from bone marrow and differentiating in peripheral organs like cDC
progenitor cells, pDCs differentiate completely in the bone marrow. The transcription factor
Runx2, specifically expressed in an E2-2-dependent manner in the pDC, is necessary for the
migration of the pDC from the bone marrow to the peripheral organs [37]. As considerable
efforts have been focused on cDCs, some scientists have proposed that pDCs may be used
in therapy to fight against cancer, because pDCs express a wide variety of PRRs, which can
be harnessed to facilitate the targeted delivery of antigens to pDCs, leading to antigen
presentation and activation of both CD4+ and CD8+ T cells [38].

2.3. moDCs

Human moDCs express CD13, CD33, CD11b, CD11c, CD172a, and MHCII36. Fur-
thermore, short chain fat acids (SCFAs) have immunomodulatory effects on moDCs,
which downregulate CXCL9, CXCL10, and CXCL11 production [39], and SCFA receptors
such as GPR41, GPR43, and GPR109A are expressed on the surface of human monocyte-
derived DCs.

During colitis in mice, a large amount of Ly6Chi mononuclear cells (MOs) can invade
the colon and then differentiate into proinflammatory CD103− CX3CR1int CD11b+ DCs, pro-
ducing IL-12, IL-23, iNOS, and TNF [18,40]. Some investigations demonstrated that moDCs
(CD11c+ MHCIIhi cells that were also CD86hi and F4/80lo) were specifically produced by
monocyte-dendritic cell progenitors and not granulocyte-monocyte progenitor-derived
Ly6Chi MOs [41]. The process of producing moDCs requires granulocyte/Mϕ colony
stimulating factor (GM-CSF) [27]. Other studies have shown that constitutively migrating
LY6C+ MOs can maintain their own properties instead of differentiating into DCs [42].
In this respect, a further study revealed that Ly6C+ cells include three sub-communities,
among which CD11c- Flt3+ MOs may be the precursor of CD209a+ PDL2+ moDCs, pro-
moted by the increase in transcription factor PU.1 [43]. The summary of DC types refers to
Figure 1 and Box 1.
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Figure 1. A schematic diagram of characters of different dendritic cell (DC) subsets. There are three
DC subtypes, which are conventional DCs (cDCs), plasmacytoid DCs (pDCs), and DCs derived
from monocytes (moDCs). cDCs can be divided into two subtypes, cDC1 and cDC2. They can be
distinguished depending on the specific molecules on the human or mouse DC surface.

Box 1. Types of DC.

DCs have two main types (mDCs and pDCs) and several special classifications, like DC responding
to specific microorganisms, CD14+ DC, microglia, moDC.
cDC1 and cDC2 are the subsets of cDCs, with different molecules and functions.
Both cDCs and pDCs contain two subtypes that require a variety of immune factors and immune
cells to assist their growth or function.

3. Physiological Function of DCs in the Gut

Approximately 1000 trillion microbes, composed of an estimated 4000 strains, are
living in the human intestine and feeding on food residue from the digestive tract [44],
producing complicated metabolites to regulate human physiological responses. Usually,
DCs come into contact with intestinal flora through two different ways. The first model
requires a special intestinal epithelial cell called the M cell. Commensal bacteria and other
intact antigens discharged by M cells are captured by DCs in Peyer’s patches, which mi-
grate to mesenteric lymph nodes (MLNs) and activate B cells in mesenteric lymph nodes,
eventually resulting in IgA production [45–47]. Another model assumes that DCs directly
sample symbiotic bacteria and/or other intact antigens in the lumen. The pioneering
research supporting this model is the discovery that DCs extend dendrites into the lumen
by penetrating the epithelium for tight connections [48].

DCs in the intestinal lamina propria (LP) of mice can be phenotypically divided into
two major developmentally distinct populations, which are MHCII+ CD11chi CD103+

CD11b+ CX3CR1− M-CSFRlo DCs (CD103+ CD11b+ DCs) and MHCIIhi CD11chi CD103−

CD11b+ CX3CR1+ M-CSFRhi DCs (CD103− CD11b+ DCs) [49]. Previous studies have
shown that the DC assembly transports autoantigen from the ileum to the T-cell region of
the mesenteric lymph node to maintain the immune response [50]. In addition, DCs are of
the utmost importance in peripheral immune tolerance through the finely regulated DC
and Foxp3+ Treg cell crosstalk, whereby Treg cells modulate DC phenotype and function.
CD103+ DCs drive the differentiation of Foxp3+Treg cells from CD4+ T cells depending on
retinoic acid (RA) through RALDH2 and TGF-β, with the assistance of integrin αvβ8 [51–
53]. RALDH2, an enzyme expressed by cDCs in the gut and encoded by aldhla2, can produce
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RA from dietary vitamin A [54]. In the absence of CD103+ DCs, RALDH2 expression and
Treg production were decreased, but Th1 response was enhanced [55] and the mechanisms
for this change remain unclear. In colitis, the efficiency of producing Treg by MLN DCs
is lower because of the specific loss of CD103+ DCs [56]. CTLA-4 expression in Treg
cells down-/upregulates CD80/86 co-stimulatory molecules, which are significant for the
activation of the immune response on DCs [51].

In some bacteria like L. reuteri and L. casei, IL-10 is also involved in inducing tolero-
genic setting-predominated DC subtypes [53]. IL-10 also can inhibit multiple aspects of
DC function including MHCI/II and CD80/CD86 co-stimulatory molecule expression
and the release of pro-inflammatory cytokines [57]. In addition, IL-10 production by hu-
man DCs is triggered by Treg cells, which stimulate B7-H4 expression and render APCs
immunosuppressive [58]. The immunomodulatory molecule, polysaccharide A (PSA),
of B. fragilis mediates the conversion of CD4+ T cells into Foxp3+ Treg cells that produce
IL-10 during commensal colonization and suppress the activation and proliferation of
inflammatory effector T cells [59]. Endogenous biomolecules like adrenomedullin, hep-
atocyte growth factor, immunoglobulin-like transcript, NF-κB, placental growth factor,
TGF, TNF, VEGF, and several possible molecular mechanisms or signal pathways exert a
considerable tolerogenic influence on DC function [60,61].

Tolerogenic DCs (tol-DCs), which consist of naive immature DCs or alternatively
activated semimature DCs induced by apoptotic cells or the regulatory cytokine milieu,
play a pivotal role in immune tolerance [62]. Tol-DCs constitutively migrate throughout
the periphery and the lymphatic system, presenting self-antigens in the absence of cos-
timulatory molecules [63]. Meanwhile, DC plays a certain role in the immune tolerance
of the human body to intestinal microorganisms, which is related to programmed death
receptor 1 (PD-1). PD-1 is a member of the B7 family, and human or mouse PD-1 ligand
(PD-L) 1 and PD-L2 are expressed on immature DCs, mature DCs, interferon (IFN)-treated
monocytes, and follicular dendritic cells [64]. Binding of PD-L1 to PD-1 leads to inhibition
of T cell receptor (TCR)-mediated lymphocyte proliferation and cytokine secretion [65].
Moreover, mice with PD-L1−/− developed autoimmune diseases, which indicated that
peripheral tolerance was defective [66].

It is worth mentioning that unique tolerogenic properties are not only shaped by
tissue-derived migratory CD103+ DCs, but also by resident lymph node (LN) stromal cells
(SCs) [67]. A study has shown that mLN SCs are imprinted with a high Treg-inducing
capacity soon after birth, and instruct LN-resident DCs (resDCs) to foster efficient Foxp3+

Treg induction in a Bmp2-dependent manner [68]. Bone morphogenetic protein (Bmp),
a member of the TGF-β superfamily, has a synergistic effect with TGF-β on the induction
of Foxp3+ iTreg [69]. These regulatory molecules or cells mentioned above contribute to
the immunity tolerance caused by DCs.

4. Regulatory Relationship between the Gut and DCs

In most tissues, exposure to microbial products is sufficient to convert immature cDCs
into mature cDCs, thereby producing an effective effector response. However, it is likely to
be common that symbiotic bacteria expose their PAMPs in the healthy intestine. How the
intestine can tolerate trillions of intestinal bacteria, initiate tolerance toward food antigens,
and fight infections is the subject of an intense area of research. Recent advances have
highlighted a fundamental role of mouse DCs in these functions.

Numerous studies have shown that exposure to PAMPs present on intestinal com-
mensal bacteria promote DCs to express a unique molecular footprint so as to promote
the differentiation of naive B2 cells into IgA, producing plasma cells with the help of
RA and TGF-β [70,71]. IgA secreted by plasma cells effectively limits the penetration of
commensal intestinal bacteria and opportunistic pathogens. Other studies have provided
further evidence that stimulation of early bacterially exposed cells results in increased IL-10
secretion and the inhibition of DC differentiation through the MyD88 signaling pathway,
leading to functional suppression [72].
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Apart from the influence of intestinal flora, epithelial cells can also be affected by the
condition of mucosal dendritic cells through the constitutive release of thymic stromal
lymphopoietin (TSLP) and TGF-β. Commensal bacteria via microbe-associated molecular
patterns (MAMPs) bind to TLRs on intestinal epithelium cells (IECs) and DCs, and upon
activation of TLR signaling, IECs release TSLP and TGF-β [73]. TSLP and TGF-β cooperate
to elicit the tolerogenic phenotype of DCs, as well as promoting the polarization of T cells
toward a noninflammatory Th2 response [74,75]. Mincle, a Syk-kinase-coupled C-type
lectin receptor, and Syk signaling couples the sensing of mucosa-associated bacteria by
DCs in PPs with the production of IL-6 and IL-23, cytokines that regulate IL-22 and IL-
17 production through T cells and innate lymphoid cells, thus promoting the intestinal
immune barrier and limiting microbial translocation [76]. A common downstream signaling
adaptor, caspase recruitment domain 9 (CARD9), is reported to regulate the gut mycrobial
and bacterial landscape [77,78]. Based on the above, the explain for the general mechanism
of DC immune tolerance is clear, which is of great importance in commensal intestinal
bacteria colonization.

However, a study has demonstrated that the absence of CD103+ CD11b+ LP DCs,
as well as reduced numbers of Th17 and Treg cells in the LP, does not significantly affect
the composition of the steady-state enteric microflora [79]. This may demonstrate the
importance of parental transmission and early bacterial explosion we mentioned before,
which also deserves further study.

Germ-free (GF) mice showed delayed development of intestinal DC, indicating the
important role of intestinal microbes in intestinal immunity [80,81]. Some researchers
report that moDCs are able to mediate the responses of robust T helper cells (Th) 1 and
Th17 upon stimulation by Escherichia coli Schaedler or Morganella morganii, whereas the
probiotic Bacillus subtilis strain limits this effect [82]. Some studies indicate that lipid-
regulated nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) plays a
major role as a positive transcriptional regulator in human developmental DCs, mainly by
controlling the genes involved in lipid metabolism and thereby indirectly modifying
the immune phenotype [83]. Other researchers attached the importance of vitamin A
to intestinal homeostasis, because cytokine-activated colonic epithelial cells trigger the
secretion of distinct combinations of chemokines depending on the pro-inflammatory
stimulus and are controlled by RA [84]. In addition, the outcome of moDC differentiation
is able to accommodate to unique cellular microenvironments and remains remarkably
plastic until the terminal differentiation of the moDCs ensues [82]. Bifidobacteria can
significantly improve the antigen uptake and processing capacity of DCs in Crohn’s disease
(CD) patients, which can partially solve the reduction of intestinal innate immunity and
reduce the uncontrolled microbial growth in the intestinal tract of children with IBD [85].
Moreover, bifidobacteria are able to directly cause the production of DC maturation and
cytokines, and activate the production and maturation of DCs [86], which in turn supports
improved effector function of tumor-specific CD8+ T cells [87]. Researchers studied a
symbiotic microorganism called Bifidobacterium longum subspecies infantis 35,624 and found
that it can be recognized by mDCs and pDCs through different PRRs, inducing Foxp3T
regulatory cells through different ways of maintaining intestinal homeostasis [88].

Intestinal bacteria have attracted extensive attention in the field of digestion, and it
is worth mentioning that the role of enterovirus in intestinal homeostasis has gradually
been recognized and verified by researchers. Researchers suggested that pretreatment with
antiviral cocktail therapy can lead to severe colitis, and found that resident intestinal viruses
played a protective role in gut inflammation through TLR3 and TLR7-mediated IFN-β
secretion by pDCs [89]. On the other hand, several studies have shown that TLR3 agonist
poly I:C pretreatment can improve the therapeutic effect of umbilical cord mesenchymal
stem cells in dextran sulphate sodium (DSS)-induced colitis [90–92]. Importantly, there were
disease-specific changes in the enterovirus in IBD, which is a significant expansion of the
taxonomic richness of Caudovirales bacteriophages, and the viruses appear to be different,
although the changes have been observed in both Crohn’s disease (CD) and ulcerative
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colitis (UC) [92]. In addition, during intestinal tumor therapy, DCs from the combination
treatment group of radiotherapy and vancomycin significantly increased when compared
with radiotherapy, which indicates the potential relationship between intestinal bacterial
and DCs [93]. The summary of the regulatory relationship between gut and DC refers to
Figure 2 and Box 2.

Cells 2021, 10, x FOR PEER REVIEW 7 of 19 
 

 

[90–92]. Importantly, there were disease-specific changes in the enterovirus in IBD, 

which is a significant expansion of the taxonomic richness of Caudovirales bacteriophag-

es, and the viruses appear to be different, although the changes have been observed in 

both Crohn’s disease (CD) and ulcerative colitis (UC) [92]. In addition, during intestinal 

tumor therapy, DCs from the combination treatment group of radiotherapy and vanco-

mycin significantly increased when compared with radiotherapy, which indicates the 

potential relationship between intestinal bacterial and DCs [93]. The summary of the 

regulatory relationship between gut and DC refers to Figure 2 and Box 2. 

 

Figure 2. Summary of the role of CD103+ DCs in intestinal immune tolerance. The immune toler-

ance in the intestine is mainly due to the Foxp3+ Treg. CD103+ DCs play a significant role in regu-

lating Foxp3+ Treg, in which TGF-β and retinoic acid (RA) are important signaling molecules. 

IL-10, PD-1, and many others are also involved and have effects on DCs. In addition, on intestinal 

epithelium cells (IECs) and stromal cells (SCs) can promote the effect of CD103+ DCs after activa-

tion. 

Box 2. Crosstalk and interaction between the gut and DCs. 

DCs come into contact with intestinal flora within or without the assistance of micro-

fold cells. 

CD103+DCs help the establishment of immune tolerance through the effect of T cells. 

IL-10, PD-1, and many other factors play roles in immune tolerance. 

Differentiation and proliferation of DCs can be influenced by intestinal flora, epitheli-

al cells, and viruses. 

5. Intestinal DCs and IBD and Intestinal Tumors 

5.1. IBD and DCs 

IBD, including UC and CD, is a chronic inflammatory disease caused by microbial 

invasion or mucosal barrier damage, observed primarily in genetically susceptible pop-

ulations. In recent years, tremendous investigation has proven the development of the 

pro-inflammatory effect of DC cells of mice on IBD, considering DCs as a potential target 

for the treatment of IBD [11,94]. 

A recent study suggested that the maladjustment of the Th1 response in the in-

flammatory colonic mucosa of IBD patients was caused by a change in PD-L1 expression 

in the mucosal mesenchymal stromal cell compartment, because increased PD-L1 ex-

pression inhibits Th1 cell activity in UC, whereas the loss of PD-L1 expression observed 

in CD leads to the persist existence of a Th1 inflammatory milieu [95]. Although the ex-

periment focused on CD90+ stromal cells, the expression of PD-L1 in blood DCs did in-

crease during CD. The detailed mechanism needs to be further studied. Similar studies 

Figure 2. Summary of the role of CD103+ DCs in intestinal immune tolerance. The immune tolerance
in the intestine is mainly due to the Foxp3+ Treg. CD103+ DCs play a significant role in regulating
Foxp3+ Treg, in which TGF-β and retinoic acid (RA) are important signaling molecules. IL-10, PD-1,
and many others are also involved and have effects on DCs. In addition, on intestinal epithelium
cells (IECs) and stromal cells (SCs) can promote the effect of CD103+ DCs after activation.

Box 2. Crosstalk and interaction between the gut and DCs.

DCs come into contact with intestinal flora within or without the assistance of microfold cells.
CD103+DCs help the establishment of immune tolerance through the effect of T cells.
IL-10, PD-1, and many other factors play roles in immune tolerance.
Differentiation and proliferation of DCs can be influenced by intestinal flora, epithelial cells,
and viruses.

5. Intestinal DCs and IBD and Intestinal Tumors
IBD and DCs

IBD, including UC and CD, is a chronic inflammatory disease caused by microbial
invasion or mucosal barrier damage, observed primarily in genetically susceptible pop-
ulations. In recent years, tremendous investigation has proven the development of the
pro-inflammatory effect of DC cells of mice on IBD, considering DCs as a potential target
for the treatment of IBD [11,94].

A recent study suggested that the maladjustment of the Th1 response in the inflam-
matory colonic mucosa of IBD patients was caused by a change in PD-L1 expression in
the mucosal mesenchymal stromal cell compartment, because increased PD-L1 expression
inhibits Th1 cell activity in UC, whereas the loss of PD-L1 expression observed in CD leads
to the persist existence of a Th1 inflammatory milieu [95]. Although the experiment focused
on CD90+ stromal cells, the expression of PD-L1 in blood DCs did increase during CD.
The detailed mechanism needs to be further studied. Similar studies have demonstrated
the protective effect of PD-L1 mediated inhibitory signals during colon inflammation [96].
PD-L2, another ligand of PD-1, is expressed on DCs and through PD-L1 indirectly promotes
the secretion of the proinflammatory cytokines TNF-α and IFN-γ, which are known to
cause the pathogenesis of the disease and are involved in the progression of CD [97].

Furthermore, the role of pDCs in IBD has attracted the attention of scientists. Some re-
searchers have demonstrated that the circulating pDCs in active IBD patients migrate to
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secondary lymphatic organs and inflammatory sites, secreting inflammatory cytokines
such as IL-6, IL-8, and TNF-α [98,99]. It may lead to a pro-inflammatory phenotype in T
cells (Th1), which helps to understand why the inflammation is perpetuated in IBD [100].

Experiments on mice showed that at homeostasis, pDCs can migrate to specific tis-
sues, such as the lymph gland or gut, under the control of chemokine receptors including
CCR5, CCR7 [101], CCR9 [102], and its corresponding ligands CCL19 (MIP-3β), CCL21,
integrin α4β7, and CCL25 [103]. During the development of DSS-induced acute colitis
in mice, the transcriptional expression level of CCL2, CCL3, CCL5, CCL7, CCL8, CCL25,
CXCL9, CXCL10, and CXCL11 is increased [104]. These results suggest that pDCs may be
chemokine-dependent and transported in the inflammatory laminae of the colon. However,
through targeting the pDC-specific transcription factor TCF4 (E2-2) in experimental IBD
caused by deficiency of Wiskott–Aldrich syndrome protein (WASP) or IL-10, some re-
searchers proposed that pDCs do not play a major role in the pathogenesis of intestinal
inflammation in IBD [105]. The differences regarding the roles of pDCs may be due to the
use of pDC ablation systems and a genetic IBD model, which is T-cell-dependent, a dif-
ferent colitis model from T-cell-independent colitis induced by DSS [106]. Although the
role of pDC in IBD may be controversial and deeper and more accurate studies are needed,
the potential therapeutic value of pDCs in IBD cannot be completely ignored.

cDCs, another subset of DCs, may also play a role in the development of IBD. CD11c+

DCs, a subtype of cDCs mentioned above, were reduced by over 75% in the inflamed and
uninflamed ilea in patients with CD compared to controls, as measured through multicolor
tyramide fluorescent labeling with automated analysis, and these non-inflammatory areas
showed no visible damage or inflammation, suggesting that the loss of DCs may be a
precursor to subsequent damage [97]. In terms of health, the phenotypic DC subsets
found in the intestinal mucosa maintain their tolerance and switch to a proinflammatory
phenotype during infection or chronic IBD [107]. Dab2, a clathrin and cargo binding
endocytic adaptor protein, modulates several cellular signaling pathways, including TGF-
β [108], and has been linked to acute or chronic inflammation [109,110]. It was also found
that Dab2 is mainly expressed in intestinal CD11b+ DCs, and the ablated expression of
Dab2 in DC2.4 cells (murine immortalized dendritic cells)—measured using the CRISPR-
CAS9 system—intensifies exacerbated experimental colitis [107]. In the presence of IL-15,
all-trans RA induces the release of pro-inflammatory IL-12 and IL-23 by cDCs and promotes
intestinal inflammation [111].

In contrast, some researchers found that CD103+ cDCs in patients with UC had ac-
quired a potent ability to drive Th1/Th2/Th17 cell responses, which are associated with
increased expression of pro-inflammatory cytokines [112]. The frequency of CD103+ cells
among cDC1 and cDC2 subsets was lower in active IBD intestinal tissue compared to con-
trols [113]. In mice, experiments show that the expression of p38α in CD103+ DCs regulated
the balance between iTreg and Th1 differentiation in a TGF-β2-dependent manner [114].
A recent study revealed the further mechanism by which CD137, a potent costimulatory
receptor for CD8+ T cells, can participate in activating TAK1 and subsequently stimulates
the AMPK-PGC-1α axis to enhance expression of Aldh1a2, which encodes RALDH2 [115].
Furthermore, some studies revealed intestinal CD103+ CD11b- DCs could inhibit colitis
through epithelial anti-inflammatory response induced by IFN-γ [116,117]. In addition,
research shows that the frequency of αVβ8+ cDC2s, which are thought to induce Tregs,
increased in Crohn’s patients compared to controls [118]. The evidence above shows the
role of cDCs in IBD.

It can thus be seen that intestinal DCs may become a new treatment for patients with
IBD and therefore warrant further study. For example, the latest studies proved that by
transfecting primary rat bone marrow DCs with FasL plasmid into the peritoneum of IBD
model rats, intestinal damage is reduced and the number of colon T cells, neutrophils,
and pro-inflammatory Mϕs decreased [119]. The summary of relationship between DC
and IBD refers to Figure 3.
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Figure 3. A schematic overview of the regulatory relationship between DCs and inflammatory bowel
disease (IBD). The lost integrity of the epithelial cell barrier and insufficient mucus layer facilitate
bacterial translocation to subepithelial regions. Dab2 is expressed by cDCs. The expression of p38α
in cDCs regulated the balance between iTreg and Th1 differentiation in a TGF-β2-dependent manner.
RA, transforming from dietary vitamin A by RALDH2, induces the release of pro-inflammatory IL-12
and IL-23 by cDCs and promotes intestinal inflammation in the presence of IL-15. pDCs express
gut homing receptors, which reside beneath the epithelial layer and are responsible for taking up
luminal antigens and gaining the capacity to produce IL-6 and IL-8 TNF-α, which plays a key role in
the establishment of IBD in model rats.5.2. Intestinal Tumors and DCs.

The relationship between DCs and tumors has been extensively studied, and the use
of a “DC vaccine” has even been proposed to stimulate the entry of effector T cells into the
tumor to suppress the tumor [120–122]. DC subsets are also considered to be predictive
indictors of gastric cancer prognosis [123]. Some researchers suggested that a conserved DC
regulatory program, which was related to the capture of cell-associated antigens in normal
or excessive cell death, inhibited immune function and controlled the threshold of T-cell
activation [124]. Inflammatory mediators and effector cells are important components
of the tumor local microenvironment. In some types of cancer, chronic inflammation
precedes malignant changes, and in others, carcinogenic changes trigger inflammatory
microenvironments that promote tumor development [125,126].

Impaired numbers and functions of DCs have been widely observed in several types
of cancer, including colon cancer, which may be related to tumor escape mechanisms that
cancer cells use to evade host immune surveillance [127–129]. Tremendous studies have
shown that the tumor microenvironment can act on human pDCs through immunosup-
pressive mediators (such as PGE2 and TGF-β [130]) or pDC regulatory receptors to inhibit
or alter its functional activity, possibly leading to inhibition of IFN-α secretion or induction
of Treg and preventing an effective anti-tumor response [131–133]. The IL-10 derived from
tumors can also repress the antitumor immunity of human DCs [134]. In a murine breast
cancer model, IL-10R was expressed at high levels on DCs, leading to the suppression of the
anti-tumor cytokine IL-12 [121]. Another discovery was that the dysfunction of DCs may
be related to lipid accumulation in human and mouse DCs caused by the up-regulation
of scavenger receptor A, and thus DCs fail to effectively stimulate allogenic T cells or the
presence of tumor-related antigens [135,136].

Another subset of DCs, inflammatory DCs (inf-DCs), is a subtype of moDCs described
earlier, and can effectively capture and deliver tumor antigens [137,138]. Human inf-DCs
are known to induce Th17 cells in inflammation and are one of the major sources of IL-
17 [139]. IL-17R family members in inflammatory environments may play a role in the
tumor-promoting effect of IL-23 [140]. Moreover, the barrier damage caused by the tumor
triggers the inflammation caused by the tumor and promotes the growth of the tumor [141].

Inf-DCs can also produce reactive oxygen species (ROS) and directly mediate the
anti-tumor response in mice [142]. Experiments on mice show that specific dynamic
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fluctuations in the expression of AT-rich sequence-binding protein 1 (Satb1) control the
generation and immune stimulation activity of homeostasis DCs and inf-DCs, and the
continuous overexpression of Satb1 transforms them into carcinogenic/pro-inflammatory
cells, thus promoting malignant progression [143].

The binding of co-stimulatory molecules CD80/CD86 on DCs induces certain subsets
of DCs to express functional indoleamine 2,3-dioxygenase (IDO), an enzyme that degrades
essential amino acid tryptophan (Trp) into kynurenine (Kyn) [144]. IDO1-mediated trypto-
phan catabolism promotes local immune suppression in two ways [145]. The first is that
tryptophan starvation limits T cell proliferation by weakening the T cell cycle mechanism,
whereas the other one depends on the apoptosis of T cells caused by Kyn [146]. Wnt sig-
naling networks in DCs that drive Treg responses have also been proven to be involved
through several complicated signal axes, including molecules like β-catenin, RA, mTOR,
IDO, and IL-10 [147].

In addition to the effect of DCs on tumors, γδT cells also have shown the ability
to promote tumor progression by interfering with DC effector function, which can be
mediated by bacteria through IL-1β and IL-23 [148]. As for the further mechanism, it is
speculated that γδT cells suppress innate and adaptive immunity through the induction
of immunosenescence, which significantly upregulated PD-L1 expression and resulted in
other impaired phenotypic and functional features [134,149,150].

Another molecule mentioned above, PD-1, may play a vital role in tumor progression,
as the antibody of PD-L1 can enhance the maturity of DCs and subvert the immunosup-
pressive state of the tumor microenvironment [151]. Anti-PD-1 cancer immunotherapy is
based on the crosstalk between T cells and DCs, and the progress is licensed by IFN-γ and
IL-12 [152].The summary of DC’s contact with intestinal tumor refers to Figure 4 and the
contact with intestinal diseases refers to Box 3.
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Figure 4. Schematic representation of known regulatory mechanism between DCs and intestinal
tumors. The ensuing intestinal flora are disturbed by the frequent use of antibiotics and/or diet, stim-
ulating inflammation that is largely orchestrated by DCs. Their activation by products of pathogenic
bacteria induces Try, which in turn causes changes in Kyn. In the tumor microenvironment, immuno-
suppressive mediators such as PGE2 and TGF-β can act on pDCs to inhibit or alter their functional
activity, leading to inhibition of IFN-α secretion. The IL-10 derived from tumors can also repress the
antitumor immunity of DCs. γδT cells can suppress innate and adaptive immunity by interfering
with DC effector function, which can be mediated through IL-1β and IL-23, and significantly upregu-
late PD-L1 expression. The continuous overexpression of Satb1 transforms homeostasis DCs and
inf-DCs into carcinogenic/pro-inflammatory cells. Inf-DCs can also produce DNA-damaging ROS
and directly mediate the anti-tumor response.
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Box 3. Diseases and DCs.

The detailed role of pDCs in IBD is controversial because of different experimental models.
cDCs are involved in the occurrence and development of IBD through several molecular processes
like RA, IL-12, and IL-23 and influence the differentiation of T cells.
inf-DCs and PD-1 are vital to intestinal tumors through multiple immune factors.

6. Conclusions

The evidence above sufficiently demonstrates the importance of intestinal DCs, which may
have huge potential for being applied in clinical treatments. DCs have several subgroups
in different classification cases, including cDCs, pDCs, moDCs, and others, all of which
participate in different regulatory networks. The regulatory relationship of DCs and
intestinal microbiota provides a possible and easier way to access and influence DCs
in the gut or even around the body. DCs are also involved in the immune tolerance to
symbiotic bacterial colonization through Foxp3+ Treg cells, which require TGF-β, IL-10,
RA, and many other biomolecules. Additionally, multiple molecules are combined in the
complicated mechanism of regulating intestinal diseases such as IBD and intestinal tumors
by DCs, which also makes it more difficult to achieve satisfactory therapeutic effects merely
by altering several molecular targets. Collectively, DCs have shown large potential and
warrant further and deeper studies from the prospective of intestinal physiology.
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Abbreviations

DC dendritic cell
cDC conventional DC
pDC plasmacytoid dendritic DC
moDC dendritic cell derived from monocytes
Mϕs macrophages
PAMP pathogen associated molecular pattern
PRRs pattern recognition receptors
TLR toll-like receptor
RLR retinoic acid-inducible gene I-like receptor
NLR NOD-like receptor
NFIL3 IL-3-regulated protein
LAG-3 lymphocyte activation marker 3
IBD inflammatory bowel disease
CD Crohn’s disease
UC ulcerative colitis
GM-CSF granulocyte/Mϕ colony stimulating factor
SCFA short chain fatty acid
TGF transforming growth factor
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PD-1 programmed death receptor 1
PD-L1 programmed death receptor 1 ligand
IECs intestinal epithelium cells
CARD9 caspase recruitment domain 9
Th T helper cells
PPARγ peroxisome proliferator-activated receptor γ
RA retinoic acid
DSS dextran sulphate sodium
WASP Wiskott–Aldrich syndrome protein
Dab2 disabled homolog 2
inf-DCs inflammatory DCs
ROS reactive oxygen species
IDO indoleamine 2,3-dioxygenase
Trp tryptophan
Kyn kynurenine
NF-κB nuclear factor kappa B subunit
TGF transforming growth factor
TNF, tumor necrosis factor
VEGF vascular endothelial growth factor
GF germ free
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