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Abstract: Connexin 43 (Cx43) is a gap junction protein that assembles at the cell border to form
intercellular gap junction (GJ) channels which allow for cell–cell communication by facilitating the
rapid transmission of ions and other small molecules between adjacent cells. Non-canonical roles of
Cx43, and specifically its C-terminal domain, have been identified in the regulation of Cx43 trafficking,
mitochondrial preconditioning, cell proliferation, and tumor formation, yet the mechanisms are still
being explored. It was recently identified that up to six truncated isoforms of Cx43 are endogenously
produced via alternative translation from internal start codons in addition to full length Cx43, all from
the same mRNA produced by the gene GJA1. GJA1-11k, the 11kDa alternatively translated isoform
of Cx43, does not have a known role in the formation of gap junction channels, and little is known
about its function. Here, we report that over expressed GJA1-11k, unlike the other five truncated
isoforms, preferentially localizes to the nucleus in HEK293FT cells and suppresses cell growth by
limiting cell cycle progression from the G0/G1 phase to the S phase. Furthermore, these functions are
independent of the channel-forming full-length Cx43 isoform. Understanding the apparently unique
role of GJA1-11k and its generation in cell cycle regulation may uncover a new target for affecting cell
growth in multiple disease models.
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1. Introduction.

Gap Junction (GJ) channels are formed by connexin proteins, which assemble as hexamers on
the cell membrane and dock with the hexamer in an adjacent cell, creating a channel for intercellular
communication [1]. Connexin 43 (Cx43) is the most prevalent gap junction protein in the heart
and is widely expressed in most mammalian organs and cell types [2]. Dysregulation in Cx43
protein expression is associated with cardiac arrhythmias [3]. Studies have identified numerous
non-canonical roles of Cx43 that are not described by gap junction channel activity, including in
ischemic injury protection [4,5], cancer [6–9], wound healing [10], muscle differentiation [11], organ
morphogenesis [12,13], and cell migration in embryonic development [14]. With specific regard to
cancer, Cx43 can function as a tumor suppressor [6,15,16]. A reduction in Cx43 expression is observed in
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tumor cell lines [17], and reduced Cx43 has been proposed as a biomarker of malignant tissue [8,18–20].
Few studies have been able to reconcile how the gap junction Cx43 channel function can influence
these apparently channel-independent roles of Cx43 protein.

Cx43 is encoded by the GJA1 gene, which has a single coding exon [21]. Therefore, GJA1 cannot
provide protein diversity by means of alternative splicing of exons. However, it has recently been found
that several small isoforms of Cx43 are produced by alternative translation, with methionines within
the coding exon serving as internal translation start sites [22,23]. The alternatively translated small
isoforms lack the N-terminal portions of Cx43 upstream of the initiating start sites, while retaining
the remaining downstream C-terminus portion. There are six internal methionines and a total of
six truncated protein isoforms can be produced from Cx43 mRNA with expression levels varying
between isoforms and across cell types [22]. We have previously reported that the size of the most
predominantly expressed isoform is 20kDa, thus termed GJA1-20k. It has been identified that GJA1-20k
functions in the forward trafficking of full-length Cx43 to the plasma membrane to form gap junction
channels [22,24] and is necessary for actin stabilization [24]. In addition to its role as a chaperone [22,24],
GJA1-20k is upregulated in response to hypoxic [25] and oxidative stress for preventing mitochondrial
fragmentation [26] and to mediate ischemia preconditioning protection [24,27]. Xenopus derived
GJA1-20k has also recently been identified to localize to the cell nucleus, functioning as a transcription
activator of N-Cadherin [28].

Nucleus localization of one or more of the smaller isoforms provides the opportunity to affect
cell cycle. The overexpression of various portions of the C-terminus fragment of Cx43 (Cx43 CT) has
been shown to occasionally localize to the nucleus [29,30] and is implicated in the suppression of cell
proliferation [29,31,32]. Now that the six endogenous truncation isoforms have been identified [22],
previous studies exploring various lengths of the C-terminus can be placed in the context of proteins
that can be endogenously generated by alternative translation.

In this study, we perform an expression analysis of all six mammalian isoforms and make the
surprising observation that only mammalian GJA1-11k, and not GJA1-20k or any of the other Cx43
isoforms, is preferentially enriched in the nucleus of mammalian cells. Moreover, we find that GJA1-11k
can interfere with cell growth by limiting cell cycle progression in the G0/G1 phase.

2. Materials and Methods

2.1. Cell Culture

HEK293FT (Thermo Scientific) cells at low passages were grown on petri dishes at 37 ◦C in
a humidified atmosphere with 5% CO2 in Dulbecco’s Modified Eagle’ Medium (DMEM, Thermo
Scientific) high glucose with 10% fetal bovine serum (FBS), nonessential amino acids, sodium pyruvate
(Thermo Scientific), and antibiotics Mycozap-CL (Lonza). For the expression of targets, cells were
plated down 24h prior to transient transfection at a density indicated in each experiment. Transient
transfection was carried out using either LipofectamineTM 2000 (Thermo Scientific) or FuGENE®HD
(Promega). Transfection by both reagents consistently resulted in 75–80% transfection efficiency,
assessed by Flow Cytometry. The cells were used for assay after 48 hours of transfection unless
otherwise stated in the figure legends.

2.2. RNAi Interference

Chemically synthesized siRNAs (Thermo Scientific) to knockdown GJA1 mRNA (sequence 5’ to
3’: GG GAG AUG AGC AGU CUG CCU UUC GU; HSS178257) and StealthTM RNAi with medium
GC content as a negative control (scramble, cat. # 12935-112) were used. HEK293FT cells at the
density 2 × 106 were transfected with 100nM of either siRNA or the scramble control according to the
manufacturer’s reverse transfection protocol using LipofectamineTM RNAiMAX (Thermo Scientific).
The cells were manually counted at 24, 48, 72, 96, and 120 h after transfection.
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2.3. Molecular Biology

Human GJA1 encoding full-length and small isoforms were obtained from Open Biosystems and
cloned into pDONR/221 using Gateway BP cloning to generate entry clones (BP clonase II; Thermo
Scientific). Destination vectors (pDEST) encoding C-terminal V5-, HA-tagged and C-terminal NES
(nuclear export signal) V5-tagged proteins were subsequently made using entry clones and Gateway
LR cloning (LR clonase; Thermo Scientific). All constructs for mammalian cell expression are driven by
the cytomegalovirus (CMV) promoter and include downstream internal mutated methionine-to-leucine
start sites of Cx43 to ensure single isoform expression. Mutagenesis was carried out with QuickChange
Lightning Mutagenesis Kit (Agilent) according to the manufacturer’s protocol.

2.4. Immunofluorescence Staining

HEK293FT cells were plated on 35-mm fibronectin-coated glass bottom culture dishes (MatTek
Corporation, cat #P35G-1.0-14-C) 24 hours before transfection. The cells were transfected with
2 mg of two plasmids—the negative control pcDNA3.2-GW-CAT-V5 and the positive control
pcDNA3.2-GFP-V5—to verify the transfection efficiency, wild type pcDNA-GJA1-WT-V5, and all of
the alternatively translated isoforms of the Cx43 protein (pcDNA-GJA1-43k-V5, pcDNA-GJA1-32k-V5,
pcDNA-GJA1-29k-V5, pcDNA-GJA1-26k-V5, pcDNA-GJA1-20k-V5, pcDNA-GJA1-11k-V5, pc
DNA-GJA1-7k-V5) and pcDNA-GJA1-11k-NES-V5. At 36h post transfection, the cells were washed in
PBS and fixed in 4% paraformaldehyde for 15 min at RT. The cells were permeabilized in 0.1% Triton
in PBS and blocked in 5% goat serum for 1 h and were then subsequently incubated with primary
antibodies for 3 h at RT: rabbit polyclonal anti-Cx43, raised against a 17-residue peptide from the C-tail
of Cx43 (1:1000, Sigma), and mouse monoclonal anti-V5 (1:50, Sigma). After washing 3 times with 0.1%
Tween-20 in PBS, the cells were incubated with secondary antibodies: goat anti-mouse IgG conjugated
to Alexa Fluor 488 (1:500, Thermo Scientific) and goat anti-rabbit IgG conjugated to Alexa Fluor 555
(1:500, Thermo Scientific) for 1 h at RT. The nuclei were detected by Hoechst 33342, trihydrochloride,
trihydrate (1 µg/mL, Thermo Scientific) staining for 5 min at RT and were then mounted to ProLong
Gold Antifade reagent (Thermo Scientific).

2.5. Image Processing

Images were taken using a Nikon Eclipse Ti microscope with a 100×/0.75 Plan Apo objective and
a Yokogowa CSU-X1 spinning-disk confocal unit with 350, 486, 561-laser units, and an ORCA-Flash
4.0 Hamamatsu camera (C11440), controlled by NIS Elements software and analyzed using Adobe
Photoshop. The HEK293FT cells were imaged at z-depth increments of 0.3 µm. One plane image
was used for quantifications in ImageJ (National Institute of Health, Bethesda, MS, USA) and the
focused image (maximum projection intensity) of z-stacks was used for the publication. Fluorescence
intensity profiles were generated and quantified by Image J in at least 20 cells per sample. The ratio
of nuclear/cytoplasmic fluorescence intensity of Cx43 small isoforms normalized to the region of
interest (ROI) detected by both antibodies (anti-V5 and anti-Cx43) was quantified. Each image was
background-subtracted using a rolling ball radius of 50 pixels.

2.6. Cell Count and Cell Cycle Assay

The cells were plated down at the density 2 × 106 cells per 100mm petri dish and were exposed
to serum starvation in complete media with 0.2% FBS for 48 h to ensure maximum cell cycle
synchronization without cell cycle arrest. Then, the cells were transfected in 10% serum-supplemented
media with various plasmids of interest using FuGENE®HD (Promega) according to manufacturer’s
protocol. The concentration of plasmid cDNA of each sample was normalized to the amount of protein
produced in given cells in 48 h measured by the Western Blot signal intensity normalized to actin.

On 1st and 2nd days after transfection, the cells were trypsinized and manually counted. On
day 3 after transfection, the cells were incubated with 10 µM BrdU (37 ◦C, 45min in complete media)
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and were collected for cell cycle assay and manual count. Then, the cells were fixed and stained with
anti-BrdU antibodies and 7-AAD DNA dye according to FITC BrdU flow kit (BD PharmingenTM)
manual instruction. The cells were excited at 488nm, and signals from 50,000 cells were acquired at
585/42 and 702/64 in LSR II (BD Biosciences). The results were analyzed using FlowJo software and
were expressed as the percentage of cells in each cell cycle phase within the entire population excluding
debris and apoptotic cells. At least triplicates were used for each sample and each experiment was
conducted four times.

2.7. Western Blot and Subcellular Fractionation

To detect protein expression by Western Blotting, the cells were plated down in 6-well plates
at a concentration 0.65 × 106 per well. The next day, the cells were transfected with plasmid cDNA
using LipofectamineTM 2000 (Thermo Scientific) according to the manufacturer’s instructions. The
cells were lysed in RIPA buffer containing (mM): 0.1%SDS, 50 mM Tris, pH 7.4, 150mM NaCl, 1mM
EDTA, 1% Triton X-100, 1% sodium deoxycholate, 1 mM NaF, 200µM Na3VO4, and 1×Halt Protease
and Phosphatase Inhibitor Cocktail (Thermo Scientific), and were ruptured by sonication before
centrifugation at 10,000 × g for 20 min at 4 ◦C. The cell lysates were normalized for total protein
with BCA assay (Bio-Rad DC Protein Assay). The samples with 4×NuPage sample buffer (Thermo
Scientific) supplemented with dithiothreitol (DTT, 400mM) were heated at 70 ◦C for 5 min, cooled to
RT, and 100 µg per lane were separated by NuPAGE Bis-Tris 4–12% gradient gel (Thermo Scientific)
in MES running buffer (Thermo Scientific). The gels were transferred in 10% Methanol-containing
transfer buffer to FluoroTrans PVDF membranes (Pall), which were subsequently blocked in 5%
non-fat milk (Carnation) in TNT buffer (0.1% Tween-20, 150 mM NaCl, 50mM Tris pH 8.0) for 1 h at
RT. Membranes were probed overnight with primary antibodies diluted in 5% milk in TNT. Mouse
monoclonal anti-Cx43 directed against C-terminal region, prepared to the last 23 amino acids of Cx43
(1:500, Millipore), mouse monoclonal anti-β-actin (1:2000, Sigma-Aldrich), mouse monoclonal anti-V5
(1:500, Sigma-Aldrich), and goat secondary antibodies conjugated to AlexaFluor 647 (1:500, Thermo
Scientific) were used in this study. The membranes were imaged with a ChemiDocMP4000 fluorescent
western detection system (BioRad). The membranes were stripped using Re-Blot plus Strong solution
(Millipore) and re-probed with β-actin to ensure equal loading and were used as a normalization
control. The relative intensity of signals was quantified using BioRad software.

The Nuclear Extraction kit (ab113474, Abcam) was used to obtain nuclei, and cytosolic-enriched
fractions from HEK293FT cells transfected with GJA1-11k, GJA1-43k, cDNA plasmid, or negative
control GFP-V5 cDNA. After reconstitution in RIPA buffer, fractions were analyzed by Western Blot in
Bis-Tris 10% SDS-PAGE gel (100µg protein/lane), transferred to PVDF membrane and probe to mouse
monoclonal anti-Cx43 directed against the C-terminal region (1:500, Millipore), mouse monoclonal
anti-V5 (1:200, Sigma-Aldrich). To confirm the enrichment of correct proteins in obtained fractions,
the same blot was probed with nuclear marker mouse monoclonal anti-Histone H3 (1:2000, Abcam),
cytoplasmic marker mouse monoclonal anti-GAPDH (1:5000, Abcam), membrane marker mouse
monoclonal NA+/K+-ATPase (1:10000, Millipore), Golgi marker rabbit monoclonal anti-GMP130
(1:1000, Abcam), and nuclear envelope marker rabbit monoclonal anti-Lamin B1 (1:5000, Abcam).

2.8. Statistical Analysis

All quantitative data are presented as mean± SEM, with ‘n’ denoting of the number of independent
experiments. The normality of the data sets was tested using Kolmogorov-Smirnov’s test and d’Agostino
and Pearson’s test. For comparison between the two groups, an unpaired two-tail Student’s t-test
was performed. For comparison among three or more groups, one-way ANOVA (followed by
Tukey’s post-hoc test) or two-way ANOVA (followed by Tukey’s multiple comparison test) were used
accordingly and analyzed in Prism 6 software (GraphPad). A p-value < 0.05 was considered significant.
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3. Results

3.1. Alternatively Translated Cx43 Isoforms Localize to Different Subcellular Compartments

We constructed separate cDNA plasmids, each expressing an alternatively translated isoform
that can be generated from internal methionine start sites (GJA1-32k, GJA1-29k, GJA1-26k, GJA1-20k,
GJA1-11k, GJA1-7k). For each of the plasmids, the AUGs downstream of each start codon were replaced
by CUGs so that each plasmid only produces one Cx43 protein isoform fused with a C-terminal V5-tag.
We also constructed a wild-type Cx43 (GJA1-WT) plasmid with all internal AUG start sites intact and a
plasmid encoding only full-length Cx43 (GJA1-43k), which preserved the first start codon yet with
each downstream AUG mutated to CUG (Figure S1). Human embryonic kidney HEK293FT cells
have little endogenous Cx43 and therefore present little endogenous competition to the exogenous
overexpression of Cx43 isoforms.

Using immunofluorescence, we used two separate antibodies (anti-Cx43 C-terminus and anti-V5)
to identify the subcellular localization of each V5-tagged isoform when exogenously introduced in
HEK293FT cells (Figure 1A). As expected, GJA1-WT localized as large plaque formations on the
cell–cell border. In contrast, full length GJA1-43k accumulated in perinuclear regions, indicating a
reduced ability to be trafficked to the cell border, consistent with our previously reported results of a
six-fold reduction in gap junction plaques [22]. GJA1-20k, a chaperone that directs the trafficking of
the full-length GJA1-43k isoform to the cell–cell border, generally appears localized to the perinuclear
and ER regions and the mitochondria [26]. Of note, we did not detect significant GJA1-20k localization
to the cell nucleus. However, GJA1-11k appeared to be highly enriched in the nucleus, with minimal
detection in the cytoplasm.In general, V5 detection is diminished as the isoforms get smaller, yet the
nucleus to cytoplasm ratios remained consistent. GJA1-7k, the smallest isoform, was poorly detected by
either antibody. We also stained non-transfected cells to establish the baseline endogenous expression
of Cx43 in HEK293FT cells.
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Figure 1. Localization of alternatively translated Cx43 isoforms expressed in HEK293FT cells. (A).
The fixed-cell immunofluorescence of HEK293FT cells expressing short isoforms of Cx43 was detected
by monoclonal anti-V5 (green) and polyclonal anti-Cx43 (red) antibodies, raised against a 17-residue
peptide of C-terminal Cx43 (Sigma) with Hoechst staining of the nuclei (blue). The arrow heads show
the gap junction (plaque) formation at the cell–cell border of cells with wild type (GJA1-WT) plasmid.
Scale bar: 10µm. The results are representative of four independent experiments. (B). The ratio of
fluorescent intensity in the nucleus versus cytoplasm in transfected HEK293FT cells. The data are
presented as mean ± SEM, n = 20, **** p < 0.0001, by two-way ANOVA followed by Tukey’s multiple
comparison test. The intensities were measured and normalized to background using Image J.

To quantify the distribution of each isoform, we calculated the ratio of the mean fluorescent
density in the nucleus versus cytoplasm (Figure 1B). This analysis confirmed that GJA1-11k has a two
(anti-V5 antibody detection) to threefold (anti-Cx43 detection) nuclear enrichment. Furthermore, the
nuclear localization is specific to GJA1-11k. All other isoforms capable of being generated by alternative
translation had 50% or less nucleus to cytoplasm density. To confirm that nucleus localization was
not secondary to the V5 tag interacting with GJA1-11k, we obtained similar results by a staining for
HA-tagged GJA1-11k (Figure S2).

The nucleus localization of GJA1-11k was also tested by biochemistry techniques. We performed
subcellular fractionations of HEK293FT cells overexpressing GJA1-11k, GJA1-43k, and a negative
control GFP-V5. Consistent with the immunofluorescence data, Western Blot analysis of cytosolic and
nuclear fractions revealed that when compared to full length GJA1-43k, GJA1-11k expression is more
enriched in the nucleus, with nearly as much protein in the nucleus as in the cytoplasm despite a much
smaller intranuclear volume (Figure 2, Figure S3). Together, the data of Figures 1 and 2 demonstrate
that a major fraction of GJA1-11k, unlike the other mammalian Cx43 isoforms, localizes to the nucleus.
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Figure 2. (A). Biochemical isolation of GJA1-11k in the nucleus. Western Blot of Cx43 isoforms in
subcellular fractions (cytosolic and nuclear fractions) of HEK293FT cells over-expressing exogenous
GJA1-11k, GJA1-43k, and GFP-V5 tagged plasmid cDNA, probed to monoclonal Cx43-CT (Millipore)
antibodies. To demonstrate enriched biochemical isolation, the same blot was probed using antibodies
to different subcellular fraction markers, including cytoplasmic (GAPDH), membrane (Na+/K+-ATPase),
Golgi (GM-130), and nuclear markers (Histone H3, Lamin B1). The results are representative of three
independent experiments. (B). The densitometry of CT-43k (11k) subcellular fractions assessed by
Western Blot. Uncut immunoblots are provided in Figure S3.

3.2. GJA1-11k Inhibits Cell Proliferation

The nucleus is the primary organelle involved in cell cycle regulation. Because the C-terminus
fragments are associated with inhibiting cell proliferation [29,31] and GJA1-11k appears to be enriched
in the nucleus (Figures 1 and 2), we quantified cell proliferation in the presence of GJA1-11k. HEK293FT
cells were transfected with the siRNA that silenced endogenous GJA1 mRNA, removing any endogenous
source of any Cx43 isoform. Note that silencing GJA1 alone, even with little background signal,
resulted in a significant increase in cell growth compared to non-transfected cells or scramble siRNA
control (Figure 3, Figure S4). These data suggest that even minute quantities of Cx43 or its isoforms
can inhibit cell proliferation.
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Figure 3. Effect of Cx43 on cell proliferation. The knockdown of endogenous Cx43 increases the cell
proliferation of HEK293FT cells. For each day, data are presented as mean ± SEM, n = 9, ** p < 0.01,
*** p < 0.001, **** p < 0.0001 by an unpaired two-tail Student’s t test. Western Blot analysis confirmed
the knockdown of Cx43 and is representative of three independent experiments.
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We then explored the effect of the full length Cx43 and the GJA1-11k isoforms on cell proliferation.
We transfected HEK293FT with vectors expressing GJA1-11k, GJA1-43k, GJA1-WT, and GFP-V5 as a
negative control. The cells were counted over a three-day period (Figure 4). GJA1-11k significantly
inhibited cell growth (p < 0.01), relative to GJA1-43k and GFP-V5. Apoptosis was ruled out by TUNEL
staining (Figure S5). Together, these results indicate that GJA1-11k can be a potent growth suppressor,
more so than either the full-length isoform GJA1-43k or the intact WT Cx43.
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Figure 4. Effect of Cx43 short isoforms on cell proliferation. The overexpression of GJA1-11k inhibits
the cell growth of the HEK293FT cell line. The growth curve is counts of transiently transfected cells
each with vectors expressing GJA1-11k, GJA1-43k, GJA1-WT, and the negative control plasmid GFP
with V5-tag. For each day data are presented as mean ± SEM, n = 12, ** p < 0.01 by one-way ANOVA
followed by Tukey’s post-hoc test. Cell growth analysis revealed that cells expressing GJA1-11k
grew significantly slower, than cells overexpressing other isoforms. Western Blot confirmed transient
expression of Cx43 isoforms. Uncut immunoblots are provided in Figure S6.

We next tested whether nuclear localization is essential for GJA1-11k to convey growth inhibition.
From an in silico analysis, we could not find a nuclear localization sequence (NLS) in GJA1-11k
to remove and therefore limit its entry. However, we were able to add a nuclear export signal
(NES) [33] to GJA1-11k. A vector was generated with an NES sequence (LQLPPLERLTLD) [34] added
to GJA1-11k-V5, and transiently transfected into HEK293FT. We then used immunofluorescence to
identify changes in nuclear localization. The expression of GJA1-11k-NES significantly reduced the
presence of GJA1-11k in the nucleus (Figure 5A), p < 0.0001, whether detection was by antibodies
against Cx43-CT or V5 tag (Figure 5A, right Panel), p < 0.001. We next quantified cell growth as done
in Figure 4. The results show that GJA1-11k-NES partially rescues cell growth (Figure 5B, Figure S6).
Residual decreases in cell count were likely due to residual GJA1-11k remaining in the nucleus.

3.3. GJA1-11k Inhibits Cell Cycle Progression to the S Phase

The inhibition of proliferation implies interruption of cell cycle progression. We explored the stage
at which cell growth is inhibited by GJA1-11k in the nucleus. HEK293FT cells were serum-deprived for
48h to synchronize cells in the phase G0/G1 prior to transfection. Seventy-two hours after transfection,
the cells were labeled with BrdU for 45 min and subsequently fixed and stained with anti-BrdU
antibody (protocol diagrammed in Figure S7). Flow cytometry was used to quantify the percentage
of cells in each phase (Figure 6A). Quantification was performed in cells transfected with either a
negative control (GW-CAT V5), GJA1-WT, full length GJA1-43k, GJA1-11k, or GJA1-11k-NES. Our
results in Figure 6B indicate that, of all the plasmids, GJA1-11k resulted in the highest percentage of
cells remaining in G0/G1 (from 17% in the negative control to almost 40% with GJA1-11k, a twofold
increase). As would be expected by capturing cells in G0/G1, the expression of GJA1-11k results in half
of the cells in the S phase as it does in the negative control cohort (from 50% to 27%, p < 0.05; Figure 6B).
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The expression of GJA1-11k-NES resulted in increasing the percentage of cells in the S phase relative to
GJA1-11k (p < 0.01; Figure 6B).Biomolecules 2019, 9, x FOR PEER REVIEW 9 of 14 
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Figure 5. GJA1-11k with nuclear export signal rescues the cell proliferation of the HEK293FT cell line.
(A). The immunofluorescence of HEK293FT cells expressing GJA1-11k or GJA1-11k-NES probed with
V5 and Cx43 antibodies (Sigma) and the corresponding ratio of fluorescence density in the nucleus
versus cytoplasm is shown on the graph. Scale bar: 10µm. The graph results are representative of four
independent experiments. The data are presented as mean ± SEM, n = 26, **** p < 0.0001 by an unpaired
two-tail Student’s t test. The intensities in the bar graph were measured and normalized to background
using Image J. (B). GJA1-11k-NES rescues cell proliferation, suggesting that the effect of GJA1-11k is
linked to the nucleus. The number of cells transiently transfected with vectors expressing GJA1-11k,
GJA1-11k-NES, GJA1-43k, GJA1-WT, and the negative control plasmid GFP were counted 72 h after
transfection. Cell growth analysis has shown that cells expressing GJA1-11k-NES grew significantly
faster than cells expressing GJA1-11k. The Western Blot confirmed the transient expression of Cx43
isoforms. The data are presented as mean ± SEM, n = 12, ** p < 0.01, *** p < 0.001 by one-way ANOVA
followed by Tukey’s post-hoc test.
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Figure 6. Overexpression of wild type Cx43 and short isoforms inhibits cell cycle progression in
HEK293FT cells. (A). Non-transfected cells were serum-deprived for 48 h to synchronize cells in the
G0/G1 phase. A representative image showing cell cycle phases in the HEK293FT cell line based on
BrdU incorporation versus total DNA staining by 7-AAD. The cell cycle phases were analyzed by
FlowJo. (B). The cell cycle distribution of GJA1-WT, GJA1-43k, GJA1-11k, and GJA1-11k NES V5-tagged
isoforms were analyzed 72 h post-transfection. The bar graph shows the reduction in the number of
cells in the S-phase and accumulation of cells in G0/G1 expressing GJA1-11k compare to GJA1-WT or
GJA1-43k. GJA1-11k-NES rescues cell cycle progression from G0/G1 to S-phase. The data are presented
as mean ± SEM, n = 12, * p < 0.05 and ** p < 0.01, *** p < 0.001 by one-way ANOVA followed by Tukey’s
post-hoc test. (C). The Proliferation index (using following PI = ((S+G2/M) / (G0/G1+S+G2/M)) formula)
confirmed the reduction in proliferation rate for GJA1-11k. The data are presented as mean ± SEM,
n = 12, * p < 0.05 and ** p < 0.01, by one-way ANOVA followed by Tukey’s post-hoc test.



Biomolecules 2020, 10, 473 11 of 14

The flow cytometry data in Figure 6B can be used to quantify growth fraction by a proliferation
index (PI). Of all the plasmids, only GJA1-11k significantly reduced the calculated PI (Figure 6C).
Notably, the addition of the NES to GJA1-11k reverses the GJA1-11k induced reduction in PI (Figure 6C).
Together, the results confirm a GJA1-11k induced reduction in the proliferation that occurs by limiting
the exit of the G0/G1 phase and that nucleus localization is necessary to affect the growth inhibition.

3.4. Discussion

Our work attributes a specific biological role to mammalian GJA1-11k. The 11kDa alternatively
translated isoform of Cx43 functions independent of gap junction formation as it uniquely localizes to
the nucleus where it directly affects cell growth, limiting cell cycle progression from the G0/G1 phase
to the S phase.

In our expression analysis (Figure 1), we found mammalian GJA1-20k to be distributed in
cytoplasmic organelles, consistent with its known roles in Cx43 forward trafficking [22,24] and
metabolism [26,27]. This reported localization differs somewhat to a recently published study about the
role of Xenopus GJA1-20k, which was found to translocate to the nucleus of Xenopus and HeLa cells
(where it can upregulate N-cadherin expression [28]). It is not clear why we could not reproduce Kotini
et al’s [28] finding regarding GJA1-20k nucleus enrichment. The Xenopus GJA1-20k has a different
sequence and is shorter than human GJA1-20k by six amino acids. The Xenopus plasmid also did not
mutate downstream methionine resulting in potential generation of alternative isoforms GJA1-11kDa
and 7kDa, which may have been detected in lieu of GJA1-20k. The Xenopus GJA1-20k in the Kotini
study [28] was also covalently bound to the glucocorticoid receptor to enforce nuclear translocation of
GJA1-20k, and thus nuclear localization could have been more a product of the glucocorticoid receptor
that of the GJA1-20k itself. Finally, differences between the human and Xenopus GJA1-20k isoform
sequences could result in differences in localization tendencies. Future studies carefully exploiting the
differences in the plasmids and their effect on localization should be highly informative.

Cx43 expression is typically reduced in tumor cell lines [17] or tissues [8,18–20,35–38] and the
loss of Cx43 is associated with shorter patient survival [8,20]. It has already been identified that
ectopic expression of WT Cx43 in cancer cells does not result in gap junctions generation yet limits cell
proliferation [7,8,39,40]. Despite these observations and correlations, significant knowledge gaps exist
in our mechanistic understanding of non-canonical effects of ectopic Cx43. It should also be noted that
most studies identify Cx43 by antibody staining in which the epitope for Cx43 specific antibodies is in
the C-terminus; therefore, full length Cx43 cannot be differentiated from the smaller isoforms [22]. We
expect that reports of Cx43 in the nucleus in cancer cells [28–31] indeed may be GJA-11k, which is
protective against cancer progression. For exogenous introduction, GJA1-11k is a small, hydrophilic,
nucleus-targeted peptide that could be exploited for cancer therapy. Future studies should explore the
molecular mechanisms underlying nuclear, GJA1-11k-regulated cell cycle progression and cell growth,
as well as its translation into a new therapy targeting tumor growth and progression. In this particular
study, we used an in vitro model with only HEK cells which have fast growth. In addition, we relied
on exogenous expression that can result in super-physiologic levels of transfected proteins. Finally,
HEK cells have limitations in microscopy that can be overcome with flatter cells. Future studies should
include multiple cell lines including cancer cell lines, as well as in vivo models.

Given the identified roles of GJA1-20k in channel trafficking [22,24], metabolism [25–27,41],
transcription [28], as well as in epithelial-mesenchymal transition [42], we were surprised in this study
that the dominant phenotype of GJA1-11k relates to yet another phenomenon, specifically inhibiting
cell cycle progression. The common denominator, we believe, is the affinity of the Cx43 C-terminus for
both microtubule [26] and actin [24] cytoskeletons. A microtubule-binding domain for Cx43 has been
identified in the proximal Cx43 C-terminus [43,44]. If actin is involved in GJA1-11k nuclear localization,
then the results of the current study would support early studies identifying an association between
Cx43 and actin [24,45] and, in general, help us understand that cytoskeletal interactions are the basis
for multiple fundamental properties of the internally translated isoforms of Cx43.
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Our focus on cell cycle regulation was based on a combination of the classic role of proteins
with intranuclear enrichment and prior reports that Cx43 involvement in cell-cycle regulation is not
easily explained by sarcolemmal localized ion channels. As the field explores the effects of Cx43’s
smaller isoforms, we expect the number of cellular phenomena associated with each isoform to grow
and we will identify crossover between the roles of different isoforms. For instance, in unpublished
studies, we observed that GJA1-11k can affect the transcription of GJA1 mRNA. Already, GJA1-20k is
associated with the transcriptional regulation of N-Cadherin [28]. Similarly, proteins that rearrange the
extranuclear cytoskeleton, such as GJA1-20k [24], may also affect the mechanics of cell proliferation.
We look forward to the next several years of discovering the roles of Cx43’s smaller isoforms.

Formation of smaller truncated isoforms by alternative translation can be a source of considerable
biologic diversity for any gene, and especially single coding exon genes such as Gja1 that are not able
to undergo splicing. Traditionally, alternative translation is considered a phenomenon that occurs
with development and evolutionary changes [46]. However, it has already been established that the
expression of GJA1-20k and other smaller isoforms increase with metabolic stress [25,27] or as a result
of mTOR and Mnk1/2 pathway inhibition. These pathways are involved in critical and dynamic cellular
processes, such as cell growth, proliferation, transcription, and survival [22,23], and occur in mature
cells on a much more acute time scale than during development and evolutionary change. Previous
findings have identified GJA1-20k as a protective stress response protein in terminally differentiated
cardiomyocytes [27]. Based on our results, GJA1-11k could also be a stress response protein, but its
upregulation could be a response to inhibit cell cycle progression.
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