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Dynamic virus-host interactions play a critical role in regulating microbial community structure and
function. Yet for decades prior to the genomics era, viruses were largely overlooked in microbial ecology
research, as only low-throughput culture-based methods of discovering viruses were available. With the
advent of metagenomics, culture-independent techniques have provided exciting opportunities to dis-
cover and study new viruses. Here, we review recently developed computational methods for identifying
viral sequences, exploring viral diversity in environmental samples, and predicting hosts from metage-
nomic sequence data. Methods to analyze viruses in silico utilize unconventional approaches to tackle
challenges unique to viruses, such as vast diversity, mosaic viral genomes, and the lack of universal mar-
ker genes. As the field of viral ecology expands exponentially, computational advances have become
increasingly important to gain insight into the role viruses in diverse habitats.
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commons.org/licenses/by-nc-nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605
2. Virus discovery before metagenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1606
3. Identifying Viruses in Metagenomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1606
4. Viral Phylogenomics and Taxonomic Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1608
4.1. Phylograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1608
4.2. Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1608
5. Virus-Host Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1609
6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1610

Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1610
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1610
1. Introduction

Viruses are abundant and dynamic members of all microbial
communities. As obligate parasites, viruses play an important role
in determining community structure and affect their environment,
for example by modifying the metabolism of their hosts. The top-
down control that viruses exert on microbial populations con-
tribute to changes in community function, as viral infections often
destroy large numbers of the host populations. For example, bio-
geochemical cycling of carbon is in part facilitated by lytic viral
infections of carbon-fixing cyanobacteria, which release carbon
stored as biomass as dissolved organic carbon [1]. Furthermore,
viruses and their hosts are entangled in a co-evolutionary arms
race to develop new infection and defense strategies, respectively
[2,3], which over time affects the microbial community structure
and the fitness of the hosts. Virus-host interactions are a key part
of comprehensively studying microbial ecology as they have been
demonstrated to influence their hosts and environments in a vari-
ety of natural [4], host-associated [5] and engineered [6]
environments.

Beyond cell death, viruses also influence microbial community
structure and function by facilitating gene transfer between and
across species via transduction [7]. Sometimes viruses also encode
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auxiliary metabolic genes (AMGs) that augment the host metabolic
pathways to suit the production of viral particles [8]. Further, some
proviruses (viruses that integrate their genome into the host gen-
ome) exhibit a mutualistic relationship by preventing other viruses
from successfully infecting the cell – a phenomenon called ‘‘super-
infection exclusion” [9].

Viruses are incredibly diverse in their structure, genetic mate-
rial (ssRNA, dsDNA, etc.), host ranges and environments, making
them challenging to study with traditional molecular methods as
well as advancing computational techniques. Moreover, the
absence of universal marker genes across viral lineages, such as
those used to assess bacterial and archaeal phylogeny, compounds
efforts to assess viral diversity.

Culture-based methods of virus discovery are biased towards
lytic viruses whose hosts can be grown in the lab [10], often
excluding proviruses and uncultivable hosts from the analysis.
Culture-independent sequencing of microbial communities,
namely shotgun metagenomics, coupled with downstream bioin-
formatics tools, has greatly enhanced the discovery of new viruses
and their impacts in many diverse environments such as the ocean
[11,12], soil-permafrost interfaces [13], downhole hydraulic frac-
turing wells [14] and activated sludge treatment plants [6]. While
standardized computational tools for studying viruses are not nec-
essarily available, the Minimum Information about an Unculti-
vated Virus Genome (MIUVIG) standards provide guidelines for
what to report on uncultivated viruses [15]. Here we review com-
monly used computational approaches in viral ecology, and their
advantages and limitations.
2. Virus discovery before metagenomics

Classical experimental methods for studying viruses require
pure cultures of either the viruses and/or the potential hosts for
spot and plaque assays and viral tagging (fluorescent labeling
and sorting of viruses) [16]. Cultured viruses are examined by elec-
tron microscopy and assays for information on their morphology,
host range and replication cycles. The International Committee
for the Taxonomy of Viruses (ICTV) used this information to clas-
sify viral lineages. However, these time-intensive classical tech-
niques to isolate individual viruses are low-throughput.
Additionally, the requirement of pure cultures renders the proce-
dures impractical for viral analysis of environmental samples,
where isolation of a bacterium or virus presents numerous
challenges.

Universal prokaryotic marker genes such as the small subunit
rRNA gene (or 16S) [17], as well as domain-specific marker genes
used in the Genome Taxonomy Database (GTDB) [18] have been
used to detect and classify microbes found in environmental sam-
ples. Studies targeting specific groups of viruses have used marker
genes from these groups to detect viruses and assess their diversity
in environmental samples through PCR-based fingerprinting
[19,20]. Examples of viral marker genes include major capsid pro-
teins (for T4-like myoviruses), auxiliary metabolic genes (e.g. pho-
tosynthesis proteins in cyanophages), and DNA/RNA polymerases
[19]. Marker genes have been defined primarily for tailed viruses
of the order Caudovirales. However, there are several challenges
with using marker genes to detect and classify new viruses. First,
primer sets designed for marker genes are highly degenerate and
require low annealing temperatures, suggesting that even con-
served group-specific genes are diverse and not ideal for quantita-
tive PCR [19,21]. Second, primer sets are only available to specific
viral groups and exclude a large part of the virome. Finally, PCR-
based fingerprinting is inadequate for identifying novel viruses
that do not possess any known marker genes. Therefore, the use
of metagenomic analyses is imperative to the exploration of
viruses and their community dynamics.

Viral metagenomics seeks to understand virus-host interactions
and the impact they have on community structure and function in
environmental samples. With a transition into the metagenomic
era a vast number of viruses have been discovered through
metagenomic studies, the largest study adding 125,000 new partial
viral genomes [22] and creating a viromics pipeline and database
called IMG/VR [23]. Improved computational approaches and the
exploration of unique environments will continue to spark discov-
ery of new viruses at an accelerated pace. Only a small portion of
these will likely be isolated for individual study, making it impos-
sible for low-throughput classical methods of host prediction and
taxonomic classification to keep pace. Most approaches to metage-
nomic sequencing of microbial communities will only capture
double-stranded DNA (dsDNA) viruses. While alternative protocols
for RNA extraction [24] or for amplifying ssDNA [25] are also avail-
able to capture RNA and ssDNA viruses respectively, they have
been used much less frequently.

Comprehensive in silico analysis of viruses requires identifying
viral genomes, classifying them taxonomically and predicting
virus-host pairs from metagenomic sequence data and
metagenome-assembled genomes (MAGS). These are nontrivial
tasks that require the use of multiple approaches at each step.
3. Identifying Viruses in Metagenomes

Here we discuss commonly used tools for virus identification in
metagenomic data in depth and address additional relevant tools.
These tools are summarized in Table 1, with approaches, advan-
tages, and limitations. The first step in the viral analysis of a
metagenomic dataset is to identify as many viral sequences as pos-
sible. As no standard protocol for comprehensively detecting
viruses in a metagenome exists, the best practice may be to utilize
several tools in parallel, as each approach will yield unique
insights.

Currently, the most widely used tool for virus detection in
metagenomic data is VirSorter [26], which detects both lytic
viruses and proviruses. VirSorter uses Hidden Markov Models
(HMMs), constructed from known viral hallmark proteins (e.g.
major capsid proteins) to identify protein coding sequences in
metagenomic sequences. Other markers used by VirSorter to iden-
tify viral sequences include ‘‘viral-like” genes, protein coding
sequences that are short or have unknown functions and genes
that are not associated with Caudovirales viruses. Based on these
criteria, identified viral sequences are categorized and reported
with confidence levels. VirSorter and other similarity-based tools
[27,28] are best at predicting known viruses, which represent only
a small portion of the viruses that exist [29], as they depend heav-
ily on the completeness of reference viral databases such as NCBI
Viral RefSeq [30]. As 1200 new prokaryotic viral genomes have
been added to Viral RefSeq v65 since VirSorter was built, viral
detection can be improved by appending these new viral genomes
as a custom database to VirSorter for a more contemporary viral
analysis. Another protocol which utilizes HMMs of a broad range
of viral protein families has been described by Paez-Espino [31]
and was used to discover thousands of viral sequences from
diverse environmental metagenomes [23]. The uniqueness of this
method is the use of viral protein families from many diverse habi-
tats, while VirSorter largely targets freshwater, marine and human
microbiomes.

Programs that detect proviruses include Phaster [32], Prophin-
der [33], Phage_finder [34], PhiSpy [35]. Using a sliding window,
these programs find viral genes sandwiched between bacterial
genes and rely on sequence homology to known viruses. PhiSpy



Table 1
Summary table of various tools available for predicting viral sequences from genomic sequence data.

Approach Tools Method Advantages Limitations Reference

Homology-Based VirusSeeker BLAST-based data analysis
pipeline

Identifies both eukaryotic and
prokaryotic viruses

[27]

VirMine Removes non-viral
reads/contigs by sequence
similarity to known non-
viral sequences

Uses large bacterial and archaeal
databases to select for viruses

May falsely acquire unknown bacterial
genes or plasmids as viral genes

[28]

Phaster,
Prophinder,
Phage_finder

Uses a sliding window to
look for viral genes flanked
by bacterial genes

Specifically targets proviruses in
bacterial genomes

Requires complete or near complete
bacterial genomes

[32–34]

VirSorter Hidden Markov Models of
viral proteins from NCBI
Viral RefSeq and curated
viral metagenomic
datasets

Detects viral sequences similar to
viruses from reference databases

Requires gene prediction; Cannot be used
on unassembled reads

[26]

PhiSpy Homology to viral
proteins + random forest
classification using five
homology-independent
charactertistics

Targets novel proviruses in bacterial
genomes by including homology-
independent characteristics

Cannot be used on short contigs (<5kbp) or
unassembled reads

[35]

Machine Learning VirFinder Supervised machine
learning based on k-mer
frequency profiles

Does not require gene prediction; can be
used on unassembled metagenomic
reads

False positive detection of host sequences;
Requires a training dataset from a similar
environment

[36]

MARVEL Random forest machine
learning based on three
virus-specific gene
characteristics

Specifically targets viruses from
Caudovirales order; Works best on long
contigs (consisting of several genes)

Only uses information from coding regions
on the genome; Requires information on
gene placement on the genome

[37]

VirMiner Random forest model built
on mapping viral genes to
protein databases

Web-based viromics pipeline also
includes functional annotation and
host-prediction using CRISPRs

Virus-host predictions based only on
CRISPR spacers remain incomplete; Virus
taxonomic predictions are not
benchmarked against other predictions or
ICTV classifications

[43]

Deep Learning DeepVirFinder A convolutional neural
network trained on
‘‘genomic motifs” from
viral sequences for
predictions

Improved version of VirFinder by using
convolutional neural networks

Training datasets must be customized to
specific environments

[41]

VirNet Uses ’deep attention’ to
predict viral sequences

Can identify novel viruses Further testing on metagenomic data and
third-party benchmarking required

[42]

VIBRANT Neural networks trained
on protein family
annotations from KEGG,
Pfam and VOGs

Does not rely on sequence homology or
genomic signatures of reference viruses;
identifies proviruses, viral sequences,
AMGs; Manually curated training
dataset

New tool, requires third-party
benchmarking

[44]
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optimizes its predictions by using homology-independent viral
characteristics such as protein sequence length, transcription
strand direction, GC skew, and the abundance of viral-specific k-
mers (see below) to classify viral sequences.

Newer tools for viral sequence detection, such as VirFinder [36]
and MARVEL [37], use additional genomic features and machine
learning approaches to distinguish between prokaryotic and viral
sequences. VirFinder uses supervised learning of oligonucleotide
frequency signatures. Oligonucleotides, or k-mers, are short sub-
sequences of the genome of length k (generally ranging between
4 and 20). A k-mer frequency profile is a vector of the frequencies
of all the k-mers in a genome and these profiles are unique to a
given species or population of closely related bacteria, archaea or
viruses. VirFinder does not rely on gene prediction or sequence
similarity to known viruses and can be used on assembled or
unassembled metagenomic reads. While VirFinder has better pre-
diction accuracy and recall (true positives) for the identification
of unknown viruses than VirSorter, its recall relies heavily on the
composition of the training dataset, making it biased towards the
most-represented viruses in the database. As viral communities
typically differ between environments as a function of their hosts
[38], this bias can be leveraged to identify viruses by using an
environment-specific dataset to train VirFinder [38]. Sequences
from prokaryotic and eukaryotic viruses often mimic the k-mer fre-
quencies of their hosts, in an effort to avoid defense mechanisms or
to integrate into the host genome as proviruses [39]. Consequently,
VirFinder may also recruit prokaryote or eukaryote sequences as
false positives [38].

MARVEL uses genomic features of known viruses to predict
viruses on assembled contigs, which contain several genes. These
features include how closely genes occur together (gene density),
how frequently genes switch to the opposite strand (strand shift
frequency) and number of significant hits to the pVOGs (prokary-
otic virus orthologous groups) database [40]. MARVEL shows better
recall and accuracy of viral sequence detection than both VirSorter
and VirFinder, however specifically targets viruses from the Cau-
dovirales order only, as it relies on a Caudovirales-specific data-
base. Other tools utilizing machine learning, and in particular
deep learning, to detect viral sequences include DeepVirFinder
[41], VirNet [42], the VirMiner pipeline [43], and VIBRANT [44].
DeepVirFinder is an improvement upon VirFinder using convolu-
tional neural networks, while VirNet uses ‘deep attention’, a tech-
nique commonly used for natural language processing. VIBRANT
[44], a recently developed tool, utilizes protein family annotations
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [45],
Pfam [46] and Virus Orthologous Group (VOG) [40] databases to
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train a neural network for the prediction of viral sequences in
metagenomic data. Other virus detection tools to note that focus
largely de novo detection of human pathogens (including viruses)
from metagenomic data are SURPI [47], SUNBEAM [48], VIP [49]
and VirusDetect [50].
V1 V2 V3 V4

V1
V2

V3

V4

B

Fig. 1. Hypothetical viral genomes in squares represented by two types of
networks. A) Bipartite network shows which gene families (in circles) are shared
4. Viral Phylogenomics and Taxonomic Classification

Phylogenomics utilizes whole genomes or large portions of the
genome to reconstruct evolutionary histories of organisms. Viral
phylogeny is fundamentally different in structure to phylogenies
of cellular organisms as viral genomes are often a result of rapid
mutation and lateral gene transfer [51]. Methods to describe viral
phylogeny and assess relatedness between viruses are continually
evolving as new viruses are discovered. Recently, a new framework
for viral lineages was proposed by Koonin et al. that splits viruses
into four realms and their subsequent hierarchies [52]. This reorga-
nization is based on recent phylogenomic studies [56,57] showing
that hallmark genes are shared between groups of viruses with dif-
ferent replication-expression strategies and suggesting that the
current Baltimore Classes [56] of viruses does not accurately
describe viral evolutionary relationships. This new framework sup-
ports the classification of uncultured viruses based solely on their
genomic content – which is a necessity in the metagenomic era.
by the viral genomes (V1–V4). B) The network in (A) is simplified into a
monopartite network between viral genomes with the thickness of the edges
representing how many gene families are shared between genomes. This figure was
recreated from an article by Iranzo et al. [64].
4.1. Phylograms

Phylogenetic trees define hypothetical evolutionary relation-
ships between multiple lineages and are based on sequence simi-
larities between common genes. As viruses lack a universal
marker gene, analysis of viral relatedness requires a phylogenomic
approach, comparing whole viral genomes to generate a phylo-
gram. The first exploration of a phylogenomic method to assess
viral diversity was the Phage Proteomic Tree (2002) [57], where
distances in the tree were calculated using the number of shared
proteins between 105 reference viral genomes. The resulting viral
groups in the Phage Proteomic Tree matched the ICTV classification
of manually curated reference viruses [57]. A web-based interac-
tive version, ViPTree [58], exists as a server that places user viral
sequences among the updated reference viruses in the Phage Pro-
teomic Tree.

Newer methods in viral phylogenomics have expanded upon
the idea of a proteomic tree with modified methods to calculate
distances between viral genomes. Genomic Lineages of Uncultured
Viruses of Archaea and Bacteria (GL-UVAB) a pipeline for the auto-
matic taxonomic classification of viral sequences from metagen-
omes uses the Dice coefficient, assigning taxonomy in strong
agreement with current ICTV classifications [59]. The Dice coeffi-
cient has also been utilized to explore marine viral dynamics in
several recent studies [4,60]. Another example of a distance metric
is the Genome BLAST Distance Phylogeny (GBDP) [61], as used in
the program VICTOR [62] to construct phylograms and classify
prokaryotic viruses.

Other approaches to construct phylograms and classify viruses
include the use of single copy marker genes or HMMs for a specific
group of viruses, and average nucleotide identity. In a recent study,
77 single copy marker genes were systematically identified from
reference viruses from the Caudovirales order. These were used
to construct a phylogram, which can be used to taxonomically clas-
sify new viruses in agreement with the ICTV classifications at the
sub-family and genus levels, within the Caudovirales order [55].
ClassiPhage, a recently developed tool for classifying viruses from
the families Myoviridae, Podoviridae, Siphoviridae, and Inoviridae,
uses profile HMMs of proteins from reference viruses within these
families known to infect Vibrionaceae [63]. The specificity of the
HMMs in Classiphage may limit the usefulness of this tool for clas-
sifying viruses that do not infect Vibrionaceae. For classification at
the species rank, the MIUVIG consensus suggests the use of whole-
genome average nucleotide identity (95% identity cut-off over 85%
of alignment fraction [15]) to viral sequences from NCBI Viral
RefSeq [30] and IMG/VR [23].
4.2. Networks

While viral phylogenomics is a useful tool to understand viral
relatedness and taxonomy, the inherently hierarchical tree struc-
tures are unable to represent the mosaicism present in viral gen-
omes, and thus struggle to portray actual evolutionary
trajectories. Further, different viral lineages may not fit on the
same phylogram if they have no genes in common with the other
taxa [55,64,65].

Trends in exploring viral lineages have moved towards using
networks to consider the mosaic and highly diverse nature of viral
genomes [51]. Mono- and bipartite networks have been explored
for their use in viral classification. While both networks use shared
proteins to link viral genomes, monopartite networks have
weighted edges based on the total protein sequence similarity
between two genomes as shown in Fig. 1(B).

VConTACT2 [66] is a tool that uses a monopartite network of
reference viral genomes to classify taxonomy of user viral
sequences. Sequences that share proteins with reference viruses
will cluster together within the network, while novel viral
sequences can be identified as outliers to the network. VConTACT2
uses NCBI Viral Refseq as its database and will best work for dsDNA
viruses of prokaryotes, as NCBI Viral Refseq is currently biased
towards these. The same procedure for building and visualizing
monopartite networks can be applied to other viruses, if an appro-
priate reference database is available. The biggest limitation of
monopartite networks is the lack of information about which
genes connect the viral clusters.
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Bipartite networks show relatedness between viral genomes
and also indicate which proteins are shared between groups of
viruses [66] as shown by the circles in Fig. 1(A). Although there
are currently no open-source tools for bipartite network analysis,
it has enabled the identification of 14 hallmark genes most com-
monly shared by dsDNA viruses [53,54]. This approach is an impor-
tant piece in studying the evolutionary history of viruses and was
used as evidence for the recently proposed reorganization of the of
viral lineages [52].
5. Virus-Host Predictions

Virus-host interactions are a central part of viral research as
viruses are obligate parasites and are assumed to affect their envi-
ronment only through their hosts. Indicators of virus-host interac-
tionsmanifest in the viral and host genomes and can be exploited to
predict virus-host linkages in silico from metagenomic data. These
indicators point towards which viruses infect which member(s) of
the microbial community and depending on the type of indicator,
what potential impact an infection might have on the host.

The Virus-Host Database [67] currently includes host informa-
tion for all viral sequences from NCBI Viral RefSeq (release 99). This
database has been populated from information collected from
RefSeq [30], Genbank [68], UniProt [69], ViralZone [70], and man-
ually curated literature surveys. Computational approaches to pre-
dict hosts of viruses often use sequence homology to uncover
virus-host linkages. This homology is based on CRISPR spacers
(snippets of viral DNA) found in prokaryotic genomes, bacterial
tRNAs or auxiliary metabolic genes (AMGs) found in viral genomes,
and parts of genes shared at recombination sites of temperate
viruses (attP and attB in viruses and bacteria respectively).

Many bacteria and archaea carry CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats) arrays as part of a micro-
bial adaptive immune system to recognize invading viruses. The
CRISPR-Cas mechanism integrates short snippets of viral DNA
(25–50 bp) into the microbial genome referred to as ‘spacers’
[71]. CRISPR arrays can be found pre- or post-assembly using the
tools Crass [72] and MinCED [73]. The sequences of the spacers
from CRISPR arrays can be aligned to viruses found in the same
metagenome using BLASTn’s short task command [74], which is
optimized for alignments under 50 bp. To minimize the number
Fig. 2. Percentage of correct hosts identified out of 820 assignments by four methods a
provided by Edwards et al. [16].
of false positives for hosts, the Blastn-short task should be used
with a mismatch cut-off of 1, as this is the most sensitive parame-
ter for the alignment [16]. A cell often incorporates multiple spac-
ers from the same viral invader [75]. Therefore, a more specific and
reliable virus-host match can be established if a virus matches
multiple spacers from the same CRISPR array. The spacers
approach works best if spacers are matched to viruses from the
same metagenome, as spacers are rapidly replaced and may only
indicate recent viral invasions. As not all prokaryotes carry a
CRISPR-Cas defense system, other host prediction approaches
should be used in parallel to matching spacers.

Recombination sites for some lysogenic viruses (viruses that
integrate into the host genome) have recognition sequences (called
attP) that are similar to recombination sites on the microbial gen-
ome (attB). The attP sequence is typically situated close to DNA or
RNA integrases on the viral genome. Sequences of attP and attB have
a common core of 2–15 bp, which can be used to determine the host
via an exact alignmentmatch [16]. However, sequences < 15 bp also
have a higher frequency of random occurrence in the genome and
may lead to false positives, therefore the longest sequences for align-
ment should be used. Manual curation of the matches may also be
required. AMGs can also be identified in viral sequences by sequence
similarity to hostMAGsbutmust bemanually curated to not include
host genes. Annotation of AMGs using protein families databases
such as Pfam [46] or local alignments must use stringent criteria
such as E-values < 10�3 and bitscores > 60 [11]. Additionally, these
genes can be more confidently classified as AMGs if they are pre-
ceded and succeeded by common viral genes such as integrases, ter-
minases or structural genes.

Host prediction approaches that do not use sequence homology
include abundance profiles and oligonucleotide (k-mer) frequen-
cies. Abundance profiles, the sequencing coverage of viral or host
sequences across multiple samples, can be used for host prediction
as viruses approximately mimic the same abundance patterns as
their hosts. These patterns vary based on the type of infection (lytic
versus lysogenic), predator–prey dynamics [76] or the number of
integrated proviruses inside the host genome. For example, a single
integrated provirus will have the exact same abundance profile as
its host because it is replicated with the host genome. However,
abundance profiles predict a relatively low number of correct hosts
(Fig. 2) compared to other methods, as variations in host range and
t the genus and species level. This figure was recreated using supplementary data



1610 V. Khot et al. / Computational and Structural Biotechnology Journal 18 (2020) 1605–1612
temperate viruses skew the abundances. As such, abundance pro-
files are best used with time-series metagenomic data where viral
and microbial dynamics can be made obvious [77,78]. K-mer fre-
quency profiles, like those used by VirFinder to identify viral
sequences, can also be used to predict viral hosts. This exploits
the theory that prokaryotic viruses often have similar k-mer fre-
quency profiles to their hosts to avoid recognition by cell defense
mechanisms. Distances between tetranucleotide (4-mer) fre-
quency profiles of viruses and their hosts are commonly used for
predicting virus-host pairs, where the closest (smallest) Euclidean
distance is indicative of the most likely host [4,11,13,16,29].
Tetranucleotide frequency profiles of viral and potential hosts
sequences can be generated using Jellyfish [79].

Tools that utilize k-mer frequency distributions include Vir-
HostMatcher (k = 6) [80], HostPhinder (k = 16) [81] and Host Taxon
Predictor (k = 1,2,3) [82] which also uses machine learning to dif-
ferentiate between eukaryotic and prokaryotic viruses. K-mer fre-
quency distributions are more robust when built from longer
contigs (>1000 bp). For contigs shorter than 3000 bp, WIsH [83]
can be used for host prediction. WIsH uses a homogenous Markov
models, trained on bacterial and archaeal genomes and computes a
likelihood that a viral sequence matches closely with the model. It
is benchmarked to have comparable results to VirHostMatcher.

While tetranucleotide frequency profiles provide an alignment-
free approach for host prediction, they are still limited by the vari-
ability of virus host ranges. Some groups of viruses have closer pro-
files to their hosts, while others are largely dissimilar, depending
on whether they have narrow or broad host ranges respectively
[80]. Tetranucleotide frequency profiles are also best at predicting
hosts above the genus rank, as k-mer frequencies may not have
enough differentiation at the species level. For example, Fig. 1
shows that the number of correct host predictions at the species
level decrease considerably. This may result in the false prediction
of hosts that are closely related to the true host, but may provide
useful information, nevertheless.

Some predictive host-indicators, such as sequence-homology
exact matches > 15 bp long, result in more specific matches and
have higher prediction accuracy compared to other methods
(Fig. 1). However, indicators with a lower specificity, such as
tetranucleotide profiles, typically predict a larger number of poten-
tial virus-host pairs. A large portion of the host genome is neces-
sary for comparison against viral sequences, for all methods of
host-prediction. Viruses with broader host ranges infect multiple
strains or species, and multiple viruses will target hosts of higher
relative abundance. As a result, virus-host pairs are likely to resem-
ble a many-to-many pattern, rather than one-to-one relationship.
In silico virus-host pairs are best predicted from a metagenome
where both the viruses and hosts come from the same environ-
mental sample and were sequenced together. Using the consensus
result of multiple approaches, including homology- and non-
homology-based methods, will result in the most comprehensive,
robust and accurate host prediction of viruses.
6. Conclusion

Advances in computational approaches provide an excellent
avenue to explore the vast viral diversity present in our world.
Yet, there remain many computational challenges to overcome in
the discovery of new viruses and the dynamics of virus-host inter-
actions. First, many of the described methods rely on reference
databases, which are still biased towards well-studied viruses of
cultivable hosts. These databases will continue to improve with
every new virus discovery or complete assembly of a viral genome,
and in-turn also improve analytical tools.
Second, the incredible diversity of viruses (structural, ssDNA,
ssRNA etc.) makes the analysis of all possible virus types in a single
metagenomic dataset an unfeasible task and the standardization of
analytical tools impractical. Therefore, we recommend the use of
multiple approaches/tools at every step in the virus discovery pipe-
line, to compensate for the limitations of individual approaches.
Tailoring your analytical approach to answer specific research
questions will also generally yield the best results.

Finally, methods to discover and describe viruses must be used
in conjunction with studying the ecology of the community as a
whole to understand the biological significance these viruses have
in their environments. For example, CRISPR array analyses have
shown that some globally-dispersed populations of bacteria are
adapted to local phages by their viral defence mechanisms [84],
and viruses encoding AMGs point to their role in complex carbon
degradation in terrestrial environments [13].

As viral ecology becomes a tractable field through metage-
nomics and computation approaches, we can begin to understand
the complex roles of viruses in microbial communities. Providing
insights into the ever-evolving world of viruses is key to our under-
standing of biogeochemical cycling of nutrients in the natural envi-
ronment, human health via the microbiome [85] and medicine [86]
as well as engineered microbial processes [6].
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] Wilhelm SW, Suttle C a. Viruses and Nutrient Cycles in the Sea. Bioscience
1999;49:781–8.

[2] Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological
and evolutionary processes in microbial communities. FEMS Microbiol Rev
2014;38:916–31.

[3] van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic
immune mechanisms. Microbiol Mol Biol Rev 2016;80:745–63.

[4] Coutinho FH, Gregoracci GB, Walter JM, Thompson CC, Thompson FL.
Metagenomics sheds light on the ecology of marine microbes and their
viruses. Trends Microbiol 2018;26:955–65.

[5] Ogilvie LA, Jones BV. The human gut virome: a multifaceted majority. Front
Microbiol 2015;6:1–12.

[6] Davenport RJ, Allen BD, Sloan WT, Brown MR, Baptista JC, et al. Coupled virus –
bacteria interactions and ecosystem function in an engineered microbial
system. Water Res 2019;152:264–73.

[7] Jiang SC, Paul JH. Gene transfer by transduction in the marine environment.
Appl Environ Microbiol 1998;64:2780–7.

[8] Warwick-Dugdale J, Buchholz HH, Allen MJ, Temperton B. Host-hijacking and
planktonic piracy: how phages command the microbial high seas. Virol J
2019;16:1–13.

[9] Rostøl JT, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites.
Cell Host Microbe 2019;25:184–94.

[10] Mokili JL, Rohwer F, Dutilh BE. Metagenomics and future perspectives in virus
discovery. Curr Opin Virol 2012.

[11] Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, et al. Ecogenomics and
potential biogeochemical impacts of globally abundant ocean viruses. Nature
2016;537:689–93.

[12] Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, et al.
Marine viruses discovered via metagenomics shed light on viral strategies
throughout the oceans. Nat Commun 2017;8:1–12.

[13] Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, et al. Host-linked soil
viral ecology along a permafrost thaw gradient. Nat Microbiol 2018;3.

[14] Daly R, Roux S, Borton M, Morgan D, Johnston M, et al. Viruses control
dominant bacteria colonizing the terrestrial deep biosphere after hydraulic
fracturing. Nat Microbiol 2018. In review.

[15] Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, et al. Minimum
information about an uncultivated virus genome (MIUVIG). Nat Biotechnol
2019;37:29–37.

[16] Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to
predict bacteriophage-host relationships. FEMS Microbiol Rev
2016;40:258–72.

http://refhub.elsevier.com/S2001-0370(20)30308-1/h0010
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0010
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0010
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0015
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0015
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0020
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0020
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0020
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0025
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0025
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0030
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0030
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0030
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0035
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0035
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0040
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0040
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0040
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0045
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0045
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0045
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0050
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0050
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0055
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0055
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0055
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0060
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0060
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0060
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0065
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0065
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0070
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0070
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0070
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0075
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0075
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0075
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0080
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0080
http://refhub.elsevier.com/S2001-0370(20)30308-1/h0080


V. Khot et al. / Computational and Structural Biotechnology Journal 18 (2020) 1605–1612 1611
[17] Woese C, Kandler O, Wheelis M. Towards a natural system of organisms:
proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci
USA 1990;87:4576–9.

[18] Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, et al. A
standardized bacterial taxonomy based on genome phylogeny substantially
revises the tree of life. Nat Biotechnol 2018;36:99–1004.

[19] Adriaenssens EM, Cowan DA. Using signature genes as tools to assess
environmental viral ecology and diversity. Appl Environ Microbiol
2014;80:4470–80.

[20] Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in
patients with severe acute respiratory syndrome. N Engl J Med
2003;348:1967–76.

[21] Duhaime MB, Sullivan MB. Ocean viruses: rigorously evaluating the
metagenomic sample-to-sequence pipeline. Virology 2012.

[22] Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M,
et al. Uncovering Earth’s virome. Nature 2016;536:425–30.

[23] Paez-Espino D, Chen IA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR: a
database of cultured and uncultured DNA Viruses and retroviruses. Nucleic
Acids Res 2017;45:D457–65.

[24] L.Greninger A. A decade of RNA virus metagenomics is (not) enough. Virus Res
2018;244:218–29.

[25] Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, et al. Towards
quantitative viromics for both double-stranded and single-stranded DNA
viruses. PeerJ 2016;2016:1–17.

[26] Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter : mining viral signal from
microbial genomic data 2015:1–20.

[27] Zhao G, Wu G, Lim ES, Droit L, Krishnamurthy S, et al. VirusSeeker, a
computational pipeline for virus discovery and virome composition analysis.
Virology 2017.

[28] Garretto A, Hatzopoulos T, Putonti C. VirMine: Automated detection of viral
sequences from complex metagenomic samples. PeerJ 2019.

[29] Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host
interactions resolved from publicly available microbial genomes. Elife
2015;4:1–20.

[30] Brister JR, Ako-Adjei D, Bao Y, Blinkova O. NCBI viral genomes resource.
Nucleic Acids Res 2015;43:D571–7.

[31] Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus
sequence discovery pipeline and virus clustering for metagenomic data. Nat
Protoc 2017;12:1673–82.

[32] Arndt D, Grant JR, Marcu A, Sajed T, Pon A, et al. PHASTER: a better, faster
version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16–21.

[33] Lima-Mendez G, Van Helde J, Toussaint A, Leplae R. Prophinder: a
computational tool for prophage prediction in prokaryotic genomes.
Bioinformatics 2008;24:863–5.

[34] Fouts D. Phage_Finder: Automated identification and classification of
prophage regions in complete bacterial genome sequences. Nucleic Acids
Res 6AD;34:5839–51.

[35] Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages
in bacterial genomes that combines similarity-and composition-based
strategies. Nucleic Acids Res 2012;40:e126.

[36] Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based
tool for identifying viral sequences from assembled metagenomic data.
Microbiome 2017;5:69.

[37] Amgarten D, Braga LPP, Silva AM, Setubal JC. MARVEL, a Tool for prediction of
bacteriophage sequences in metagenomic bins. Front Genet 2018;9:1–8.

[38] Ponsero AJ, Hurwitz BL. The promises and pitfalls of machine learning for
detecting viruses in aquatic metagenomes. Front Microbiol 2019;10:1–6.

[39] Pride DT, Wassenaar TM, Ghose C, Blaser MJ. Evidence of host-virus co-
evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic
viruses. BMC Genomics 2006;7.

[40] Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic virus orthologous
groups (pVOGs): a resource for comparative genomics and protein family
annotation. Nucleic Acids Res 2017;45:491–8.

[41] Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, et al. Identifying viruses from
metagenomic data by deep learning 2018.

[42] Aly O. A, Mahmoud I. K, Elaraby M, Abbas H, Ali H. A. E. VirNet: Deep attention
model for viral reads identification. 2018 13th Int Conf Comput Eng Syst
2018:623–6.

[43] Zheng T, Li J, Ni Y, Kang K, Misiakou MA, et al. Mining, analyzing, and
integrating viral signals from metagenomic data. Microbiome 2019.

[44] Kieft K, Zhou Z, Anantharaman K. VIBRANT: Automated recovery, annotation
and curation of microbial viruses, and evaluation of virome function from
genomic sequences. BioRxiv n.d.

[45] Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. KEGG: Kyoto encyclopedia
of genes and genomes. Nucleic Acids Res 1999.

[46] El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, et al. The Pfam protein
families database in 2019. Nucleic Acids Res 2019.

[47] Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, et al. A cloud-
compatible bioinformatics pipeline for ultrarapid pathogen identification from
next-generation sequencing of clinical samples. Genome Res 2014.

[48] Clarke EL, Taylor LJ, Zhao C, Connell A, Lee JJ, et al. Sunbeam: An extensible
pipeline for analyzing metagenomic sequencing experiments. Microbiome
2019.
[49] Li Y, Wang H, Nie K, Zhang C, Zhang Y, et al. VIP: An integrated pipeline for
metagenomics of virus identification and discovery. Sci Rep 2016.

[50] Zheng Y, Gao S, Padmanabhan C, Li R, Galvez M, et al. VirusDetect: An
automated pipeline for efficient virus discovery using deep sequencing of
small RNAs. Virology 2017.

[51] Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. Reticulate representation
of evolutionary and functional relationships between phage genomes. Mol Biol
Evol 2008;25:762–77.

[52] Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, et al. Global organization
and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev
2020;84:1–33.

[53] Iranzo J, Krupovic M, Koonin EV. The double-stranded DNA virosphere as a
modular hierarchical network of gene sharing. MBio 2016;7:1–21.

[54] Iranzo J, Koonin Eugene V, Prangishvili V, Krupovic M. Bipartite network
analysis of the archaeal virosphere: evolutionary connections between viruses
and capsidless mobile elements. Virology 2016;90:11043–55.
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