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Immunotherapy with checkpoint blockers (ICBs), aimed at unleashing the immune

response toward tumor cells, has shown a great improvement in overall patient survival

compared to standard therapy, but only in a subset of patients. While a number of

recent studies have significantly improved our understanding of mechanisms playing an

important role in the tumor microenvironment (TME), we still have an incomplete view

of how the TME works as a whole. This hampers our ability to effectively predict the

large heterogeneity of patients’ response to ICBs. Systems approaches could overcome

this limitation by adopting a holistic perspective to analyze the complexity of tumors.

In this Mini Review, we focus on how an integrative view of the increasingly available

multi-omics experimental data and computational approaches enables the definition of

new systems-based predictive biomarkers. In particular, we will focus on three facets

of the TME toward the definition of new systems biomarkers. First, we will review how

different types of immune cells influence the efficacy of ICBs, not only in terms of their

quantification, but also considering their localization and functional state. Second, we will

focus on how different cells in the TME interact, analyzing how inter- and intra-cellular

networks play an important role in shaping the immune response and are responsible for

resistance to immunotherapy. Finally, we will describe the potential of looking at these

networks as dynamic systems and how mathematical models can be used to study the

rewiring of the complex interactions taking place in the TME.

Keywords: tumor microenvironment, precision immuno-oncology, multi-omics profiling, systems biology,

predictive biomarkers, cancer signaling networks, immune checkpoint blockers

A CHANGE IN THE LANDSCAPE OF BIOMARKERS DISCOVERY

Tumor cells are able to activate several mechanisms to evade the immune response by disguising
themselves as “self ” cells. Binding to inhibitory checkpoint molecules (i.e., immune checkpoints)
they can block antitumor activities of the immune system. Immunotherapy with immune
checkpoint blockers (ICBs) uses antibodies to target immune checkpoints, such as PD1, PD-L1, and
CTLA-4, unleashing the immune response. In clinical trials, ICB therapy has been shown to achieve
durable therapeutic response and to increase patient survival in different cancer types, although
still a small number of ICBs are FDA-approved (1, 2). Even if clinically approved, ICB therapy is
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effective for a small subset of patients. Given the potential
immunological toxicity (3, 4) and the elevated costs
(>US$100,000 per patient per year) (5) associated with
ICBs, it is of paramount importance to be able to predict which
patients will likely respond to the therapy, in order to administer
the optimal treatment based on biomarkers.

The investigation of mechanisms supporting immune
resistance has provided a great opportunity for biomarker
discovery of patient response to ICBs (Figure 1). Two biomarkers
have been clinically approved for PD-1/PD-L1 blockade therapy:
the first is immunohistochemistry (IHC) staining of PD-L1
in non-small-cell lung cancer (NSCLC), melanoma, renal cell
carcinoma (RCC), urothelial cancer, and triple-negative breast
cancer (TNBC) (6); and the second is high microsatellite
instability/defective mismatch repair (MSI-H/dMMR) regardless
of tumor type (7, 8). Other emerging predictive biomarkers such
as tumor mutational burden (TMB) (9, 10), signatures of a T
cell inflamed tumor microenvironment (TME) either alone (10)
or in combination (11), and neoantigen load (12–14) are still
undergoing clinical trials. In addition, T cell receptor (TCR)
diversity has been used as a biomarker to monitor the clonal
expansion of T cells in breast cancer, glioma, cervical cancer, and
leukemia/lymphoma (15–18). Further efforts both to exploit the
utility of these biomarkers and to search for additional ones are
still ongoing. For a complete review of these biomarkers and in
which tumors they work, we refer to Havel et al. (19).

Despite being promising, these biomarkers also present
some limitations. For instance, IHC enables measuring PD-
L1 expressed on tumor cells, however the expression of this
biomarker fluctuates over time and varies between different
tumor sites. This variability undermines the ability to evaluate
PD-1/PD-L1 therapies effectiveness based on IHC, as reviewed
in Topalian et al. (20) and Camidge et al. (21). Another
example is TMB, which is known to correlate imperfectly
with clinical response (12, 13, 22). Neoantigen burden should
partially overcome this issue, however most computational tools
fail to estimate true neoantigens (19, 20, 23), and additional
features should be considered to better determine neoantigen
immunogenicity as reviewed in Finotello et al. (24).

Above-mentioned examples shed light upon the conceptual
problem of looking only at individual components of the TME.
While the characterization of different parts playing a role in
the interaction between tumor and immune system has been
essential to elucidate the most important actionable mechanisms,
further research is required to define biomarkers harnessing a
more coordinated joint action of these mechanisms. Predictive
biomarkers for immunotherapy with ICBs have been extensively
reviewed previously (19, 20, 23, 25). In this Mini Review we

Abbreviations: CTLA-4, cytotoxic T lymphocyte antigen 4; DC, dendritic
cell; ICB, immune checkpoint blocker; IFNγ , interferon gamma; IHC,
immunohistochemistry; MMR, DNAmismatch repair; MSI-H, high microsatellite
instability; NOS2, nitric oxide synthase 2; NSCLC, non-small-cell lung cancer;
PD-L1, programmed cell death-ligand 1; PD-1, programmed cell death protein
1; RCC, renal cell carcinoma; RNA-seq, RNA sequencing; scRNA-seq, single-cell
RNA sequencing; TCGA, the cancer genome atlas; TCR, T cell receptor; TMB,
tumor mutational burden; TME, tumor microenvironment; TNBC, triple-negative
breast cancer; TNF, tumor necrosis factor; Treg, regulatory T cell.

focus on how a holistic profiling of the TME can provide new
opportunities for identifying systems-based biomarkers built on
existing synergies between the different individual components
of the TME. Such a shift toward multifaceted strategies has
been favored by increasingly available multi-omics data from
bulk populations, individual cells, and imaging technologies
(26), that can be integrated using computational approaches.
In the following sections we will describe how biomarkers can
be derived by considering three increasing levels of complexity.
The first is the cellular component, focusing on the immune
contexture of tumors, such as immune cells quantification,
functionality, and localization. The second is the network of
communication between and within cells of the TME. Finally, we
will elaborate on how mathematical models can be used to take
the dynamic nature of these networks into account.

THE ROLE OF THE IMMUNE
CONTEXTURE ON ICB EFFICACY

It is well-known that different types of immune cells can play a
different role in the response to ICBs (27). For example, while the
presence of CD8+ T cells within the TME is a good biomarker
of ICBs efficacy, a high abundance of regulatory T (Treg) cells
is generally associated with poor prognosis. Different tools have
been developed to quantify tumor-infiltrating immune cells from
bulk (RNA-seq) and single-cell (scRNA-seq) RNA sequencing
measurements, as extensively reviewed in Finotello and Eduati
(26) and Finotello and Trajanoski (28).

Apart from quantification of immune cells, their spatial
localization also plays a pivotal role in the response to
immunotherapy (29). For instance, CD8+ T cells not only need
to be present, but also to be infiltrated (hot tumor) for the
ICB therapy to work. In fact, pure quantification of CD8+
T cells is not always associated with favorable prognosis (30).
Imaging techniques can be used to explore the spatial patterns of
immune infiltration. A notable example of a biomarker assessing
through IHC, both the abundance and the location (tumor
center and invasive margin) of two lymphocyte populations
(CD3+ and CD8+ T cells) is the immunoscore (31), that
was shown to accurately predict patient survival in colorectal
cancer patients (32). More recently, spatial information of
CD8+ T cells from IHC was integrated with transcriptomics
data to study the effect of lymphocyte infiltration in patients
with TNBC, providing predictive biomarkers of ICBs response
(33). Automatic approaches for image analysis could reveal
useful in the future for high-throughput identification of spatial
biomarkers. A first attempt in this direction was the development
of tumor infiltrating lymphocytes maps by using deep learning
on images from the cancer genome atlas (TCGA) (34).

Another important factor that affects patients’ response to
ICBs is the functional state of the different immune cells (35).
Dysfunctional states of T cells can be characterized from bulk
and single-cell RNA-seq (36–38) and epigenetic profiling (39–
41). ICBs aim at rescuing dysfunctional T cells, therefore the
investigation of their functional state can inform on ICBs therapy
success and limitations (36–39, 41). Depending on the type of
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FIGURE 1 | (A) Biomarkers can help to select patients that are likely to respond to immune checkpoint blockers (ICBs), leaning toward personalized

immuno-oncology. (B) Examples of possible mechanisms that can inform on response to ICBs. (a) Binding of PD-L1 to PD-1 transmits an inhibitory signal that

reduces the proliferation of T cells and can induce apoptosis. (b) Genetic alterations in MMR proteins produce a large number of mutations leading to a large number

of mutations that generate neoantigens. (c) The number of non-synonymous single nucleotide variants in a tumor, known as the tumor mutational load, may affect the

generation of neoantigens influencing the T cell response. (d) Quantification of different immune cell types offers a new opportunity to assess treatment efficacy. (e)

Immune cells can be in a dysfunctional state, therefore promoting tumor immune escape. (f) The degree of T cell infiltration can affect ICBs effectiveness. (g) Signaling

pathways are responsible for the correct functioning of the cells. Cancer is caused by deregulations in these cellular signaling pathways, ultimately changing the cell

phenotype. (h) There are a great number of pathways and cross-talks involved in the communication between tumor and immune cells. (i) Both, all sorts of TCR

sequences and the richness of each specific TCR sequence, can deal with the wide variety of neoantigens expressed by tumor cells. As a result, more specific T cell

clones are present, and therefore ready to mount an effective T cell response.

stimulatory signal, macrophages (42, 43), and B cells (44, 45)
can develop into functional subsets that have either positive
or negative effects on tumors. Another example are dendritic
cells (DCs), that normally control cancer antigen presentation,
priming and activation of T cell responses, however the TME
can compromise their ability to stimulate the immune response
(46, 47). Certain computational tools for cell-type quantification
can also unmask the phenotypic state of cell subpopulations in
the TME by inferring the transcriptomics profiles of individual
cells (48, 49). A promising research direction for biomarkers
discovery is also given by new technologies that allow generation

of omics data from tissue slides preserving cell spatial identity
(50, 51). These approaches would result in combined localization
and characterization of the cells in the TME.

Analysis on the immune infiltrate quantification,
functionality, and localization can help both to explain
the diversity of the tumor immune milieu and develop
informative biomarkers for ICBs (27, 52, 53). Pointing in this
direction, different efforts have recently explored the use of bulk
transcriptomics data to derive more complex immune-related
scores to assess the likelihood of a patient to respond to ICBs
(38, 54–63).
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INTRA- AND INTER-CELLULAR
NETWORKS ORCHESTRATE THE IMMUNE
RESPONSE

The functional state of cells in the TME is defined by a complex
system of communication between molecules within the cells
(intra-cellular networks) and among different cells (inter-cellular
networks). Looking at intra- and inter-cellular networks can
provide a more holistic perspective of the TME and inform a
new class of biomarkers for immunotherapy and its potential
combination with other targeted therapies (64).

Intra-cellular signaling pathways play a part in shaping
the interaction with the immune system [(65, 66); Figure 2].
Abnormalities in tumor-intrinsic signaling, involving oncogenes
and tumor suppressor genes, have been associated with
mechanisms of inherent immune resistance (67). Examples are
PTEN loss (68) or EGFR gain of function (69), both causing
PI3K-Akt pathway activation and leading to over-expression of
PD-L1 and consequent immunoresistance. Due to the complexity
of signaling pathways, with numerous cross-talks and feedback
loops, the adoption of individual oncogenic drivers as biomarkers
is not expected to be effective in most cases (20). In fact,
PD-L1 signal is directly regulated by numerous oncogenic
pathways such as Ras, mTOR, EGFR, MEK, ERK, and MAPK
(70). Besides pathways regulating immune checkpoints, other
signaling cross-talks control the immune response from different
perspectives, like inactivation of TP53 or activation of β-catenin
pathway, both reducing chemokine production by tumor cells
and thereby reducing recruitment of immune cells into the
TME (71, 72).

In addition, cancer cells receive signals from other cells
in the TME through ligand-receptor interactions. These inter-
cellular communications lead to changes in the phenotype of
the regulated cells thus playing an important role in both
progression and prognosis of cancer (73, 74). An example is
the response elicited on cancer cells by two cytokines (TNF and
IFNγ ) produced by activated T cells. These cytokines induce
PD-L1 expression through JAK-STAT and NF-kB signaling,
inducting acquired resistance to the immune response (75, 76).
Another study identified a relationship between high expression
of NOS2 and prolonged IFN signaling in tumors resistant to
PD-1 blockade (77).

While collections of intra- (78) and inter-cellular (79)
interactions can be derived from literature and databases,
additional data are required to characterize the networks
for each patient or group of patients. Transcriptomics and
proteomics data can provide the basis to study intra- and
inter-cellular signaling networks. Imaging data can also be
integrated to improve our understanding on spatial localization
of interacting cells. Computational methods have been developed
to infer integrated inter- and intra-cellular networks from bulk
(80, 81) and single-cell (81, 82) RNA-seq data. These tools
could be exploited to derive biomarkers for immunotherapy
by studying the functional effect of cell-cell communication.
In a recent study, a curated database of ligand-receptor
interactions (79) was integrated with gene expression data to

deconvolute the transcriptional profile of cancer and stromal
cells and infer cross-talks in the TME (83). Interestingly,
the authors show that for different cancer types, PD-L1
expression is higher on cancer or stromal cells which nicely
correlates with the general responsiveness to immunotherapy.
Further research is required to assess if this holds also for
individual patients, making it potentially a more effective
biomarker than bulk PD-L1 expression. In another recent
publication (84), researchers performed an extensive literature
curation to derive a comprehensive signaling network of
innate immune response in cancer, including cell type-specific
signaling in macrophages, DCs, myeloid-derived suppressor
cells, and natural killer cells. Such network was then integrated
with scRNAseq data from macrophages and natural killer
cells in melanoma to study the heterogeneity of innate
immune cell types and could potentially be used to predict
patient survival and response to immunotherapies. Finally,
Worzfeld et al. combined parallel bulk transcriptomics and
proteomics data on tumor cell spheroids, tumor-associated
T cells and macrophages to derive inter-cellular signaling
networks in the ovarian cancer microenvironment (85). Such
networks included several immune checkpoint regulators and
appeared to have potential clinical relevance. Overall, these
studies have demonstrated the enormous benefit that holistic
approaches combining complex multicellular networks can bring
into the immuno-oncology field, and we expect that in the
forthcoming future more research efforts will be spent in this
direction. The recent developments of 3D cell culture models
resembling the TME, are expected to be a powerful tool
for further in vitro and ex vivo investigation of intra-cellular
communication, and to study their effect on the response to
ICBs (86).

THE POTENTIAL OF LOOKING AT THE
DYNAMICITY AND PLASTICITY OF THE
TME

It is well-known that the cellular functional state changes
dynamically in response to environmental changes and
perturbations such as drug treatment (87, 88), calling for
identification of the dynamic properties of the networks. The
ideal data for dynamic functional characterization of the system’s
response are obtained upon perturbation (89). Functional
screening of the effect of cancer drugs has been so far focused
on cancer cell lines. While cell lines are a debatable model
system, they proved to be a valuable tool to explore novel
biomarkers of drug response (90, 91). High-throughput drug
screening studies are now also being increasingly performed on
organoids (92) or other 3D experimental models (86), which are
more physiological human cancer models of the TME. These
efforts open new ways for pre-clinical investigation of the effect
of immunotherapy. Finally, more recent technologies allow
screening also of patient biopsies without need for culturing
steps (93–95) paving the way for functional characterization
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FIGURE 2 | Comprehensive inspection of the tumor microenvironment (TME) from multiple angles. This illustration shows how systems medicine approaches are key

to improving our understanding of the mechanisms of resistance to immunotherapies with checkpoint blockers (ICBs). Combining multi-omics data and prior

knowledge information on inter- and intra-cellular pathways using mathematical models allows encompassing the complexity of the TME paving the way for the

discovery of systems-based biomarkers of the response to ICBs.

of ex vivo tumor samples potentially improving personalized
cancer treatment.

To capture the functional context of the immune response,
statistical, and mathematical approaches are developing into
more compendious methods that integrate multi-omics data
and prior knowledge on network structure (Figure 2). While
mathematical models do not fall into the standard definition
of biomarkers, they can provide predictions of response to
immunotherapy. Additionally they can be used to define dynamic
biomarkers based on properties of the modeled system, as
opposed to static biomarkers that only consider the initial
conditions of the system (88).

Dynamic mathematical models can be used to study intra-
cellular networks of the different cell types populating the
TME (96). To characterize these networks at the patient-specific
level, models of signaling pathways in cancer cells have been
trained from perturbation experiments (97, 98), gene expression
data (99), or integrating multi-omics data (100). The resulting
parameters corresponding to these personalized models can be
relevant biomarkers of clinical outcome (99–101). Mathematical
models have also been used to study intra-cellular signaling in
T cells. This includes the investigation of how PD-1 leads to
deactivation of the T cell receptor signaling (102) or mechanistic
understanding of T cell exhaustion (103). PD-1 is one of the main
targets of ICB, and exhausted T cells have a higher number of

targetable checkpoint proteins like PD-1 and CTLA-4, therefore
the investigation of these aspects could be relevant to identify
possible biomarkers.

More studies are now focusing on mathematical models
incorporating inter-cellular interactions to better capture the
complexity of the TME. Agent-based models can be used
to simulate the interactions between cells in the tumor
microenvironment seen as a 2D or a 3D grid (104). Each cell is
seen as an agent that can perform different tasks with a certain
probability (e.g., cells can non-proliferate, divide, or die). Since
the immune response can be seen as a probabilistic outcome
of a complex system (88), agent-based models are an adequate
mathematical approximation to capture this stochasticity. These
models can be refined using a multitude of data types and
used to simulate the effect of immunotherapy (105, 106),
providing a variety of possible outcomes given the same initial
conditions that can be interpreted as probability of success. It
has been shown that tumor-bearing inbredmice, which have only
minimal differences, can respond differently to immunotherapy
(88), therefore having models that can incorporate stochasticity
provides an interesting approximation of the in vivo situation.
Another approach to model cell-cell communication is by
using response-time modeling (107), where cells are modeled
as a black-box that can receive inputs (e.g., cytokines) from
other cells, process them, and change state (e.g., immune cells
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can switch between inactive and active) accordingly with a
certain probability. Recently, Grandclaudon et al. combined
perturbation data with a multivariate quantitative model to
study context dependent interactions between DCs and helper T
cells (108). A different approach based on quantitative systems
pharmacology was recently used to simulate the effect of
ICB therapy in metastatic breast cancer patients using a four
compartments (central, peripheral, tumor-draining lymph node,
and tumor) model (109).

Additionally, combining mathematical models with
longitudinal data, i.e., data collected at different time points, can
be used to investigate the evolutionary dynamics of treatment
response. This aspect is particularly relevant, especially to be
able to distinguish at an early stage real tumor progression
(patient should be assigned to a different treatment) from
what is called pseudoprogression, i.e., temporary progression
followed by a response to the treatment (patient should be
kept on ICB). The latter behavior has been described using a
model of immune activation incorporating the dynamics of
antigen presentation (110). Based on a system of three ordinary
differential equations to describe the interaction between tumor
cells, Treg cells, and cytotoxic T cells, this model could explain
why, in response to ICBs, the tumor can worsen before starting
regressing. Other multi-cellular models have been used to
derive in silico patients to test different possible dynamics of
treatment response (111, 112), that could be compared with
longitudinal measurements of tumor load from PET/CT imaging
(112). Longitudinal data are often limited to non-invasive
imaging and, in a few cases, to transcriptomics, IHC, TCR,
and genome sequencing data (113, 114) for a limited number
of time points due to invasiveness of biopsies. Computational
modeling of longitudinal data is still at its infancy, but we
envision that in the future more mechanistic dynamic models
will be able to exploit this type of data for definition of
dynamic biomarkers.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Current limitations in identifying predictive biomarkers for
ICB therapy are partially due to overlooking the complexity

of the TME. Following the advancements in technologies to
measure multi-omics data, measurements of bulk populations,
individual cells, and spatial information have paved the way
to a more comprehensive view of the TME. Recent efforts
are focused on searching for signatures of response to ICBs
that consider quantification, localization, and functionality of
different immune cells in the TME, showing improved predictive
power with respect to simpler biomarkers (115). However,
they still miss an integrative strategy that takes a view of the
whole TME, rather than examining each factor in isolation.
In this respect, mechanistic models incorporating existing
biological basis, e.g., on intra- and inter-cellular pathways,
can accompany both therapy and biomarker development in
immuno-oncology (116).

There is compelling evidence that the interplay of the immune
system, tumors, organs, and external environment, harmonizes
antitumor immune responses (117). Therefore, we envision
that novel systems medicine approaches entailing mathematical
models can gradually build up a profile of the TME, both in the
lab and, more importantly, in the clinic. To this end, building
patient specific models have become of increasing importance,
especially when based on data that can be measured in clinical
settings. Moreover, systems approaches can especially be useful
to provide rationale for alternative personalized treatments such
as combinatorial therapy.
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