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Background. Hepatocellular carcinoma (HCC) is a highly aggressive malignancy. Traditional Chinese Medicine (TCM), with the
characteristics of syndrome differentiation, plays an important role in the comprehensive treatment of HCC. This study aims to
develop a nonnegative matrix factorization- (NMF-) based feature selection approach (NMFBFS) to identify potential clinical
symptoms for HCC patient stratification.Methods. The NMFBFS approach consisted of three major steps. Firstly, statistics-based
preliminary feature screening was designed to detect and remove irrelevant symptoms. Secondly, NMF was employed to infer
redundant symptoms. Based onNMF-derived basis matrix, we defined a novel similarity measurement of intersymptoms. Finally, we
converted each group of redundant symptoms to a new single feature so that the dimension was further reduced. Results. Based on a
clinical dataset consisting of 407 patient samples ofHCCwith 57 symptoms,NMFBFS approach detected 8 irrelevant symptoms and
then identified 16 redundant symptoms within 6 groups. Finally, an optimal feature subset with 39 clinical features was generated
after compressing the redundant symptoms by groups. The validation of classification performance shows that these 39 features
obviously improve the prediction accuracy of HCC patients. Conclusions. Compared with other methods, NMFBFS has obvious
advantages in identifying important clinical features of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is the third most common
cause of cancer-related death worldwide and the leading
cause of death in patients with the complication of cirrhosis
[1, 2]. The occurrence of HCC is larvaceous and short of
specific symptoms [3, 4]. Its diagnosis depends on biopsy,
imaging examination such as Doppler ultrasound, computed
tomography, magnetic resonance imaging, and blood test
[5, 6]. Once the patients with HCC see doctors, the disease
has often entered its late stage, losing the chance of resection.
Hence, seeking simple methods to predict HCC and its

clinical stage is very meaningful and helpful to improve the
diagnosis of HCC.

As one of the most popular complementary and alter-
native medicine modalities, Traditional Chinese Medicine
(TCM) plays an active role in treatment of malignant tumors
including HCC in Chinese and some East Asian countries [7,
8]. Unlike modern medicine, the diagnosis and treatment of
TCM depend on the analysis of symptoms and signs of HCC
collected by inspection, auscultation and olfaction, inquiry,
and pulse taking and palpation [8]. TCM regards specific
combination of symptoms and signs as a TCM syndrome,
which is the main basis for treatment; and it can be also
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used to guide clinical diagnosis of HCC. Our previous work
proposed a hierarchical feature selection (PSOHFS) model
to quickly identify the potential HCC syndromes from a
TCM clinical dataset [9], by which all the original symptoms
were classified into several groups according to the categories
of clinical observations, and each symptom group was then
converted into a syndrome signature to reduce the searching
space of feature selection. But the limitation of this method
is that the interactions among symptoms which belong to
different categories (aspects) were ignored. Therefore, the
current challenge is to design an efficient feature selection
approach for high-dimensional TCMdata with consideration
of clinical significance.

In this study, a nonnegative matrix factorization- (NMF-
[10]) based feature selection (NMFBFS) method was pro-
posed to select pivotal clinical symptoms for HCC diagnoses.
A TCM clinical dataset was used in this work, which
consisted of 407 HCC patients with 57 clinical symptoms.
Each patient sample is labeled with a clinical-staging symbol
which indicates the severity of certain patient. Firstly, the
preliminary screening with statistical method was designed
to detect irrelevant symptoms from the full symptom set. Sec-
ondly, the process ofNMFwas implemented after eliminating
the irrelevant symptoms. Based on the NMF-derived basis
matrix, we defined a similarity measure to infer redundant
symptoms by calculating the distance and correlation among
the symptoms. Finally, the secondary dimension reduction
was implemented based on the inferred groups of redundant
symptoms. We converted each symptom group to a new
feature (named “mixed feature”) if these symptoms represent
similar distribution patterns on the sample space.The experi-
ment results show that 39 novel features inferred by NMFBFS
obviously improve the accuracy of diagnosis of HCC clinical
samples. Moreover, NMFBFS-derived 39 optimal clinical
features included some well-known common symptoms of
HCC patients. Comparing to three representative feature
selection methods (ReliefF [11], mRMR [12], and Elastic Net
[13]), our proposed approach showed the best performance
to identify optimal clinical features for HCC patients.

2. Materials and Methods

2.1. Experimental Data

2.1.1. Description. In this work, the questionnaire survey
dataset of HCC includes 407 samples within two years,
and each patient was observed on 57 clinical symptoms
(Table 1). Each patient sample is labeled with a symbol of
clinical stage, which is related to TCM pattern of syndrome
and indicates the severity degree of HCC. According to
the international staging system [14], there are three stages
and two substages in each phase in this dataset. The aim
of our work is to identify the symptom signatures, which
are related to three clinical stages: phases I, II, and III, and
the larger value indicates that stronger positive symptom
occurred. Within our dataset, all the original symptoms are
described by two types of data: binary (0 or 1) or integer (0,
1, 2, 3, . . .). For example, the type of symptom “tinnitus” is
binary (0 or 1), which means two possible states: occurrence

Table 1: The description of original clinical data of HCC patients.

Sex
Phase I (82) Phase II (195) Phase III (130)

Phase
IA

Phase
IB

Phase
IIA

Phase
IIB

Phase
IIIA

Phase
IIIB

Male 33 27 50 115 95 10
Female 12 10 10 20 16 9

(positive) or nonoccurrence (nonpositive). Another example
is “sleeplessness” whose value can be 0, 1, 2, or 3. The larger
the value is, the stronger the positive state will be. A symptom
does not appear positive if its value equals zero.

2.1.2. Data Preprocessing

Refinement of Feature Set. Our original dataset consists of 407
HCC patient samples (Table 1).The first step of preprocessing
is to remove the useless features because they provide no
useful information for the following classification. If a feature
is constant on all the observed samples, it can be considered as
useless feature. For our dataset, some symptoms, such as “pale
tongue” and “slow pulse,” were removed out because there is
no any observed patient positive on these symptoms. After
removing this kind of features, a refined clinical dataset with
407 samples and 57 symptoms (𝑉

1
, . . . , 𝑉

57
) can be obtained.

Simplification of Clinical Staging. The clinical staging of HCC
patients in our original dataset was marked with collections
“IA,” “IB,” “IIA,” “IIB,” “IIIA,” and “IIIB.” For identifying
the symptom signatures related to three clinical stages, all
the samples would be relabeled as three classes. Here, we
remarked class label “1” for the samples labeled “IA” and “IB.”
In a similar way, class label “2” is used for “IIA” and “IIB” and
“3” is for “IIIA” and “IIIB.” Finally, all the 407 clinical samples
can be distributed in three categories: 82 samples in phase I,
195 in phase II, and 130 in phase III. The details of the refined
dataset were described in Table 1.

2.2. Feature Selection. Feature selection can be organized into
three categories, depending on how they interact with the
construction of model. Filter methods employ a criterion to
evaluate each feature individually and are independent of
the model [15]. Among them, feature ranking is a common
method which involves ranking all the features based on a
certain measurement and selecting a feature subset which
contains high ranked features [16]. However, one of the
drawbacks of ranking methods is that the selected subset
might not be optimal in that a redundant subset might be
obtained. Wrapper methods involve combination searches
through the feature space, guided by the predicting perfor-
mance of a model [17]. Heuristic search is widely used in
wrapper methods as searching strategy which can produce
good results and is computationally feasible; however, they
often yield local optimum results. For an embedded method,
the feature search process is embedded into classification
algorithm, so that the learning process and the feature
selection process cannot be separated [18].
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2.3. Nonnegative Matrix Factorization. Nonnegative matrix
factorization (NMF) aims to obtain a linear representation
of multivariate data under nonnegativity constraints. These
constraints lead to a part-based representation because only
additive, not subtractive, combinations of the original data
are allowed [19]. In general, NMF can be used to describe
hundreds to thousands of features in a dataset in terms of a
small number ofmetafeatures, particularly in gene expression
profiles analysis [20–22].

Let 𝑋 be 𝑛 × 𝑝 nonnegative matrix; that is, each element
𝑥

𝑖𝑗
≥ 0 in 𝑋. Nonnegative matrix factorization (NMF)

consists in finding an approximation

𝑋 ≈ 𝑊𝐻, (1)

where the basismatrix𝑊 and themixture coefficientmatrix𝐻

are 𝑛 × 𝑟 and 𝑟 × 𝑝 nonnegative matrices, respectively, where
𝑟 > 0 and 𝑟 ≪ min(𝑛, 𝑝). The objective behind the small
value of 𝑟 is to summarize and split the information contained
in 𝑋 into 𝑟 factors (also called “basis” or “metafeature”).
The matrix 𝐻 has the same number of samples but much
smaller number of features rather than matrix 𝑋. Therefore,
the metafeature expression patterns in 𝐻 usually provide a
robust clustering of samples [22].

The main approach to NMF is for solving estimate
matrices 𝑊 and 𝐻 as a local minimum:

min
𝑊,𝐻≥0

[𝐷(𝑋,𝑊𝐻) + 𝑅(𝑊,𝐻)], (2)

where 𝐷 is a loss function that measures the quality of the
approximationwhich is usually based on either the Frobenius
distance or the Kullback-Leibler divergence [19]. 𝑅 is an
optional regularization function, defined to enforce desirable
properties on matrices 𝑊 and 𝐻, such as smoothness or
sparse [23, 24].

In our study, the loss function in NMF is based on
Kullback-Leibler divergence [25]. The above function 𝑅 was
defined as follows:

𝑅 (𝑊,𝐻) = 𝐹1 (𝑊) +𝐹2 (𝐻) , (3)

where 𝐹

1
(𝑊) and 𝐹

2
(𝐻) are regulation functions for 𝑊

and 𝐻, respectively. Here, we applied Tikhonov smoothness
regularization [26] for 𝑊 in

𝐹1 (𝑊) =

1
2
∑

𝑖,𝑗

([𝑊]𝑖𝑗
− 𝑐)

2
, (4)

where 𝑐 is a constant positive or zero. In addition, we applied
sparsity-enforcing regularization [26] for 𝐻 in

𝐹2 (𝐻) =

1
2
∑
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In formula (5), [𝐻]

.𝑗
is 𝑗th row of 𝐻. ‖[𝐻]

.𝑗
‖

2
2 and ‖[𝐻]

.𝑗
‖

2
1

define the 𝑙2-norm and 𝑙1-norm of [𝐻]

.𝑗
. The algorithm

proposed by Lee is a well-established method to solve the
optimization of NMF [27].

2.4. NMF-Based Feature Selection. In this study, our pro-
posed NMF-based feature selection (NMFBFS) approach
can be seen as a two-stage filter method. In the first stage,
preliminary screening is implemented to detect irrelevant
symptoms and remove them from thewhole feature set. In the
second stage, NMF clusters the redundant symptoms which
potentially have similar patterns into different groups, and
each group is then transformed into new single features to
reduce the dimension. Obviously, the process of NMFBFS is
independent of classifier and can quickly infer the optimal
feature subset even in the high-dimensional dataset. The
flowchart of NMFBFS is shown in Figure 1.

2.4.1. Removing the Irrelevant Symptoms. In our question-
naire, all the symptoms were defined by clinical doctors,
which covered many aspects of patients. However, the rel-
evance weight of each feature for distinguishing samples
among the clinical stages was not quantitatively studied. In
machine learning, the irrelevant features provide no useful
information in any context and always scarcely contribute
to patient stratification [28]. If the sample size is large, it
is meaningful to quickly detect the irrelevant symptoms by
calculating the frequencies of positive.Here,we calculated the
ratio (frequency) of presence (positive) of each symptom on
the samples in every clinical stage. If the frequencies of certain
symptom in all the clinical stages are very low,which indicates
that this symptomhardly appears positive inmost of patients,
therefore it is considered as an irrelevant symptom. After
removing the irrelevant symptoms from the original dataset,
the rest of symptoms are considered as relevant features,
which are potentially related to at least one class of patients
(or one clinical stage).

2.4.2. Identifying Redundant Symptoms Based on NMF. After
the irrelevant symptoms had been removed, nonnegative
matrix factorization was applied on the dataset 𝑋 (𝑛 × 𝑝).
For a given rank 𝑟, the matrix 𝑋 can be decomposed to basis
matrix 𝑊 and coefficient matrix 𝐻. Usually, the value of rank
𝑟 is much smaller than the number of features (𝑛) and the
sample number (𝑝), so that there is at least one dimension in
both𝑊 and𝐻 being very small.Thewidespread appliances of
NMF in biclustering further indicate that basis matrix𝑊 can
be used for feature clustering and coefficient matrix𝐻 is used
for sample clustering, respectively [20, 21]. In our study, the
number of samples is much larger than the dimensionality;
hence, directly calculating distance or correlation to measure
the similarity between original features (symptoms) on all
the samples will lead to biases because some features might
represent local similar patterns on a part of samples. Fortu-
nately, the basis matrix 𝑊 represents the compressed sample
space of matrix𝑋, which facilitates uncovering the difference
between features.Here, we introduced two features (V

𝑖
and V
𝑗
)

in original dataset𝑋 as an example to clarify the basic idea of
this step. According to the definition of NMF, we can easily
know

𝑥

𝑖
= 𝑤

𝑖
×𝐻,

𝑥

𝑗
= 𝑤

𝑗
×𝐻,

(6)
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Figure 1: The flowchart of the proposed approach.

where 𝑥

𝑖
and 𝑥

𝑗
are 𝑖th and 𝑗th rows of matrix 𝑋; 𝑤

𝑖
and

𝑤

𝑗
are 𝑖th and 𝑗th rows of matrix 𝑊. The following can be

easily found. (1) If 𝑤
𝑖
≈ 𝑤

𝑗
, then 𝑥

𝑖
≈ 𝑥

𝑗
; (2) if 𝑤

𝑖
= 𝑘𝑤

𝑗
,

then 𝑥

𝑖
= 𝑘𝑥

𝑗
, where 𝑘 is a constant. Furthermore, if 𝑖th

row 𝑤

𝑖
in matrix 𝑊 is very close to 𝑤

𝑗
, the feature V

𝑖
might

have a similar pattern as V
𝑗
on all the samples. Therefore,

we defined a novel similarity measurement in formula (7) to
approximately evaluate redundancy between the two original
symptoms via matrix 𝑊:

sim (V
𝑖
, V
𝑗
) ≈ sim (𝑤

𝑖
, 𝑤

𝑗
)

=

sim dist (𝑤
𝑖
, 𝑤

𝑗
) + sim corr (𝑤

𝑖
, 𝑤

𝑗
)

2
,

(7)
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(9)

Formula (8) uses distance-based similarity, which indicates
how two corresponding features are close to each other;
and formula (9) adopts correlation-based similarity, which
describes similar patterns of two original features. Hence,

our developed similarity measurement considered distance
and correlation between features at the same time. Max𝐷

in formula (8) is the maximal distance value in all pairs
of (𝑤
𝑖
, 𝑤

𝑗
). Based on the above definition of similarity, we

further calculated the similarity matrix SMX using all the
basis rows in 𝑊 (SMX(𝑖, 𝑗) = sim(V

𝑖
, V
𝑗
)), where element

SMX(𝑖, 𝑗) denotes the similarity between original features 𝑖

and 𝑗. Given a threshold 𝜃 (0 < 𝜃 < 1), we can screen all the
redundant features by groups with SMX(𝑖, 𝑗) > 𝜃.

2.4.3. Transformation of Redundant Symptoms by Group.
In the above section, all the redundant symptoms were
screened out and were organized into different groups. For
each symptom group, a new mixed feature was extracted
as the representation of the whole group and replaced all
the original features within this group. Therefore, NMFBFS-
inferred optimal feature subset includes two parts: nonre-
dundant original features and new generated mixed features
(see Figure 1). There are two strategies that can be used to
transform the redundant symptom groups to mixed features.

(1) Calculate the mean vector from all the redundant
symptoms as in

𝑥

𝑁𝐹
= mean (𝑥

𝑟1, 𝑥𝑟2, . . . , 𝑥𝑟𝑛) , (10)

where 𝑥

𝑟1
, 𝑥

𝑟2
, . . ., and 𝑥

𝑟𝑛
are the feature vectors of original

dataset 𝑋 and are determined as redundant symptoms in a
group. 𝑛 denotes the number of inferred redundant symp-
toms in a group. The vector 𝑥

𝑁𝐹
of new single feature V

𝑁𝐹

was averaged on that group.
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(2) Randomly select a vector from one of redundant
symptoms as

𝑥

𝑁𝐹
∈ {𝑥

𝑟1, 𝑥𝑟2, . . . , 𝑥𝑟𝑛} . (11)

In our study, we transformed the groups of redundant
symptoms to newmixed features by using formula (10). After
this step, the feature space of the clinical dataset was further
reduced so that the optimal feature subset rarely included
redundant features.

3. Simulation Design

Firstly, we calculated the frequencies of each original symp-
tom appearing positive at each clinical stage and then
removed the irrelevant symptoms if their frequency values
were very low.

Secondly, a representative sample set was screened out
for NMF analysis. In our dataset, the number of samples in
three phases of HCC varies a lot, that is, from 82, 130 to 195.
If the whole dataset is used, a class imbalance problem will
be caused [29–31]. In addition, the sex ratio of patients is
also seriously unbalanced in the original dataset (Table 1). For
avoiding the bias caused by imbalance of samples, we selected
40 samples from each clinical phase with equal proportion
of male and female (20 : 20) to construct a representative
clinical dataset 𝐷

𝑅
(120 samples in total) for the following

NMF analysis. Considering the fact that each original sample
has a class label which corresponds to clinical stage of that
patient, for all the original samples (407), we can actually
get a preliminary participation of samples as three clusters,
which can also be considered as a trained KNN clustering
model [32]. We then defined the center of each cluster, which
is the mean vector of all the samples in the same cluster.
Given a large value of 𝐾, we input each center of cluster into
the above KNN model and keep the output consistent with
the corresponding class label of the center. Based on the 𝐾-
nearest neighbors, we can finally screen out 40 representative
samples (20 males and 20 females) of each clinical stage
according to Euclidean distance.

Finally, several redundant symptom groups were identi-
fied. Then we transformed each redundant symptom group
into a new mixed feature. Combining all the nonredundant
original features with new generated mixed features, we
obtained an optimal clinical symptom subset of HCC. At
last, the classification performance of this feature subset was
further validated by least squares support vector machines
(LSSVM) [33, 34].

Experimental Parameters. At first, we set a frequency thresh-
old to identify the irrelevant symptoms. The NMF 𝑅 package
[35] was then employed as a computational framework for
nonnegative matrix factorization algorithms in 𝑅. For this
method, the optimal rank 𝑟 should be determined firstly.
Currently there are several approaches that had been pro-
posed to determine the optimal value of 𝑟 [36, 37]. In our
study, two methods, that is, cophenetic coefficient [36] and
RSS curve [37], had been adopted to determine the optimal
rank 𝑟 range from 2 to 7. After obtaining the results of NMF
with optimal 𝑟, we calculated the similarity matrix SMX

with all the basis rows and inferred the redundant symptoms
with a threshold 𝜃 = 0.95, which meet the following
conditions: sim corr(𝑤

𝑖
, 𝑤

𝑗
) ≥ 0.95 and sim dist(𝑤

𝑖
, 𝑤

𝑗
) ≥

0.95 in formulas (7)–(9). Finally, a LSSVM classifier had been
implemented to validate the classification performance of
inferred optimal symptom subset. In the LSSVM multiclass
model, Gaussian RBF kernel was employed, and the kernel
parameters 𝜎2 and 𝛾 were determined by grid search [38]. In
our grid search, we set 𝜎

2
= 10𝑎 and 𝛾 = 10𝑏. Variable 𝑎

changes from −1 to 5 with step 0.25, and variable 𝑏 changes
from −1 to 4 with step 0.2. Therefore, we have the range of
[0.1, 100000] for𝜎2 and the range of [0.1, 10000] for 𝛾. Totally,
there are 24 levels for the value of 𝜎2 and 25 levels for 𝛾. In
other words, there are 600 pairs of 𝜎2

, 𝛾 tested when training
a LSSVM classifier. To find an optimal value of 𝜎2

, 𝛾, we used
5-fold cross-validation to evaluate the classification accuracy
of LSSVMmodel.

4. Results and Discussion

Firstly, we calculated the frequencies of positive for all the
original symptoms (57) at each clinical stage (see Supplemen-
taryTable S1 available online at http://dx.doi.org/10.1155/2015/
846942). Eight irrelevant symptoms were judged as irrelevant
features (threshold: 10%). From Table 2, we can clearly see
that these symptoms appeared on few patients (less than
10% in each clinical stage) in the clinical observation and
therefore theywere considered as noisy features in the process
of diagnosis. Because the total number of samples is large
(407), we considered that the eight irrelevant symptoms
identified with statistical analysis are very reliable. A part of
symptoms shown in Table 2 was proved by previous studies.
For example, Lai et al. concluded that no association is
detected between “emotional depression” and the risk of
hepatocellular carcinoma in older people in Taiwan [39, 40].
In addition, Peng et al. studied 169 Chinese patients with
HCC; only three patients presented with hydrothorax, which
also indicated that this symptom was not a key symptom in
the process of liver cancer development [41, 42]. In addition,
“edema in lower extremities” is undoubtedly a well-known
symptom of HCC patients in clinic [43]; however, it was
considered an irrelevant symptom in this study because it
rarely appeared in all the three stages of our data. Increasing
the observed samples or reducing the threshold will make it
as a candidate symptom.

Secondly, the calculation of NMF was implemented after
removing all the detected irrelevant symptoms. According to
the description in “Simulation Design”, NMF was applied
on the representative matrix 𝐷

𝑅
with 120 HCC samples,

which uniformly covered three clinical phases. Figure 2(a)
represents the fact that 𝐷

𝑅
is a sparse matrix, in which

large partition of elements is zero (no positive), such as
symptom 𝑉

6
shown in Figure 2(b). However, there are also

some symptoms that were positive on many patients, such
as symptom 𝑉

25
shown in Figure 2(c). Matrix 𝐷

𝑅
does

not show obvious subtypes and patterns; hence, it is hard
to compare the similarity directly between symptoms with
the row vectors of 𝐷

𝑅
since the number of samples is

still very large. In this study, we used NMF to compress
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Table 2: Eight irrelevant symptoms were screened with threshold 10%. Each of them is rarely positive in each phase.

Symptoms Phase I Phase II Phase III
Phase IA Phase IB Phase IIA Phase IIB Phase IIIA Phase IIIB

Pale white lip [𝑉
1
] 0 5.41% 6.67% 5.19% 4.5% 0

Edema in lower extremities [𝑉
16
] 2.22% 8.1% 1.67% 5.19% 3.6% 0

Lack of urine output [𝑉
41
] 0 2.7% 0 0 5.41% 0

Emotional depression [𝑉
43
] 4.44% 0 5% 8.89% 6.31% 5.26%

Head body trapped heavy [𝑉
47
] 0 2.7% 3.33% 2.22% 2.7% 0

Hydrothorax [𝑉
51
] 6.67% 2.7% 1.67% 3.7% 2.7% 0

Rapid pulse [𝑉
55
] 4.44% 2.7% 1.67% 0.74% 5.41% 5.26%

Uneven pulse [𝑉
56
] 4.44% 5.41% 8.33% 3.7% 3.6% 0
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Figure 2:Theheatmapof the representative clinical dataset𝐷
𝑅
. (a)Theheatmapof𝐷

𝑅
with 49 symptoms and 120 samples. (b)Thedistribution

patterns of symptoms 𝑉
6
, 𝑉
8
, 𝑉
28
, 𝑉
37
, and 𝑉

53
indicate that the frequencies of positive are low. (c) The distribution patterns of symptoms 𝑉

46
,

𝑉

42
, and 𝑉

25
indicate that the frequencies of positive are high.

the representative matrix 𝐷

𝑅
and to reveal the distribution

patterns of features (symptoms) on fewer samples. Before
the calculation of NMF, a critical parameter should be firstly
determined: the value of factorization rank 𝑟. According to
Brunet’s method, the first value of 𝑟 for which the cophenetic
coefficient starts decreasing is the optimal one [36]. Frigyesi

and Höglund suggested choosing the first value where the
RSS curve presents an inflection point [37]. Based on these
two methods, we determined that “3” is a reasonable value
of rank 𝑟 for the clinical data matrix 𝐷

𝑅
. The curves shown

in Figure 3 also confirm this conclusion. Nonnegative matrix
factorization was then implemented on the matrix 𝐷

𝑅
(49 ×
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Figure 3: Estimation of the optimal rank 𝑟.

120) with rank 3. It also indicates that the number of
metafeatures (basis) equals 3.

Figure 4 represents the final results of NMF which
included the basis matrix 𝑊 (49 × 3) and mixture coefficient
𝐻 (3 × 120). Each row in matrix 𝑊 uses a compressed
pattern to approximatively represent the distribution of a
symptom on all the original samples. Comparing withmatrix
𝐷

𝑅
shown in Figure 2, the obvious difference in matrix 𝑊

is that there are several groups of features revealing similar
patterns in the compressed sample space, such as𝑉

40
and𝑉

36

in Figure 4. According to Figure 2(a), we can find that the
distance between the vectors of symptoms 𝑉

40
and 𝑉

36
in 𝐷

𝑅

is also close; furthermore, the compressed patterns of𝑉
40
and

𝑉

36
in matrix 𝑊 (𝑤

40
and 𝑤

36
) in Figure 4 facilitate easier

identifying of redundant features which have very similar
distribution patterns.

The matrix𝐻 has the same number of samples but much
smaller number of metafeatures (basis) rather than original
matrix𝑋 [36].Therefore, themetafeature expression patterns
in 𝐻 usually provide a robust clustering of samples. Given
the 𝑗th column in 𝐻 as 𝐻

𝑗
= [ℎ

𝑗1
, ℎ

𝑗2
, ℎ

𝑗3
]

𝑇, we determined
that 𝑗th clinical sample is placed into 𝑘th cluster if max(𝐻

𝑗
) =

𝐻

𝑗
(𝑘), where 𝑘 ∈ {1, 2, 3}. Hence, we used matrix𝐻 to group

all the samples into 3 clusters, which correspond to 3 bases
(metafeature). Figure 5 shows that there are great overlaps
between the clinical-staging markers (a priori knowledge of
class labels) and indexes of basis components (metafeatures)
on the 120 original clinical samples included in dataset 𝐷

𝑅
.

In matrix𝑊, each column also corresponds to a metafea-
ture or basis (see Figure 4). Entry 𝑤

𝑖𝑗
in matrix 𝑊 is the

coefficient of original feature 𝑖 in metafeature (basis) 𝑗 [36].
Therefore, an original feature 𝑖 relates to certain basis 𝑗 if𝑤

𝑖𝑗
is

the largest entry in row 𝑖 of matrix𝑊. From Figure 4, we can
clearly see that the original symptom features participating

in the same basis have similar expression patterns rather
than that in other bases. Table 3 represents the symptoms
which are related to all basis components. Combination of
Figure 5 andTable 3 further indicates that the “basis 1” related
symptoms are very related to the clinical samples of phase
II, and “basis 2” and “basis 3” related symptoms are very
related for phase I and phase III, respectively. This finding
contributes to identifying clinical phase-specific important
symptoms via NMF. Moreover, the partition of 49 clinical
symptoms shown in Table 3 was well supported by some
related studies. For example, nausea is observed as a common
adverse effect in HCC patients in phase I [44].The symptoms
ascites, anorexia, fever, and jaundice often occurred in phase
II [43, 45–48].The symptoms “yellow complexion” and “yellow
skin and eye” shown in Table 3 are obvious appearances of
jaundice. For phase III, pain is themost obvious characteristic
in HCC patients [49].There are three pain-related symptoms
presented in Table 3: “pain in shoulder and back,” “chest
pain,” and “distending pain in hypochondrium.” Moreover,
fatigue andweaknesswere also common inHCCpatients [43].
Together, these findings suggest that NMF with an optimal
rank can reveal the latent associations between the potential
symptom features and clinical phases.

Just as mentioned above in “Simulation Design,” several
groups of redundant features were then screened out accord-
ing to a given threshold 𝜃 = 0.95 (Table 4). We obtained
two redundant symptom groups from each basis component,
which indicates that the redundant symptoms included in the
same group also might have similar patterns in the original
sample space. Here, we take Figures 2(b)-2(c) as examples
to collaborate the effectiveness of our method. Figure 2(b)
represents the distribution of positive of five symptoms in the
dataset 𝐷

𝑅
. These five symptoms (𝑉

6
, 𝑉
8
, 𝑉
28
, 𝑉
37
, and 𝑉

53
)

were identified as basis 2 related features, and they are most
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Figure 4: The result of NMF on the dataset 𝐷
𝑅
. The left side indicates the visualization of matrix 𝑊 (49 ∗ 3), and right side denotes matrix

𝐻 (3 ∗ 120).
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Table 3: The NMF-derived participation of the symptoms to each corresponding basis component.

Basis components Number of symptoms The names of symptoms

Basis 1 16

Varicose veins [𝑉
7
]; yellow complexion [𝑉

11
]; yellow skin and eye [𝑉

13
]; stomach

pain [𝑉
31
]; dry stool [𝑉

38
]; feeling thirsty [𝑉

27
]; hot flash [𝑉

20
];

doing belly full bilge [𝑉
33
]; fullness in stomach [𝑉

32
]; block under the rib [𝑉

49
];

chills [𝑉
18
]; fever [𝑉

19
]; spider telangiectasia in liver palm [𝑉

15
];

ascites [𝑉
50
]; yellow greasiness [𝑉

9
]; anorexia [𝑉

34
]

Basis 2 17

Nausea [𝑉
35
]; pulse slip [𝑉

54
]; petechial and ecchymosis tongue [𝑉

6
];

white slip [𝑉
8
]; chest distress [𝑉

28
]; semiliquid stool [𝑉

37
]; weak pulse [𝑉

53
];

night sweat [𝑉
22
]; dirty mouth [𝑉

17
]; red tongue [𝑉

3
]; thready pulse [𝑉

57
];

sticky greasy coating [𝑉
10
]; purple tongue [𝑉

4
]; stringy pulse [𝑉

52
]; pale white lip

[𝑉
2
]; large and teeth-printed tongue [𝑉

5
]; gloomy complexion [𝑉

14
]

Basis 3 16

Tinnitus [𝑉
24
]; dizziness [𝑉

23
]; pain in shoulder and back [𝑉

48
]; chest pain [𝑉

29
];

distending pain in hypochondrium [𝑉
30
]; bitter taste [𝑉

26
]; insomnia [𝑉

42
];

appearance with stained yellow [𝑉
12
]; yellow urine [𝑉

40
]; hiccup [𝑉

36
]; soreness and

weakness of waist and knees [𝑉
44
]; dry throat [𝑉

25
];

feverishness in palms and soles [𝑉
45
]; spontaneous perspiration [𝑉

21
];

night urination much [𝑉
39
]; physically and mentally fatigued [𝑉

46
]

Table 4: The mean similarity values about the pairs of redundant symptoms within the same groups.

Basis components The screened redundant symptoms Distance-based similarity
sim dist(𝑤

𝑖
, 𝑤

𝑗
)

Correlation-based
similarity

sim corr(𝑤
𝑖
, 𝑤

𝑗
)

Basis 1 𝑉

38
,𝑉
27
, 𝑉
20 0.9672 1.0

𝑉

19
,𝑉
15 0.9507 1.0

Basis 2 𝑉

35
,𝑉
54 0.9685 0.9960

𝑉

6
,𝑉
8
,𝑉
53
,𝑉
37
,𝑉
28 0.9628 1.0

Basis 3 𝑉

48
,𝑉
29 0.9686 1.0

𝑉

44
,𝑉
45 0.9520 0.9926

5 35 5 5 35 5 9 31 9

Basis 1 Phase II Basis 2 Phase I Basis 3 Phase III

Figure 5: The relationships between NMF-derived basis compo-
nents and clinical stages of samples.

possibly belonging to phase I (Table 4). Although each of the
row vectors in Figure 2(b) is not completely equal, they all
represent relative lower frequency of positive (15.17±3.25%)
and their local distribution patterns are similar in a way.
Comparing the corresponding rows of these five symptoms in
matrix𝑊 in Figure 4, we found that the compressed patterns
of these symptoms are very similar. Similarly, the symptoms
(𝑉
46
, 𝑉

42
, and 𝑉

25
) are potentially related to basis 3, the

frequency of positive for each is over 50%, and themean value
of positive for these three symptoms is 1.77, which further
indicate that they might be related to some patients whose
conditions are very serious. Although the symptoms𝑉

46
, 𝑉

42
,

and 𝑉

25
were not identified as redundant symptoms with

given threshold (0.95), their compressed patterns in matrix
𝑊 in Figure 4 also suggested that their patterns were very
close. In summary, we considered a fact that the matrix 𝑊

facilitates evaluating the difference among symptoms, and
matrix𝐻 can validate the high degree of correlation between
class labels of samples and basis indexes. After inferring the
redundant symptoms with given threshold, we combined
each symptoms’ group together and converted it into a
new feature (named mixed feature). Finally, we obtained 39
clinical features (FS1) of HCC as the optimal feature subset,
which consisted of two parts: 33 original symptom features
(FS2) and 6 new mixed features (FS3) (Table 5). Based on the
analysis of results ofNMF, the feature space of original dataset
was further reduced.

For evaluating the potential of NMFBFS-inferred optimal
feature subset, we firstly tested the classification accuracy of
three candidate feature subsets FS1, FS2, and OFS on the
training set (120 representative samples). FS1 and FS2 were
generated by feature selection with the threshold 𝜃 (0.95).
OFS denoted 49 original symptom features in the dataset𝐷

𝑅
.

Table 6 indicates that the 39 optimal features, which covered
33 original symptom features and 6 newmixed features, result
in the best classification accuracy on the training samples.The
performance of FS2 was much better than OFS; however, it
was still worse than FS1 because the new mixed features also
have important contributions to classification.

We then compared the performance of ourNMFBFSwith
three well-known feature selection methods (ReliefF [11],
mRMR [12], and Elastic Net [13]). ReliefF was implemented
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Table 5: The NMF-driven potential clinical features of HCC (threshold: 0.95).

Basis components Original features Mixed features Description about mixed features

Basis 1 𝑉

7
; 𝑉
11
; 𝑉
13
; 𝑉
31
; 𝑉
33
; 𝑉
32
;

𝑉

49
; 𝑉
18
; 𝑉
50
; 𝑉
9
; 𝑉
34

𝑀

11

𝑀

12

Converted from {𝑉

38
, 𝑉

27
, 𝑉

20
}

and {𝑉

19
, 𝑉

15
}, respectively.

Basis 2 𝑉

22
; 𝑉
17
; 𝑉
3
; 𝑉
57
; 𝑉
2
; 𝑉
10
;

𝑉

4
; 𝑉
52
; 𝑉
5
; 𝑉
14

𝑀

21

𝑀

22

Converted from {𝑉

35
, 𝑉

54
} and

{𝑉

6
, 𝑉

8
, 𝑉

53
, 𝑉

37
, 𝑉

28
}, respectively.

Basis 3 𝑉

24
; 𝑉
23
; 𝑉
30
; 𝑉
26
; 𝑉
42
; 𝑉
12
;

𝑉

40
; 𝑉
36
; 𝑉
25
; 𝑉
21
; 𝑉
39
; 𝑉
46

𝑀

31

𝑀

32

Converted from {𝑉

48
, 𝑉

29
} and

{𝑉

44
, 𝑉

45
}, respectively.

Number of features 33 6 Total: 39 features

Table 6: Classification accuracy among three feature subsets on
the training set (120 representative samples). FS1 was obtained by
the proposed approach with a given threshold (𝜃 = 0.95), in
which 33 original symptom features and 6 new mixed features were
included. FS2 denotes the above-mentioned 33 original symptom
features (FS

2
⊂ FS
1
). OFS indicates all the 49 symptoms beforeNMF

calculation.

Feature subsets Dimension Classification accuracy
in LSSVM (%)

FS1 39 80.002 ± 9.95
FS2 33 77.50 ± 12.36
OFS 49 72.50 ± 11.64

usingMATLAB function. “mRMRe” and “elasticnet”𝑅 pack-
ages were applied for mRMR and Elastic Net based feature
selection, respectively. Supplementary Figure S1 represents
the ReliefF-based feature ranking. Supplementary Figure S2
represents the Elastic Net (𝜆 = 0.5) solution paths for
feature selection. We selected Top 20 features and Top 40
features as two candidate feature subsets for each method to
evaluate their classification performances: FSRF20 and FSRF40
generated from ReliefF; FSMR20 and FSMR40 inferred from
mRMR; FSEN20 and FSEN40 inferred from Elastic Net. Table 7
represents the classification performance of the above six
candidate feature subsets and the NMFBFS-derived optimal
feature subset FS1 on the training set (120 representative
samples). The results indicate that NMFBFS-inferred feature
subset has the best classification accuracy in training samples.

Except 120 representative training samples which were
screened out to implement the NMF analysis, the remaining
samples can be used to test the classification accuracy of
optimal feature subset. We randomly selected 40 samples
(10 : 20 : 10 for each clinical stage) from the rest of the samples
and then evaluated the classification accuracy of inferred fea-
ture subset by each method (NMFBFS, ReliefF, mRMR, and
Elastic Net). Table 8 shows the differences among all these
methods, and it can be found that the optimal feature subset
inferred by our proposed method has the best generalization
performance.

Finally, the more important thing is that the selection
of threshold 𝜃 determines how many groups of redundant
symptoms will be screened out. Here, we further discussed
the effects of threshold 𝜃 to the optimal feature subsets on
the classification performance. Table 9 shows the differences
among three optimal feature subsets inferred by the proposed
approach with different values for threshold 𝜃. From Table 9,

Table 7: Classification accuracy of inferred optimal feature subset
via NMFBFS, ReliefF, mRMR, and Elastic Net on the training set.

Methods Feature subset Dimension Classification accuracy
in LSSVM (%)

NMFBFS FS1 39 80.002 ± 9.95

ReliefF FSRF20 20 65.00 ± 10.03
FSRF40 40 73.33 ± 15.76

mRMR FSMR20 20 70.83 ± 12.5
FSMR40 40 74.17 ± 9.03

Elastic Net FSEN20 20 70.00 ± 11.56
FSEN40 40 76.67 ± 10.46

Table 8: Classification accuracy of inferred optimal feature subset
via NMFBFS, ReliefF, mRMR, and Elastic Net on the testing set.

Methods Feature subset Dimension Classification accuracy
in LSSVM (%)

NMFBFS FS1 39 79.65 ± 6.48

ReliefF FSRF20 20 50.71 ± 1.22
FSRF40 40 76.43 ± 8.27

mRMR FSMR20 20 63.79 ± 1.22
FSMR40 40 77.14 ± 9.18

Elastic Net FSEN20 20 67.57 ± 4.09
FSEN40 40 78.38 ± 9.62

we can obviously see that the bigger value of 𝜃 will screen
redundant symptoms strictly, which leads to less similar
symptoms that would be obtained. With a smaller value of
𝜃, much more symptoms can be categorized into the same
groups; hence, the original feature space will be sharply
reduced by our approach. Table 9 denotes that, with the
decrease of 𝜃, the size of optimal feature subset was narrowed
down but the classification accuracy was also decreased.
These results suggest that a bigger value of 𝜃 will result in
less redundant symptoms and therefore induce a larger size
of optimal feature subset; oppositely, smaller 𝜃 can provide
more redundant symptoms and sharply reduce the feature
dimension. An extreme case is that 𝜃 equals “0,” whichmeans
that we can get one mixed feature for each basis and the size
of optimal feature subset is equal to the number of bases. In
a word, how to determine the value of 𝜃 depends on the size
of optimal feature subset and its corresponding classification
performance.
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Table 9: The performance of classification for the inferred optimal feature subsets with different threshold 𝜃.

The values of 𝜃 Original symptom features New mixed features Total number of features Classification accuracy (%)
𝜃 = 0.95 33 6 39 80.002 ± 9.95
𝜃 = 0.90 21 9 30 70.83 ± 6.59
𝜃 = 0.85 10 8 18 70.00 ± 4.56

5. Conclusions

In this study, we developed the NMFBFS approach to
efficiently extract the important clinical symptoms of HCC
from clinical observation data. NMFBFS is a two-stage filter
method for feature selection as follows. (1) In the first
stage, preliminary screening is implemented to detect and
remove the irrelevant features; (2) in the second stage, NMF
was applied to identify the redundant features by groups
which might represent similar distribution patterns. Each
redundant symptom group was then transformed into a new
mixed feature so that the dimension of dataset was further
reduced.

The application of NMFBFS on a clinical dataset of HCC
proved the effectiveness of this approach.The optimal clinical
features derived from NMFBFS approach contained many
well-recognized symptoms of HCC patients. Moreover, this
study also provides a general computational framework of
a novel feature selection approach to efficiently extract the
optimal feature subset from a high-dimensional dataset.
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