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Association between striatal dopamine D2/D3 receptors
and brain activation during visual attention: effects
of sleep deprivation
D Tomasi1, G-J Wang1 and ND Volkow1,2

Sleep deprivation (SD) disrupts dopamine (DA) signaling and impairs attention. However, the interpretation of these concomitant
effects requires a better understanding of dopamine’s role in attention processing. Here we test the hypotheses that D2/D3

receptors (D2/D3R) in dorsal and ventral striatum would distinctly regulate the activation of attention regions and that, by
decreasing D2/D3, SD would disrupt these associations. We measured striatal D2/D3R using positron emission tomography with [11C]
raclopride and brain activation to a visual attention (VA) task using 4-Tesla functional magnetic resonance imaging. Fourteen
healthy men were studied during rested wakefulness and also during SD. Increased D2/D3R in striatum (caudate, putamen and
ventral striatum) were linearly associated with higher thalamic activation. Subjects with higher D2/D3R in caudate relative to ventral
striatum had higher activation in superior parietal cortex and ventral precuneus, and those with higher D2/D3R in putamen relative
to ventral striatum had higher activation in anterior cingulate. SD impaired the association between striatal D2/D3R and VA-induced
thalamic activation, which is essential for alertness. Findings suggest a robust DAergic modulation of cortical activation during the
VA task, such that D2/D3R in dorsal striatum counterbalanced the stimulatory influence of D2/D3R in ventral striatum, which was not
significantly disrupted by SD. In contrast, SD disrupted thalamic activation, which did not show counterbalanced DAergic
modulation but a positive association with D2/D3R in both dorsal and ventral striatum. The counterbalanced dorsal versus ventral
striatal DAergic modulation of VA activation mirrors similar findings during sensorimotor processing (Tomasi et al., 2015) suggesting
a bidirectional influence in signaling between the dorsal caudate and putamen and the ventral striatum.
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INTRODUCTION
Attention allows us to focus on one aspect of information (that is,
the moving ball) while ignoring irrelevant information (that is,
other moving objects in the scene), an ability severely compro-
mised by sleep deprivation (SD).1 Attention engages a distributed
network of brain regions for focusing on specific stimuli or the
surroundings, and for resolving conflict between multiple cues.2

Several neurotransmitters are implicated in the modulation of
these attention components, including cholinergic, noradrenergic
and dopaminergic systems.3,4 During the last decade, there has
been an increased interest on the role of dopamine (DA) in the
modulation of attention5 as stimulant medications enhance DA
signaling in the human brain6–8 and improve attention under
excessive sleepiness.9,10

Previous studies have shown that SD decreases striatal D2/D3R
availability, impairs performance and alters brain activation during
attention tasks.11–17 Specifically, SD has been shown to impair
performance to attention demanding cognitive tasks and to
reduce arousal and alertness.18–29 Concomitant with these
behavioral changes, SD increases functional magnetic resonance
imaging (fMRI) signals in the thalamus, which is essential for
alertness,30 while reducing fMRI signals in superior parietal (SPC)
and prefrontal (PFC) cortices during a visual attention (VA)
task.30,31

The role of DA in the regulation of thalamic and PFC activity is
well established.32,33 For instance, D2/D3 receptors (D2/D3R) in the
ventral striatum (VS) have been associated with fMRI activation
of the medial PFC during visual attention to rewards,34 and D2/D3R
in the dorsal striatum have been associated with neural
processing in the PFC during inhibitory control35 and executive
functioning.36,37 However, the role of DA in the regulation of the
SPC has not been investigated. Thus, while SD-related changes in
the PFC and thalamic activation30 may have reflected the
decreases in DA function during SD,11,13 the association between
the decreases in DA function and the changes in brain activation
during SD are still largely unknown.
We recently showed that a balance between dorsal caudate

versus VS in D2/D3R mediated the modulation of brain activation
to a cognitive task.38 Thus, we predicted that fMRI signals during
an attention task would show distinct linear associations with the
dorsal and ventral striatal regions such that higher D2/D3R
availability in the dorsal versus VS regions would be associated
with greater cortical activation, and that SD would disrupt these
associations.
Hence, in this work, we test the linear association between

D2/D3R in the dorsal and ventral striatum and VA activation in
thalamus, SPC and PFC, which are the three critical components of
the attention networks.2 We measured D2/D3R using positron
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emission tomography (PET) and VA activation with 4-Tesla fMRI in
14 healthy men. Subjects were scanned with PET and fMRI twice,
after one night of normal sleep (that is, under rested wakefulness
(RW)) and also after one night of SD. We hypothesized that cortical
activation responses would reflect the relative availability of D2/
D3R in the dorsal (caudate, putamen) versus ventral striatum,
whereas thalamic responses that are necessary for alertness30

would show an association with both dorsal and ventral striatum.
We further predicted that SD would disrupt the modulation of
striatal signaling in the indirect striatocortical pathway by virtue of
the downregulation of striatal D2/D3 receptors that follows SD,
which we have shown is associated with a concomitant
impairment in cognitive performance.11

MATERIALS AND METHODS
Subjects
Fourteen healthy, non-smoking, right-handed men (age 32± 8 years,
education: 16 ± 2 years) participated in the study. At α=0.05 and 80%
power, this sample size allowed us to detect large effects (r=0.6) of SD on
the association between D2/D3R and fMRI activation. The subjects were
included if they were able to understand and give informed consent, and
were 18 to 50 years old. They were screened carefully with a detailed
medical history as well as physical and neurological examinations. The
subjects were excluded if they had (1) urine positive for psychotropic
drugs; (2) present or past history of dependence on alcohol or other drugs
of abuse; (3) present or past history of neurological or psychiatric disorders
(including sleep disorders); (4) cardiovascular disease or diabetes; (5)
history of head trauma with loss of consciousness for more than 30 min; (6)
medical conditions that may alter the brain function; (7) used psychoactive
medications in the past month (that is, opiate analgesics, stimulants,
sedatives); (8) used prescription (non-psychiatric) medication(s); or (9)
contraindications to MRI environment (metallic implants/claustrophobia).
The study participants signed a written consent approved by the
Institutional Review Board at Brookhaven National Laboratory before the

study. The subjects were asked to keep a diary of the number of hours
slept per night for the 2-week duration of the study and this corresponded
to an average of 7 ± 1 h per night (range, 5–8 h).

SD and RW sessions
All the subjects were kept overnight at the Brookhaven National
Laboratory campus before their scheduled sessions (Figure 1a) to ensure
that that they had a good night rest for the RW session (6.7 ± 0.9 h of sleep;
range 5–8.5 h) or they did not sleep during the night for the SD session
(supervised by a team member). For the SD session, the total time of sleep
deprivation, computed from the subject’s wake up time on the check-in
day until the end of fMRI session, was 30–35 h. The SD and RW sessions
were scheduled 2 weeks apart. The subjects did not have food after
midnight and no caffeinated beverages were permitted during the study.
PET and MRI acquisition were done sequentially on the same day, either
after RW or SD. On the RW day, the subjects were awakened at 0700 h and
brought to the imaging suite. A nurse remained with the subjects to
ensure they stayed awake throughout the study. The PET sessions (RW and
SD) took place between 1100 h and 1400 h and the MRI sessions (RW and
SD) took place between 1500 h and 1700 h. Half the studies started with
the RW session; the remaining studies started with the SD session to
control for practice effects on brain activation.39

PET imaging
A Siemens HR+ tomograph with 4.5 mm isotropic resolution was used to
collect dynamic PET images in three-dimensional mode. Twenty emission
scans were obtained from the time of injection up to 54 min immediately
after injection of [11C]raclopride (4–8 mCi; specific activity 0.5–1.5 Ci μM− 1).
Arterial sampling was used to quantify total carbon-11 and unchanged
[11C]raclopride in plasma. The distribution volume (DV) was computed for
each imaging voxel using a graphical analysis technique for reversible
systems.40 These images were then spatially normalized to the stereotactic
space of the Montreal Neurological Institute using a 12-parameter affine
transformation. A custom Montreal Neurological Institute template, which
was previously developed using DV images acquired with [11C]raclopride
and the same PET scanning sequence41 was used for the spatial

Figure 1. Study design. (a) Fourteen healthy, non-smoking, right-handed men were kept overnight onsite before their scheduled imaging
sessions to ensure that that they had a good night rest (rested wakefulness (RW) session) or they did not sleep during the night (sleep
deprivation (SD) session). All the subjects underwent [11C]raclopride positron emission tomography (PET) to assess D2/D3R in the striatum and
4-Tesla blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD-fMRI) to map brain activation to a visual attention
(VA) task during RW and during SD. (b) The parametric VA task had a blocked design in which subjects either tracked 2, 3 or 4 balls out of 10
moving balls (task epochs) or viewed them passively (rest epochs).
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normalization of the DV images. The intensity of the DV images was
normalized to that in the cerebellum (left and right regions of interest) to
quantify the non-displaceable binding potential (BPND) in each voxel. BPND
images were spatially smoothed (8-mm isotropic Gaussian kernel) using
the statistical parametric mapping package SPM8 (Wellcome Trust Centre
for Neuroimaging, London, UK).

Anatomical region of interest analyses
In-house software written in IDL (Exelis Visual Information Solutions,
Boulder, CO, USA) and the Automated Anatomical Labeling (AAL)
atlas42 were used to define three bilateral anatomical regions of
interest (ROIs): putamen (PU), caudate (CD) and VS (Figure 1a). The CD
ROI included all voxels in dorsal caudate, as defined in the AAL atlas
planes − 6 mmozo14 mm. The VS ROI encompassed the inferior
planes of pre-commissural caudate and putamen (6 mmoy⩽ 27 mm;
− 11 mmoz⩽− 6 mm) in the AAL atlas. Average BPND values were
computed for each subject independently for these ROIs. We chose to
report the average BPND values in the whole anatomy of the striatal
regions to minimize human errors or potential confounds resulting from
the utilization of arbitrary thresholds.

VA paradigm
After the PET session, the subjects underwent fMRI with a VA task that was
described previously.39,43–46 This fMRI task was used previously to assess
visual attention activation in healthy controls,39,44,47–49 human immuno-
deficiency virus patients,45,50–52 marijuana53 and cocaine46,54 abusers as
well as to assess the effects of functional connectivity,54,55 sleep
deprivation,30 dopamine transporters56 and stimulants57 on VA activation.
The ball-tracking task activates attention-related brain regions (prefrontal,
parietal, and occipital cortices, thalamus, and cerebellum). The blocked VA
task had 3 difficulty levels (2-, 3, and 4-ball tracking). Each of the three fMRI
runs lasted 6 min and was composed by three ‘TRACK’ epochs interleaved
with three ‘DO NOT TRACK’ epochs. ‘TRACK’ epochs interleave five tracking
and five respond periods (Figure 1b). In these epochs, a target set of balls
(2, 3 or 4 out of 10 balls) is briefly highlighted. Then all the balls start to
move. The subjects’ task is to fixate on the center cross and track the target
balls as they move randomly (simulated Brownian motion) across the
display with instantaneous angular speed of 3° per second. At the end of
tracking periods, the balls stop moving and a new set of balls is
highlighted; the subjects’ are instructed to press a button if the highlighted
balls are the target set. After a 0.5-s delay, the original target balls are
re-highlighted to re-focus the subjects’ attention on the target balls.
‘DO NOT TRACK’ epochs are composed of five consecutive ‘resting’
periods. In these epochs, all the 10 balls move and stop in the same
manner as during ‘TRACK’ epochs; however, no balls are highlighted, and
subjects are instructed to not track the balls and view them passively. The
subjects performed a brief training session (~10 min) of a shortened
version of the paradigm outside of the scanner to ensure that they
understood and were able to perform the tasks. There were three fMRI
runs (two-, three- and four-ball tracking). Each one of these runs had 231
image volumes (4 dummy volumes, 7 fixation cross baseline volumes, 112
passive-viewing volumes and 112 ball-tracking volumes).
Different versions of the two-, three- and four-ball-tracking tasks were used in

each session (SD and RW). The stimuli were created using Matlab (MathWorks,
Natick, MA, USA) and presented to the subjects on MRI-compatible goggles
(Resonance Technology, Northridge, CA, USA) connected to a personal
computer. The display software was synchronized with the MRI acquisition
using a trigger pulse. All button press events were recorded to determine
reaction time (RT) and performance accuracy during fMRI.

MRI data acquisition
The blood-oxygenation-level-dependent (BOLD) contrast was used to
assess fMRI activation in a 4-Tesla whole-body Varian/Siemens MRI
scanner. A T2*-weighted single-shot gradient-echo planar imaging
sequence (TE/TR= 20/1600 ms, 4 mm slice thickness, 1 mm gap, 35 coronal
slices, 3.1 mm in-plane resolution, 64 × 64 matrix size, 90°-flip angle, 231
time points, bandwidth: 200.00 kHz) covering the whole brain was used for
this purpose. Padding was used to minimize motion. Task performance
and subject motion were determined immediately after each fMRI trial.58

Anatomical images were collected using T2-weighted hyperecho
(TE/TR= 42/10 000 ms, echo train length= 16, 256 × 256 matrix size, 30
coronal slices, 0.86 × 0.86 mm in-plane resolution, 5 mm thickness,
1 mm gap, 2-min scan time) and T1-weighted three-dimensional MDEFT

(TE/TR= 7/15ms, 0.94 × 0.94 × 1 mm spatial resolution, axial orientation,
256 readout and 192 × 96 phase-encoding steps, 16-min scan time)
sequences. These structural MRI scans were reviewed to rule out gross
morphological abnormalities in the brain.

Data processing
The first four volumes in the time series were discarded to avoid non-
equilibrium effects in the fMRI signal. Subsequent analyses were
performed with SPM8. Spatial realignment was performed with a fourth
degree B-spline function without weighting and without warping; head
motion was less than 2-mm translations and 2° rotations for all scans.
Spatial normalization to the stereotactic space of the Montreal Neurolo-
gical Institute was performed using a 12-parameter affine transformation
with medium regularization, 16-nonlinear iterations, 3 × 3 × 3 mm3 voxel
size and the standard SPM8 EPI template. Spatial smoothing was carried
out using an 8-mm (full width at half maximum) Gaussian kernel. A general
linear model59 was used to calculate the BOLD contrasts for each VA load
condition (two, three and four balls), session (RW and SD) and subject. The
blocked analysis was based on a box-car design defined by the onsets of
the ‘TRACK’ epochs, convolved with the canonical hemodynamic response
function, as a low-pass filter, and a high-pass filter (256 s time cutoff).

Statistical analyses
Simple (SLR) and multiple (MLR) linear regression analyses were used to
assess the association between the fMRI signals in the brain and the
D2/D3R measures across subjects, using VA load and session as covariates
in SPM8. Five SLR models were used with regressors that reflected the
absolute BPND values extracted from CD (SLR1), PU (SLR2) and VS (SLR3), as
well as the relative BPND measures CD/VS (SLR4) and PU/VS (SLR5). Two
different MLR models were used to study the combined influence of
receptors in VS and in CD (MLR1), as well as that of receptors in PU and VS
(MLR2). Specifically, the fMRI responses at a given voxel, S(x, y, z), were
modeled using the affine transformation:

S x; y; zð Þ ¼ αi x; y; zð ÞBPiND þ αj x; y; zð ÞBPiND þ ε x; y; zð Þ; ð1Þ
where i and j are CD and VS, or PU and VS, the scalar maps α (x, y, z) are the
slopes that quantify the efficiency of the linear association between D2/D3R
and brain activation and ε is the intercept of the MLR. Independent MLR
analyses were carried for RW and SD as well as for the combined RW and
SD sample. For all analyses, statistical significance was set as PFWEo0.05,
corrected for multiple comparisons in the whole brain with the random
field theory and a family-wise error correction at the cluster level. A cluster-
forming threshold Po0.001 (two-sided) and a minimum cluster size of 100
voxels were used for this purpose.

RESULTS
Behavior
The fMRI and behavioral data in this work were previously
reported in a study that documented SD-related decreases in VA
performance and fMRI activation differences between RW and
SD.30 Briefly, subjects reported higher sleepiness before the SD
session than before the RW session (RW: 3.8 ± 0.5; s.d.: 8.8 ± 0.4;
Po0.0001, paired t-test). Increased sleepiness correlated linearly
with performance accuracy during the fMRI tasks (R= 0.59;
P= 0.025). Performance accuracy during fMRI decreased with
increased task difficulty (from two balls to four balls; Po0.0001;
two-way ANOVA) and was lower during the SD session than
during the RW session (P= 0.02). RT during the fMRI did not differ
significantly across tasks or sessions. There were no statistically
significant load × session interaction effects on subject’s perfor-
mance (accuracy or RT). In the present study, we studied the
association between brain activation during the VA task and
D2/D3R measures in the dorsal and ventral striatum.

D2/D3R
The average BPND values, which were computed without BPND
thresholds over the anatomical volumes of CD, PU and VS (see the
Materials and methods section), were lower for SD than for RW for
all striatal ROIs (VS: 1.21 ± 0.03 (RW) and 1.16 ± 0.02 (s.d.); CD:
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1.35 ± 0.03 (RW) and 1.29 ± 0.02 (s.d.); PU: 1.72 ± 0.03 (RW) and
1.65 ± 0.02 (s.d.); mean± s.e.; Po0.05, two-sided paired t-test,
df = 13; Figure 2). The BPND ROI measures showed high correla-
tions across subjects and were higher during RW than during s.d.
(Po0.05). The differences in the ‘relative’ BPND measures between
RW and s.d. were not significant (CD/VS: 1.11 ± 0.01 (RW) and
1.11 ± 0.01 (s.d.); PU/VS: 1.42 ± 0.01 (RW) and 1.42 ± 0.01 (s.d.);
P40.2, two-sided paired t-test, df = 13).

D2/D3R and brain activation
The SLR analysis revealed that fMRI signals in the thalamus
increased linearly with D2/D3R across subjects during RW but not
during SD, independently for CD, VS and PU (PFWEo0.003;
Figure 3b and Table 1). The slopes of the linear associations
between fMRI signals in the anterior thalamus and D2/D3R in the
CD, and between fMRI signals in the posterior thalamus and
D2/D3R in the VS were significantly steeper for RW than for SD
(PFWEo0.02; Figure 3c and Table 1). During RW, higher availability
of D2/D3R in the VS were associated with increased activation in
precuneus and increased deactivation in cuneus; during SD only
the fMRI signals in precuneus showed a linear association with
D2/D3R in VS (PFWEo0.001; Figure 3b and Table 1). Figure 3d

exemplifies the linear associations between D2/D3R measures in
the striatum and fMRI signals in the thalamus, precuneus and
cuneus, independently for RW and for SD.

Balanced influence of D2/D3R in dorsal versus ventral striatum on
fMRI signals
The SLR analysis also revealed significant linear associations
between the ‘relative’ CD-to-VS ratio of D2/D3R measures and the
fMRI signals in SPC (positive slope), regions that showed
prominent brain activation to the VA task during RW but
attenuated activation during SD (Table 2), and in precuneus
(negative slope), a region that showed significant fMRI deactiva-
tion (negative BOLD signals) during the VA tasks, independently
for RW and for SD (PFWEo0.03, cluster corrected for multiple
comparisons in the whole brain; Figure 4 and Table 2).
The MLR analysis showed a bilinear association between brain

activation responses in parietal cortex and D2/D3R in VS and in CD
(Figure 5a). Specifically, in precuneus, the fMRI responses
predicted by D2/D3R in VS showed a positive correlation with
BPND

VS , whereas those predicted by D2/D3R in CD showed a
negative correlation with BPND

CD (PFWEo0.0005, cluster corrected
for multiple comparisons in the whole brain; RW and SD
conjunction contrast), and the MLR slope was significantly steeper
for VS than for CD (αVS4αCD, PFWEo0.0005; Figure 5b). Con-
versely, the predicted responses in SPC showed negative
correlation with BPND

VS and positive correlation with BPND
CD

(PFWEo0.0005), and the MLR slope was significantly steeper for
CD than for VS (αCD4αVS, PFWEo0.002; Figure 5b). Although the
SLR association between the relative CD-to-VS D2/D3R measures
and the fMRI signals accounted for less than 22% of the variance
in the fMRI data, the MLR association accounted for more than
52% of the variance in the fMRI signal in SPC and precuneus.
However, because the BPND

CD and BPND
VS regressors exhibited high

correlation (R= 0.91 for RW and 0.71 for SD; Figure 5c), we
evaluated the risk of multicollinearity in the MLR model using the
variance inflation factor (VIF) = 1/(1− R2), and the condition number,
κ= |λmax/λmin|, a standard measure reflecting the ratio between the
maximum and minimum eigenvalues, λ, of the correlation matrix
computed from BPND

VS and BPND
CD. Depending on κ and VIF, the

significance of the multicollinearity problem is usually classified as
low (κo30, VIFo10) or high (κ430, VIF410).60,61 In the present
work, the risk of multicollinearity for the BPND

CD and BPND
VS regressors

did not exceed these thresholds for any of the sessions and was
lower for SD (κ=6 and VIF =2) than for RW (κ=28 and VIF= 6).
The fMRI responses in supplementary motor area (SMA), a PFC

region that was increasingly activated by parametric VA load
increases (BOLD signal = 0.52 ± 0.07%; load effect = 0.16%±0.10%;
mean± 90% confidence interval; Table 2) and in anterior cingulate
cortex (ACC) increased in proportion to the ‘relative’ PU-to-VS ratio
(PU/VS) of BPND measures. Visual cortex deactivation was
enhanced by VA load increases and attenuated by SD, and
decreased in proportion to the relative PU-to-VS ratio of BPND
measures during RW (PFWEo0.005; Figure 4 and Table 2). Similarly
during SD, ACC activation showed a negative association with the
PU-to-VS ratio of BPND measures (Table 1; PFWEo0.001).
The MLR analysis confirmed the bilinear association between

brain activation responses and D2/D3R in VS and PU during RW
and SD (Figure 6a). Specifically, in SMA, the fMRI responses
predicted by D2/D3R in VS showed a positive linear association
with BPND

VS , whereas those predicted by D2/D3R in PU showed a
negative linear association with BPND

PU (PFWEo0.03; RW and SD
conjunction contrast), and the MLR slope was significantly steeper
for VS than for PU (αVS4αPU, PFWEo0.005; Figure 6b). In cuneus,
the fMRI responses predicted by D2/D3R in PU showed a positive
correlation with BPND

PU , whereas those predicted by D2/D3R in VS
showed a negative correlation with BPND

VS (PFWEo0.001; RW and
SD conjunction contrast), and the MLR slope was significantly

Figure 2. D2/D3R binding. (a) Average non-displaceable binding
potential (BPND) values reflecting D2/D3R levels were computed in
three bilateral anatomical striatal regions of interest (ROIs): ventral
striatum (VS), dorsal caudate (CD) and putamen (PU), superimposed
on three orthogonal views of the human brain. (b) Average BPND
maps across subjects for the sleep deprivation (SD) and rested
wakefulness (RW) conditions, highlighting the high availability of
D2/D3R in the striatum. (c) Bar plot quantifying the average BPND
measures in the ROIs for RW and SD and highlighting the
significantly lower availability of D2/D3R for SD than for RW
(*Po0.05, two-sided). Sample size: 14 healthy, non-smoking, right-
handed men. Error bars are s.e.m.

D2/D3 receptors visual attention and sleep deprivation
D Tomasi et al

4

Translational Psychiatry (2016), 1 – 12



steeper for PU than for VS (αPU4αVS, PFWEo0.005). The SLR
association accounted for 38% of the variance in the fMRI data in
SMA during RW (27% during SD). The MLR association accounted
for 52% of the variance in the fMRI signal in SMA during RW (27%
during SD). The risk of multicollinearity for the BPND

PU and BPND
VS

regressors was lower for SD (κ= 2 and VIF = 1) than for RW (κ= 22
and VIF = 6).

Sleep-deprivation effects: behavior vs brain activation
Across all ball-tracking conditions, SD-related decreases in
performance accuracy were linearly associated with SD-related
decreases in VA activation in the PFC (BA= 24; R= 0.52; Po0.0004;
linear regression, df = 41).

DISCUSSION
Here we demonstrate a distinct involvement of D2/D3R in the
different striatal regions in the fMRI activation of brain regions
involved in the alerting, orienting and executive components of
attention2 during the VA task. We found that D2/D3R in dorsal
striatum counterbalance D2/D3R in ventral striatum in the
modulation of activation responses to a VA task, which
corroborates our previous findings using a sensorimotor RT
task.38 We also found that the SD-related reduction in the
availability of D2/D3R in the striatum was associated with (1)
decreased strength in the linear association between thalamic

activation and D2/D3R in CD, PU and VS during SD and (2) a robust
bilinear association between the activation of frontal and parietal
regions and D2/D3R in dorsal relative to ventral striatal regions that
attenuated the effects of SD. This study also documents a
counterbalanced association between caudate versus VS D2/D3R
in the deactivation of the default-mode network during VA.

Thalamus
The thalamus, the gateway to the cortex,62 is essential for alerting
attention2 and for arousal63 and has an important role in the
regulation of sleep and wakefulness.64 Here we believe we show
for the first time the role of D2/D3R-mediated dopamine signaling
in the activation of the thalamus. Specifically, thalamic activation
increased in proportion to D2/D3R in the striatum during the RW
condition but not during the SD condition, when D2/D3R
availability was significantly reduced and thalamic activation was
higher than for the RW condition. As the thalamus mediates the
interaction between attention and arousal in humans63 and is
involved in the alerting component of attention,2,65,66 the
increased thalamic activation14–17,30,67 likely reflects an adaptation
to compensate for reduced DAergic signaling due to lower D2/D3R
during SD. Previous studies have documented associations
between striatal D2/D3R and cortical fMRI responses to emotion,
visual attention, decision-making and inhibitory control
tasks.34,35,68–70 These studies, however, did not report an
association between D2/D3R and fMRI signals in the thalamus.

Figure 3. Visual attention activation versus dopamine (DA) receptors. Statistical significance (t-score) maps of brain activation responses for (a)
rested wakefulness (RW) and for sleep deprivation (SD) conditions superimposed on three orthogonal views of the human brain
(PFWEo0.0001) and (b) simple linear regression (SLR) slopes demonstrating the linear association across subjects between brain activation
responses and D2/D3R separately for caudate (CD) and ventral striatum (VS; PFWEo0.001). (c) For VS and CD, the SLR slopes in the thalamus
were significantly steeper for RW than for SD (PFWEo0.02). (d) Scatter plots showing the linear associations between D2/D3R measures in
caudate (CD) and ventral striatum (VS), and the blood-oxygen-level dependent (BOLD) signals in thalamus, precuneus and cuneus,
independently for the rested wakefulness (RW) and sleep deprivation (CD) conditions. Sample size: 14 healthy, non-smoking, right-handed
men. FWE, family-wise error.
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Table 1. Statistical significance for the linear associations between striatal D2/D3R measures and brain activation responses (BOLD) during the VA
task under SD and RW conditions

Region MNI coordinates
(mm)

Brain activation Session D2/D3R-BOLD SLR

Cluster level Voxel level

Name BA/nucleus x y z VA, T VA load, T SD4RW, T PFWE-corr. k PFWE-corr. T

Caudate (CD)
Thalamus Anterior 0 − 6 6 5.7 NS NS RW 0.001 220 o0.0005 4.5
Middle Occipital 19 − 27 − 84 24 − 4.1 − 1.7 NS SD 0.023 109 0.006 − 4.5

Ventral striatum (VS)
Precuneus 7 3 − 63 39 − 7.0 NS NS RW 0.001 222 o0.0005 5.3
Thalamus Anterior 0 − 3 6 4.0 NS NS RW 0.003 179 0.001 4.2
Cuneus 18 6 − 81 27 − 12.0 − 1.7 2.0 RW 0.03 101 0.008 − 6.4
Precuneus 7 6 − 54 45 NS NS 2.2 SD 0.001 217 o0.0005 5.8

Globus pallidus (GP)
Thalamus Ventral posterior 24 − 15 0 NS NS NS RW 0 389 o0.0005 4.7
Precuneus 7 0 − 63 36 − 12.3 NS NS RW 0.004 170 0.001 4.7
Cuneus 18 6 − 81 27 − 12.0 − 1.7 2.0 RW 0.031 101 0.008 − 5.6
Middle Occipital 19 − 27 − 78 33 − 9.0 − 2.4 NS RW 0.015 125 0.004 − 5.6
Middle Occipital 39 42 − 78 18 3.0 NS NS RW 0 283 o0.0005 − 4.9

Putamen (PU)
Thalamus Ventral posterior 24 − 12 0 NS NS 1.7 RW 0 355 o0.0005 4.5
Middle Occipital 19 − 27 − 78 33 − 9.0 − 2.4 NS RW 0.002 194 0.001 − 6.7
Middle Occipital 39 42 − 78 18 3.0 NS NS RW 0 340 o0.0005 − 5.3
Lingual 37 24 − 51 − 9 − 3.9 NS NS RW 0.005 164 0.001 − 4.6

CD
Thalamus Pulvinar 18 − 24 15 8.3 NS 2.8 RW4SD 0.02 430 0.001 5.0

VS
Thalamus Pulvinar 18 − 24 18 7.1 NS 2.5 RW4SD 0.002 665 o0.0005 5.5

Abbreviations: BOLD, blood-oxygen-level dependent; FWE-corr., family-wise error corrected; NS, not significant; RW, rested wakefulness; SD, sleep deprivation;
SLR, simple linear regression; VA, visual attention. Sample size: 14 healthy non-smoking men.

Table 2. Statistical significance for the linear associations between relative striatal D2/D3R measures and brain activation responses (BOLD) during
the VA task under SD and RW conditions

Region MNI coordinates (mm) Brain activation Session Relative D2/D3R-BOLD SLR

Cluster level Voxel level

Name BA x y z VA, T VA load, T SD4RW, T PFWE-corr. k PFWE-corr. T

Caudate-to-ventral striatum ratio (CD/VS)
Superior parietal 7 27 − 57 63 14.9 NS − 3.1 RW 0.003 186 0.001 7.3
Superior parietal 5 − 18 − 51 66 4.5 NS − 2.4 RW o0.0005 382 o0.0005 6.5
Precuneus 7 3 − 66 39 − 9.6 NS − 1.9 RW 0.028 103 0.007 − 4.4
Precuneus 5 − 6 − 42 60 − 6.4 2.3 NS SD o0.0005 514 o0.0005 5.7
Precuneus 7 9 − 69 33 − 14.0 1.7 NS SD 0.007 148 0.002 5.4

Globus pallidus-to-ventral striatum ratio (GP/VS)
Supramarginal 40 − 57 − 39 27 − 5.5 − 1.8 NS RW 0.005 160 0.001 4.8
Cingulum 32 0 21 42 11.9 3.5 NS SD 0.004 172 0.001 − 5.8

Putamen-to-ventral striatum ratio (PU/VS)
Lingual 18 − 15 − 87 − 6 − 2.4 NS NS RW o0.0005 349 o0.0005 5.8
Calcarine 17 15 − 60 15 − 14.1 − 3.1 3.0 RW o0.0005 287 o0.0005 5.5
Cingulum 24 0 24 39 7.8 1.7 NS SD 0.006 155 0.002 −5.5

Abbreviations: BOLD, blood-oxygen-level dependent; FWE-corr., family-wise error corrected; NS, not significant; RW, rested wakefulness; SD, sleep deprivation;
SLR, simple linear regression; VA, visual attention. Sample size: 14 healthy non-smoking men.
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Dopamine is a neuromodulator that changes the efficacy of other
neurotransmitters as a function of ongoing neuronal activity.71

The effect of DA on neuronal firing is believed to improve signal to
noise for the detection of task-specific neuronal activation in
electrophysiological studies.72,73 Thus, by decreasing non-task-
related activity, DA stimulation increases efficiency and results in
lower activation of task-specific regions.72 Therefore, the higher
thalamic activation for SD than for RW is consistent with
decreased efficiency due to lower DAergic signaling during SD.
Alternatively it could also reflect an increased modulation
by noradrenergic signaling as SD also disrupt noradrenergic
activity.74

SPC
The SPC is essential for orienting attention2,75 and projects to
multiple cortical and subcortical areas (including thalamus) and is
engaged in cognitive operations such as selective attention and
top-down control of attention.31,76–84 Here we show that the fMRI
signals in SPC increased in proportion to the relative availability of
D2/D3R in CD to that in VS such that the higher the CD-to-VS ratio
of D2/D3R, the higher the activation in SPC. The SPC, which is
consistently activated by the VA task,39,43,44,46,48,85 showed lower
fMRI activation during SD than during RW.30 However, significant
differences between RW and SD in the linear association of SPC
activation and striatal D2/D3R were not found. Thus, the lower
cortical activation for SD than for RW commonly reported
in neuroimaging studies14–17,30,67,86–90 likely reflects effects

of SD on other neurotransmitter systems (that is, cholinergic or
noradrenergic).
The MLR findings suggest that D2/D3R in CD and VS have

distinct roles in the modulation of SPC responses during VA.
Indeed, the association between D2/D3R and fMRI signals in SPC
was significantly stronger when two regressors (BPND

VS and BPND
CD;

R2 = 0.52) were used in the MLR model, compared with one
regressor (BPND

VS /BPND
CD; R2 = 0.22). This finding supports the

existence of a balanced D2/D3R modulation of cortical activation
responses from CD and VS, which is consistent with our recent
findings using a sensorimotor RT task in a different sample of
healthy subjects.38 The reproducibility of the MLR findings across
the RW and SD conditions strongly supports the existence of a
balanced D2/D3R modulation between CD and VS for the SPC
activation to a VA task that is robust to the SD challenge.

SMA and ACC
The ACC and PFC have been implicated in the executive
component of attention2,75 and are involved in target detection
and awareness.91 We found an association between the relative
availability of D2/D3R in the striatum and the fMRI signals in ACC
and SMA, such that increased D2/D3R in VS proportionally
increased the fMRI signal in ACC/SMA and increased D2/D3R in
PU proportionally decreased it. These findings are consistent with
the well-established role of DA on executive function in the
human brain,92 including its role in response control.93 DA
modulation in ACC is important for executive function,94,95 and
DA modulation in SMA is important for response inhibition and
response initiation.93,96,97 Though most studies on the DAergic
modulation of executive function identify the CD as the striatal
region that mediates this effect,98–100 others implicate the PU.101–
103 Our findings suggest that during the VA task, DA modulates
executive attention through counterbalanced D2/D3R signaling
from PU and VS. Interestingly, fMRI activation in SMA and ACC and
its association with D2/D3R did not differ for SD and RW, providing
support for a robust and balanced DAergic modulation of
executive attention.

Precuneus
The fMRI signals in the ventral anterior precuneus showed linear
association with the ‘relative’ availability of D2/D3R in CD and VS
such that the higher the CD-to-VS ratio of D2/D3R, the greater the
deactivation in precuneus, both during RW and during SD. The
MLR findings suggest that D2/D3R in CD and VS mediate a
balanced modulation of deactivation in precuneus, which is
reproducible across sessions and robust to the SD challenge. This
is consistent with the role of DA in the modulation of the
precuneus,56,104 a major hub in the default-mode network105,106

that deactivates during the VA task.47 Note that a recent study on
functional subdivisions of the precuneus revealed that ventral
anterior precuneus, but not the dorsal precuneus, is connected to
the default-mode network.107 This major association area has
reciprocal connections with superior and inferior parietal, pre-
frontal, and occipital cortices as well as subcortical regions,108

including the thalamus.109 The precuneus, is also involved in
alertness110 and activates during spatial43,47,111 and orienting79,112

attention. Because DA innervation in the parietal cortex is
scarce,113,114 the association between D2/D3R documented here
suggests indirect DA modulation through thalamo–cortical path-
ways rather than a direct modulation. The enhanced deactivation
of the precuneus in subjects with higher CD-to-VS ratio of D2/D3R
could reflect regulation of CD in orienting attention by facilitating
attention processing while inhibiting the posterior default-mode
network.
We have shown that SD decreases the specific binding of [11C]

raclopride (measured as reduced D2/D3 receptor availability in
striatum), which we initially interpreted to reflect increased

Figure 4. Parietal activation versus relative D2/D3R in dorsal to
ventral striatum. (a and b) Statistical significance (t-score) maps for
simple linear regression (SLR) slopes demonstrating the linear
association across subjects between brain activation responses and
the caudate (CD) to ventral striatum (VS) (a) and putamen (PU) to VS
(b) ratios of D2/D3R measures for rested wakefulness (RW) and for
sleep deprivation (SD), superimposed on three orthogonal views of
the human brain. Sample size: 14 healthy, non-smoking, right-
handed men. Significance threshold: PFWEo0.002, cluster corrected
for multiple comparisons in the whole brain. BOLD, blood-oxygen-
level dependent; FWE, family-wise error.
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competition for binding secondary to an increase in DA release
during SD.11 However, a follow-up study showed that the changes
in DA triggered by the stimulant drug methylphenidate were not
affected by SD, which was a finding not consistent with SD
increasing DA release.13 Moreover this was supported by
microdialysis experiments in which we showed that SD did not
increase DA release.13 This led us to conclude that the decreases in
[11C]raclopride’s specific binding reflected a downregulation of
D2/D3 receptors in striatum by SD. Though the mechanisms

underlying the D2/D3 receptor downregulation by SD are unclear,
we speculated that increases in adenosine following SD mediate
the internalization of D2/D3 receptors.115,116 Indeed, we subse-
quently showed that caffeine, which is an adenosine antagonist
led to an increase in D2/D3 receptors in striatum, presumably by
interfering with adenosine-mediated internalization of D2/D3

receptors.117 Regardless of the mechanism, what our current
findings are showing is that despite the overall reductions in
striatal D2/D3 receptors with SD the activation/deactivation in ACC,

Figure 5. Balanced dopaminergic (DAergic) effects on parietal activation. (a) Statistical significance (t-score) maps for multiple linear regression
(MLR) slopes demonstrating the linear associations across subjects between average non-displaceable binding potential (BPND) measures in
caudate (CD) and ventral striatum (VS) and brain activation responses in the superior parietal cortex (SPC; red-yellow pattern) and precuneus
(blue-green pattern) during visual attention for rested wakefulness (RW) and for sleep deprivation (SD; conjunction analysis), superimposed
on three orthogonal views of the human brain. Significance threshold: PFWEo0.002, cluster corrected for multiple comparisons in the whole
brain. (b) Scatter plots showing the linear associations between the predicted signals (BPND

VS and BPND
CD; see the 'Methods' section) in SPC and

precuneus and the corresponding BPND measures in CD and VS. (c) BPND correlation matrix showing the Pearson correlation factors (R;
computed across subjects) between average D2/D3R measures in VS, CD, putamen (PU) and globus pallidus (GP), for RW and for SD conditions.
Sample size: 14 healthy, non-smoking, right-handed men. FWE, family-wise error; κ, condition number; VIF, variance inflation factor.
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SMA, SPC and precuneus to VA is buffered by the counterbalanced
modulation of D2/D3 receptor signaling in the dorsal relative to
the VS through the indirect striatocortical pathway.

Limitations
The multicollinearity of the D2/D3R regressors limits the general-
izability of our approach. As the multicollinearity problem
increases, the regression model estimates become unstable and
their standard errors might get inflated. As multicollinearity is
considered a potential concern only if VIF410 or κ430,60,61 the
MLR model for the RW condition (VIF = 6 and κ= 28) was deemed
viable. Furthermore, similar MLR patterns were observed for the
SD condition that had significantly lower multicollinearity risk
(VIFo2 and κo6) than the RW condition, demonstrating the
reproducibility of the MLR findings. Also we ascribe a modulatory
role to D2/D3R on the activation responses to the VA task on the
basis of finding significant associations, but future studies that
vary the levels of DA signaling are needed to confirm this. We
cannot assess the influence of noradrenaline on VA activation. It is
known that the DAergic circuits interact with NAergic circuits118

and that wakefulness-promoting medications such as modafinil
may enhance arousal in humans by activation of the NAergic locus
coeruleus.119 Thus, the SD-related activation changes may reflect
noradrenaline changes to sustain arousal during SD.
In conclusion, our study documents a significant involvement of

DA signaling through striatal D2/D3R in the orchestration of visual
attention. SD disrupted DA’s regulation of the thalamus but not
that of the SPC and PFC. Our findings also corroborate a balanced
involvement of D2/D3R signaling in dorsal striatum (CD and PU)

versus that in VS for the regulation of brain activation in regions
involved in the VA task.
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