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Lung cancer is the primary reason for death due to cancer worldwide, and non-small-cell lung cancer (NSCLC) is themost common
subtype of lung cancer. Most patients die from complications of NSCLC due to poor diagnosis. In this paper, we aimed to predict
gene biomarkers that may be of use for diagnosis of NSCLC by integrating differential gene expression analysis with functional
association network analysis.We first constructed anNSCLC-specific functional association network by combining gene expression
correlation with functional association. Then, we applied a network partition algorithm to divide the network into gene modules
and identify the most NSCLC-specific gene modules based on their differential expression pattern in between normal and NSCLC
samples. Finally, from these modules, we identified genes that exhibited the most impact on the expression of their functionally
associated genes in between normal and NSCLC samples and predicted them as NSCLC biomarkers. Literature review of the top
predicted gene biomarkers suggested that most of them were already considered critical for development of NSCLC.

1. Introduction

Lung cancer is not only the most common cancer in the
world, but also the primary reason for death due to cancer [1].
At present, the number of Chinese patients who were newly
diagnosed with lung cancer is about 500 thousand each year,
and the number is expected to reach one million by 2025 [2].
Non-small-cell lung cancer (NSCLC) is the most common
subtype of lung cancer, and NSCLC patients account for
about 80% to 85% of all lung cancer incidences [3]. The most
common types of NSCLC are squamous cell carcinoma, large
cell carcinoma, and adenocarcinoma [4]. Adenocarcinoma is
currently the most common type of lung cancer in “never
smokers” (lifelong nonsmokers) [5]. Large cell lung carci-
noma (LCLC) is a heterogeneous group of undifferentiated
malignant neoplasms originating from transformed epithelial
cells in the lung [3]. Currently, themost often used treatments
for NSCLC are surgery, radiotherapy, and chemotherapy, in
which the complete surgical resection is the most effective
method [4]. Despite the improvements of surgical techniques
and instruments in recent years, the overall 5-year survival
rate for NSCLC patients after surgery is from 15% to 45%
[6]. On the other hand, most patients that were diagnosed

with NSCLC were already in the unresectable stage of IIIB
or IV and the option of surgery treatment was not feasible,
which is the main reason why the overall 5-year survival
rate of NSCLC patients is only 12%. However, the overall 5-
year survival rate can be increased to 50% if patients can
be diagnosed in an early stage [6]. Currently, the diagnosis
of NSCLC mainly depends on X-ray, CT, sputum cytology,
fiber bronchoscopy, and cellular pathology. However, X-ray
is not sensitive to small lesions and covert lesions; sputum
cytology only works on lung cancer originated in the center
of airways and has a low detection rate; fiber bronchoscopy is
not suitable for early diagnosis due to its invasiveness; cellular
pathology cannot precisely determine malignance stages [7].
As such, identifyingmolecular biomarkers for early diagnosis
of NSCLC is urgently needed.

During the development of cancer, tumor cells undergo
significant alterations at both genetic and molecular levels,
which are accompanied by significant changes in gene expres-
sion [8]. Genes with significant expression change during
tumor cell development can therefore be used as biomarkers
for early diagnosis. For example, Yang et al. conducted a
meta-analysis on high-throughput gene expression data of
lung cancer and identified tumor necrosis factor-𝛼 (TNF-𝛼)
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that predicts prognosis of relapse survival for lung cancer
[9]. Spinola et al. found that the expression of PDCD5 was
significantly lower in lung cancer patients and suggested that
it could be used as a potential molecular marker for predict-
ing the diagnosis of lung cancer [10]. In another example,
the expression of RRM1 encoding ribonucleotide reductase
was found to be associated with the response to gemcitabine
chemotherapy, making it a prognostic marker for lung cancer
[11, 12]. However, identifying gene biomarkers based only
on their expression change is not a reliable approach, as
the results may be significantly biased by expression noise
[13]. On the other hand, since cancer development is a
complicated process involving interplay between many genes
concordantly, it is necessary to take into consideration the
complicated relationships between genes when identifying
gene biomarkers of diagnostic use. Thus, a number of meth-
ods have been developed to integrate network or pathway
information for discovering disease genes [14, 15].

Recently, Long et al. developed an integrated approach
for predicting biomarkers that distinguish NSCLC from
small-cell lung cancer (SCLC) [16]. In their approach, they
first constructed a lung cancer-specific functional network
by integrating gene coexpression relationships identified in
NSCLC, SCLC, and normal lung tissues with gene functional
associations obtained from the STRING network [17]. Then,
they applied a network partition algorithm to identify gene
modules from the lung cancer-specific network and selected
the gene modules with distinctive gene expression pattern
in between NSCLC and SCLC. Finally, from the selected
gene modules, they identified those genes whose function-
ally associated partners exhibit significant gene expression
alterations in between NSCLC and SCLC and predicted them
as candidate biomarkers. Inspired by their approach, in this
study, we aimed to predict gene biomarkers that distinguish
NSCLC from normal lung tissues and therefore might be of
use for diagnosis of NSCLC.

2. Materials and Methods

2.1. Dataset Collection, Processing, and Construction of Lung
Cancer-Specific Functional Association Network. In Long et
al.’s study [16], they obtained three gene expression datasets
for NSCLC and SCLC from Gene Expression Omnibus
(GEO)database ofNCBI (http://www.ncbi.nlm.nih.gov/geo/)
by following these criteria: samples must be from untreated
human tissue samples and the sample size should be greater
than 100. Since one of the expression datasets was SCLC,
here we only used two expression datasets: normal lung
tissue dataset (GSE23546) and NSCLC dataset (GSE41271)
that include 1349 and 275 samples, respectively. We followed
Long et al. [16] to process the normal and NSCLC datasets
separately and to construct the lung cancer-specific func-
tional association network. Briefly, after normalizing gene
expression profiles of normal and NSCLC samples separately,
we calculated the Pearson Correlation Coefficient (PCC)
of gene expression levels for every gene pair in the two
datasets separately and selected the top 1% and the bottom
1% of gene pairs ranked by PCC, representing a strong
relationship of positive andnegative coexpression, respectively.

The human STRING network (version 9.1) [18, 19] was
downloaded from http://string.embl.de/, which consists of
19,038 genes and 2,271,610 weighted edges. Next, we filtered
the STRING network by requiring the functional association
scores between two genes to be greater than 500. Finally,
we mapped the coexpression gene pairs identified in both
normal and NSCLC datasets to the filtered STRING network
and obtained a lung cancer-specific functional association
network. In this network, any two linked genes not only are
strongly functionally associated, but also are either positively
or negatively coexpressed in normal or NSCLC samples.

2.2. Network Partition and the Identification of NSCLC-
Specific Gene Modules. Again, following what was already
described, we applied a network partition algorithm named
iNP [28] to divide the lung cancer-specific network into
gene modules. In order to guarantee each gene module
including several genes, we also set the number of genes
inside a module to be greater than 4 so that we can get some
stable modules. From these gene modules, we identified the
NSCLC-specific genemodules by inspecting their differential
expression pattern in between NSCLC and normal samples.
Briefly, for each module, we recorded the median expression
value in each sample as the representative expression value
for the module; then, we applied 𝑡-test in 𝑅 to determine the
significance of the genes’ differential expression in between
normal and NSCLC samples. Following Long et al. [16], we
used the Benjamini-Hochberg false discovery rate (FDR) [29,
30] to conduct multiple test correction and chose the cutoff
to adjust 𝑝 value at 0.01 and also required log (fold change)
≥2 to select candidate gene modules. These gene modules
were considered NSCLC-specific gene modules. To quantify
the specificity of each selected module to NSCLC, for each
module, we plotted a receiver operating characteristic (ROC)
curve by applying themodules’ median gene expression value
to distinguish NSCLC from normal cases. The area under
the ROC curve (AUC) could be greater or smaller than
0.5, corresponding to up- or downregulated gene expression
patterns in NSCLC in comparison to their expression levels
in normal case. The farther the AUC is from 0.5, the more
specific the expression of a module is to NSCLC.

2.3. Gene Set EnrichmentAnalysis. Gene set enrichment anal-
ysis was performed by Fisher test in 𝑅. Gene set annotations
include gene ontology (GO) biological process terms [31] and
gene sets frommolecular signatures database (MSigDB) [32].
Multiple test correction was conducted by FDR in 𝑅.

2.4. Scoring Genes for Candidate Gene Biomarkers of NSCLC.
Given a selected gene module, we followed Long et al.
[16] to score each gene inside the module for the genes’
usefulness as NSCLC biomarker. Briefly, there were two
component scores: the cancer-specificity score determined
by the AUC ROC of the module the gene belongs to minus
0.5 and the coexpression change score of the gene. To obtain
the coexpression change score, all genes connecting to the
target gene were first recorded. Then, for each connection, a
coexpression status difference score was computed by using
the coexpression status of the two genes in NSCLC minus
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their coexpression status in normal case. The coexpression
status can take three scores: 1, −1, and 0, indicating positive
correlation, negative correlation, and others, respectively.
Then, the absolute coexpression status difference was aver-
aged across all connections to derive the coexpression change
score, which indicated the ability of the gene to impact the
expression pattern of its functionally associated genes. The
two component scores were then multiplied, and a positive
score indicated the gene tended to be upregulated in NSCLC,
or vice versa.

3. Result

3.1. Construction of an NSCLC-Specific Functional Association
Network. The pipeline for predicting NSCLC diagnostic
gene biomarkers is shown in Figure 1. The rationale of the
methodology behind the pipeline was that, given a gene
module in which genes not only were functionally associated,
but also had correlated expression patterns, if the module’s
overall expression pattern (the median expression value of
genes inside a module) was significantly different in between
cancer and normal samples, then this module could be
considered a cancer-specific genemodule; within this cancer-
specific gene module, if a gene’s expression correlations
with its functionally associated partners were significantly
altered from normal to cancer samples, then this gene’s
expression might be critical to cancer development and was
then considered a potential biomarker for diagnostic use. For
details about the methodology, please refer to Long et al.
[16]. Briefly speaking, the pipeline consists of the following
three steps: construction of a disease-specific functional
association network by integrating gene coexpression with
functional association, identification of disease-specific gene
modules, and prediction of gene biomarkers. Following the
pipeline, we have constructed an NSCLC-specific functional
association network by integrating gene coexpression infor-
mation obtained from both lung normal andNSCLC datasets
with the filtered functional association extracted from the
STRING network (see Materials and Methods for details).
This network is a binary network consisting of 4,452 genes
and 13,831 edges.

3.2. Identification of NSCLC-Specific Gene Modules. The
NSCLC-specific network was partitioned into 637 genemod-
ules by using a network partition algorithmnamed iNP.There
are 254 gene modules with the cutoff of including more than
4 genes. To identify NSCLC-specific gene modules, following
Long et al. [16], we used the median gene expression value
of the genes inside the module to represent the module’s
expression value in normal or NSCLC dataset and then
inspected the differential expression pattern of each module
between normal and NSCLC samples (see Materials and
Methods for details). We found 11 gene modules whose
expression was significantly different in between normal and
NSCLC samples. There are 2 upregulated modules and 9
downregulatedmodules among these differentially expressed
modules. The representative expression values of each of the
11 modules were also used to plot ROC curves to discriminate

NSCLC samples from normal samples, from which the area
under curve (AUC) was computed. Here, we labeled cancer
samples with “1” and normal samples with “0.” Then, by
sorting the gene expression values of amodule in each sample
from high to low values, we computed the true positive rate
(number of samples with label of “1” above the value/number
of all samples with label “1”) and false positive rate (number
of samples with label of “0” above the value/number of all
samples with label “0”) at each expression value. Finally, a
ROC curve was obtained by plotting the true positive rate
against the false positive rate. If the expression values of a
module in cancer samples were similar to that in normal
samples, then the AUC of the ROC curve would be close to
0.5. If a module typically had higher gene expression values
in cancer samples (upregulated in cancer samples), then its
AUC would be greater than 0.5; otherwise (downregulated)
it would be smaller than 0.5. The farther the AUC of a ROC
from 0.5, the more significant the difference that we would
observe in between the gene expression values of cancer
and normal samples. In other words, the AUC of a ROC
curve quantitatively determines the specificity of a module
to NSCLC. Because AUC ROC measures the expression
alteration of a group of genes that are coexpressed, it is
more robust than the expression alteration of individual genes
and should be more appropriate to be used to represent the
expression change of a given gene of interest. Here, we found
2 modules with AUC value greater than 0.9 (significantly
upregulated in NSCLC) and 9 with AUC value smaller than
0.1 (significantly downregulated) (Table 1).

To validate the specificity of thesemodules to lung cancer,
we performed function enrichment analysis for genes inside
each module and showed the most significant function for
each module in Table 1. It could be easily seen that the
enriched functions of selected modules were significantly
associated with cancer’s development. In the upregulated
gene modules, M44 has 5 genes with an AUC of 0.996; the
top enriched function of this module was protein targeting
to membrane (𝑝 value: 1.68𝐸 − 04). Recently, Li and Perez-
Soler [33] found that skin toxicity is related to inhibition of
epidermal growth factor receptor (EGFR), a target forNSCLC
treatment. Another example of upregulated modules is M394
that consisted of 15 genes with an AUC of 0.909. The top
enriched function was epidermis development with a 𝑝 value
of 1.80𝐸 − 08. Tian et al.’s [34] research result showed that an
important gene in epidermis development,DHHC, encoding
palmitoyltransferase catalyzes S-palmitoylation by targeting
on the cell membrane, and siRNA targeting this gene was
able to inhibit the growth of NSCLC cell lines. There were
nineNSCLC-specific genemodules that were downregulated.
Among these modules, M315 consisted of 9 genes and had an
AUCof 0.0913.The top enriched functionwas cell chemotaxis
(8.50𝐸 − 07), which was found to promote the development
of NSCLC [35]. In another example, M349 consisted of seven
genes with an AUC of 0.0091. All these seven genes were
associated with the function of BMP2 targeting with a 𝑝
value of 0.00159. Gautschi et al. [36] found that Id1 plays
an important role in Src-mediated tumor cell invasion, and
BMP2 could induce the expression of Id1, suggesting that
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Figure 1: The pipeline for predicting diagnostic gene biomarkers of NSCLC. In the bottom of the figure, the color of the line connecting
gene 2 and the other genes indicates the coexpression status between gene 2 and the other genes, with red color corresponding to positive
coexpression and blue color corresponding to negative coexpression. For details about the pipeline, refer to the Materials and Methods.

BMP2 targeting might be important for cancer development.
Therefore, functional enrichment results validated the speci-
ficity of the partitioned gene modules to NSCLC.

3.3. Predicting Diagnostic Gene Biomarkers for NSCLC. After
identifying NSCLC-specific gene modules, we aimed to
determine the genes inside an NSCLC-specific module that
have the best discriminating power to distinguish NSCLC

from normal tissues. Following the strategy described by
Long et al. [16], we computed the module’s specificity to
NSCLC, which is AUC 0.5. Then, for each gene inside a
cancer-specific module, we computed a coexpression change
score to indicate its potential impact on the alteration of the
coexpression pattern of its functionally associated partner
genes. For details about the score, please refer to theMaterials
and Methods. The final score can be either positive or
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Table 1: The 11 cancer-specific gene modules.

Module name AUC ROC The most significantly enriched function (𝑝 value)
M44 0.996 GO: protein targeting to membrane (0.00110)
M394 0.909 GO: epidermis development (1.80e − 08)
M53 0.000404 MSigDB: CTRL VS DAY3 LAIV IFLU VACCINE PBMC UP (0.00670)
M348 0.00113 MSigDB: MIKKELSEN IPS LCP WITH H3K4ME3 (0.00670)
M350 0.00313 MSigDB: BOSCO TH1 CYTOTOXIC MODULE (1.80e − 08)
M60 0.00833 MSigDB: MCLACHLAN DENTAL CARIES UP (8.66e − 11)
M349 0.0091 MSigDB: BMP2 TARGETS UP (0.00159)
M264 0.0159 MSigDB: SHEDDEN LUNG CANCER GOOD SURVIVAL (5.66e − 04)
M83 0.0273 MSigDB: BOYLAN MULTIPLE MYELOMA (9.10e − 04)
M94 0.0284 None
M315 0.0913 GO: cell chemotaxis (8.50e − 07)

Table 2: Summary of the top 10 upregulated and top 10 downregu-
lated gene biomarkers for NSCLC.

Gene
rank Gene name (upregulated) Gene name (downregulated)

1 SEC61B N6AMT1
2 S100P∗ [20] CYCS
3 RPL23 YRDC
4 SEC61G PPP1R15B
5 SPRR2D∗ [21] TOP1∗ [22]
6 RPS7 MMRN2
7 S100A2∗ [23] P2RY14∗ [24]
8 SPRR3 FOXA2∗ [25]
9 DSG3∗ [26] GCA∗ [27]
10 SPRR1A∗ [21] MGAM
∗ indicates that the gene was relevant to NSCLC directly, with the references
shown in parenthesis.

negative, indicating that the corresponding gene is either
upregulated or downregulated in NSCLC, respectively.

We obtained 59 genes with nonzero scores. Among them,
11 were upregulated and 48 were downregulated. In Table 2,
we listed the top 10 upregulated and top 10 downregulated
genes and considered them as potential biomarkers for
NSCLC. SEC61B was ranked the top among the upregu-
lated genes. It was functionally associated with three genes
(SEC61G, RPL23, and RPS7) in gene module M44 that was
significantly associated with NSCLC (the AUC of the ROC
curve by using the median gene expression value of M44 to
discriminate NSCLC from normal case was 0.996). As shown
in Figure 2, the coexpression pattern of SEC61Bwith its func-
tionally associated genes changed significantly from normal
toNSCLC samples. For example, SEC61B andRPL23were not
positive or negatively coexpressed in normal case; however,
they were significantly positively coexpressed in NSCLC. As
for SEC61G and RPS7, they were both positively coexpressed
with SEC61B in normal samples; inNSCLC samples, however,
they were no longer positively coexpressed with SEC61B.
The significant changes in the coexpression pattern of genes
functionally associated with SEC61B in between normal

and NSCLC cases indicated that it might be an important
gene that could potentially have a large impact on NSCLC’s
development.N6AMT1 ranked the top amongdownregulated
gene biomarkers. It had two functionally associated genes
YRDC and ETF1 in gene module M53 whose AUC value
was 0.0004. Interestingly, the coexpression pattern of both
YRDC and ETF1 with N6AMT1 reversed from normal to
NSCLC samples: they were both negatively coexpressed with
N6AMT1 in normal lung samples, while they were both
positively coexpressed with N6AMT1 in NSCLC samples
(Figure 2). Thus, it was very likely that the coexpression
of N6AMT1 with its functionally associated genes may play
important roles in the development of NSCLC.

3.4. Case Reports for the Predicted Gene Biomarkers. We have
conducted a thorough literature review on the predicted
gene biomarkers. As shown in Table 2, 9 of them were
known to be relevant to NSCLC, and the other 11 were
known to be relevant to cancer, strongly validating our
predictions and also suggesting that they may be of use
as diagnostic biomarkers for NSCLC. Below, we presented
an example for both upregulated and downregulated gene
biomarkers, respectively. One example is S100P that encodes
a member of small calcium-binding proteins family and
is highly expressed in NSCLC. S100P played a key role
downstream for Keap1-Nrf2 interaction. Keap1 encodes E3
ligase and is involved in cellular defense response to oxidative
stress through an interaction with nuclear factor erythroid-2-
related factor 2 (Nrf2). It has been shown that Keap1 could
inhibit tumor metastasis by targeting Nrf2/S100P pathway
in NSCLC cells [20]. Thus, S100P is of high importance to
NSCLC. In another example, FOXA2 is a tumor suppressor
and has been suggested to be a new target protein for the
treatment of NSCLC [25].

3.5. The Validation of Analysis Strategy. Following Long et
al. [16], in order to prove the availability and reasonability
of the method, we used another NSCLC dataset (GSE10245;
detailed information was shown in Long et al. [16]) to
repeat the analysis for predicting gene biomarkers. Based on
this dataset, we predicted 84 genes biomarkers for NSCLC,
with 12 overlapping predictions. The number of overlapped
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Figure 2:Thepredicted gene biomarkers forNSCLC. (a) shows an example of upregulated gene biomarker—SEC61B. Its coexpression patterns
with the functionally associated genes in normal andNSCLCwere shown separately. Line colors of red, blue, and orange indicated the positive,
negative, and random coexpression. (b) is similar to (a), except that the example is a downregulated gene biomarker—N6AMT1. The color
of each gene represented its expression level. The ROC curves to the right were based on the corresponding gene modules of SEC61B and
N6AMT1.

predictions was significantly higher than random guess (<10–
4, 10,000 randomizations), proving the robustness of our
predictions.

4. Discussion

Lung cancer is the primary reason for death due to cancer
worldwide, and NSCLC is the most common subtype of lung
cancer. In the present study, we predicted 20 gene biomarkers
potentially useful for diagnosis of NSCLC. Literature reviews
of our predictions revealed that some of them were already
reported to be specifically relevant to NSCLC, while the
others were relevant to cancer. As such, the predicted gene
biomarkers may be of use for further exploitation as diagnos-
tic biomarkers for NSCLC.

The predicted gene markers have the following char-
acteristics. First of all, they are within gene modules in
which genes are strongly functionally associated with each
other based on the STRING network and have correlated
expression in normal or NSCLC samples. In addition, the
modules are specific to cancer as measured by the median
expression values of genes inside the module. Thirdly, the
predicted genes had altered expression correlation with their

functionally associated partners in between normal and
NSCLC samples. For instance, a gene is positively correlated
with its functionally associated partners in normal samples
in terms of gene expression, while this pattern significantly
altered to negative correlation. This abnormal coexpression
pattern alteration thus made the gene potentially important
for NSCLC cancer cell development. Thus, the abnormal
coexpression pattern alteration could be potentially useful
for diagnostic use. Specifically, rather than focusing on the
expression value alteration of the predicted gene biomarkers,
we ought to consider the expression of both the predicted
gene biomarkers and their functionally associated partner
genes. For example, we could develop a microchip that inte-
grates not only the predicted gene biomarkers but also their
functionally associated partners, and then, by examining
the expression of these genes as a whole, we could develop
a system to detect the abnormal coexpression alteration
for assessing whether a sample is NSCLC. The predicted
biomarkers were ranked according to our scoring scheme
that considers not only the level of expression alteration, but
also the extent of the expression change of the biomarkers’
partner genes. Therefore, a gene with higher rank should not
only have a more significant expression alteration in cancer,
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but also have higher impact on the expression of its partner
genes. Consequently, this gene should bemore easily detected
than those genes with lower ranks and should be studied with
higher priority.

Given the predicted biomarkers and their partner genes
forNSCLS, an immediate application is for clinical diagnostic
use of NSCLC. By developing a microchip to measure the
expression of these biomarkers and their partner genes, we
can collaborate with local hospitals to apply this chip to
NSCLC patients and normal people.Then, we can construct a
clinical model based on the results from hundreds of patients
and normal people. This model will be used to diagnose
whether a new patient likely has NSCLC by measuring the
expression of the predicted biomarkers and their partners in
the chip.
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