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PPInS: a repository of protein-
protein interaction sitesbase
Vicky Kumar1, Suchismita Mahato1, Anjana Munshi2 & Mahesh Kulharia1

Protein-Protein Interaction Sitesbase (PPInS), a high-performance database of protein-protein 
interacting interfaces, is presented. The atomic level information of the molecular interaction 
happening amongst various protein chains in protein-protein complexes (as reported in the Protein 
Data Bank [PDB]) together with their evolutionary information in Structural Classification of Proteins 
(SCOPe release 2.06), is made available in PPInS. Total 32468 PDB files representing X-ray crystallized 
multimeric protein-protein complexes with structural resolution better than 2.5 Å had been shortlisted 
to demarcate the protein-protein interaction interfaces (PPIIs). A total of 111857 PPIIs with ~32.24 
million atomic contact pairs (ACPs) were generated and made available on a web server for on-site 
analysis and downloading purpose. All these PPIIs and protein-protein interacting patches (PPIPs) 
involved in them, were also analyzed in terms of a number of residues contributing in patch formation, 
their hydrophobic nature, amount of surface area they contributed in binding, and their homo and 
heterodimeric nature, to describe the diversity of information covered in PPInS. It was observed that 
42.37% of total PPIPs were made up of 6–20 interacting residues, 53.08% PPIPs had interface area 
≤1000 Å2 in PPII formation, 82.64% PPIPs were reported with hydrophobicity score of ≤10, and 73.26% 
PPIPs were homologous to each other with the sequence similarity score ranging from 75–100%. A 
subset “Non-Redundant Database (NRDB)” of the PPInS containing 2265 PPIIs, with over 1.8 million 
ACPs corresponding to the 1931 protein-protein complexes (PDBs), was also designed by removing 
structural redundancies at the level of SCOP superfamily (SCOP release 1.75). The web interface of 
the PPInS (http://www.cup.edu.in:99/ppins/home.php) offers an easy-to-navigate, intuitive and user-
friendly environment, and can be accessed by providing PDB ID, SCOP superfamily ID, and protein 
sequence.

Proteins are the biomolecular substance which are responsible for a large number of cellular processes like catal-
ysis of biochemical reactions, transportation of molecules, synthesis and repair of DNA molecules, etc. in living 
organisms. Considering their inability to perform in isolation, proteins interact with other molecules like pro-
tein, DNA, lipid, etc., and forms the supramolecular entities and carries out most of these biological function-
ing in living beings. Among all type of complexes that proteins form, protein-protein complexes have attracted 
the attention of a wide range of scientific community to decipher their underlying principles, role in the vari-
ous biological phenomenon, and applicability in therapeutic strategies. Consequently, a substantial amount of 
experimental data, attributed to the technological advancement, pertaining to the protein-protein interactions 
(PPIs) has been made available. Several attempts have been made by people to organize this PPI data. As a result, 
databases like 3D Interlogs1 (stores the evolutionary lineages of protein); comPPI2 (details specific subcellular 
locations of proteins); PINT3 (collection of thermodynamic parameters such as free energy change, enthalpy 
change, heat capacity change etc., upon binding) etc., have come up. Another approach has been to combine the 
experimentally gathered interaction data (generated by the application of high-throughput techniques) to identify 
the protein-protein complexes and databases like GRID4; DIP5; IntAct6; BIND7; MINT8; HPRD9; and STRING10 
store such information. These databases have also been combined to evolve a more participative approach, such 
as HitPredict11, with a multitude of protocols to quantitatively score the PPI. Some groups have also looked at the 
residue-based interactions, by employing a “distance dependent atom contact” definition, to look at the “set of 
interacting residues”. Databases like HotRegion12, JAIL13, SNAPPI-DB14, etc. have considered “interacting inter-
face residue set” as a more apt parameter for characterization of PPIs.
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Development of such databases has huge applications in designing computational approaches for PPI sites 
prediction. Information derived by analysing existing PPIs in terms of protein sequences, structural information, 
evolutionary conservation, binding-energy, etc., provides scientific facts that need be considered in formulating 
novel computational strategies. For example, patch analysis based approaches of Jones and Thornton15, Ofran and 
Rost16, and Murakami and Jones17 were designed by analysis the dataset of known proteins-protein complexes 
from structural perspectives. The approach given by Aytuna et al.18 was emphasized on the structure and sequence 
conservation based features of PPI sites retrieved from known protein complexes. Sequence profile of proteins 
was assessed by Zhou and Shan19 and Shen et al.20 for their ability to function as protein-protein interaction 
descriptor. “Weighted sparse representation” based classification and the concept of global encoding was studied 
in a protein sequence-oriented approach of Huang et al.21. Evolutionary information of known PPI sites was 
examined in conjunction with machine learning approaches like neural network22 and random forest23. Newer 
concepts in machine learning approaches viz. “relevance vector machine”24, “discriminative vector machine”25, 
and “rotation forest based classifier”26 were also introduced to get new perspective from the protein evolutionary 
information. In addition to these, hot spot residues-based27, knowledge-based28, and ensemble approaches29,30 
were also devised by examining the information derived from the known protein-protein interactions.

In this article, we are presenting the Protein-Protein Interaction Sitesbase (PPInS), a database with high-performance 
and one of the largest collection, to the best of our knowledge, of protein-protein interaction interfaces (PPIIs). Each 
PPII is linked to its cognate SCOP superfamily pair. PPInS is an advancement over all existing databases as it not only 
provides a clear demarcation of PPIIs but also gives information like number and type of residues (regarding interact-
ing, non-interacting and missing residues), SCOP superfamily of interacting patches, and the three-dimensional struc-
tural representation of complex under the study. It also covers a vast diversity of protein-protein interaction patches 
(PPIPs) in terms of a number of residues involved in PPIP formation, their hydrophobicity level, homo and heterodi-
meric nature of interacting PPIPs, and the amount of surface of the PPIPs devoted to PPII formation. A smaller subset 
of PPInS is also designed by removing all structural redundancies at the level of SCOP superfamily (SCOP release 1.75).

Designing of PPInS
Construction of the database of PPIIs: PPInS. From over 130 K structural files (PDBs31), around 81 K 
PDBs for which the information of structural classification was reported in SCOPe32 (version 2.06; released on 
27th Oct 2016), were processed. Only X-ray crystallized multimeric protein-protein complexes with structural 
resolution better than 2.5 Å were retained for this work. Further, to ensure that only experimentally validated pro-
tein structures were used, PDBs representing homology models, other than X-ray crystallography-based struc-
tures, nucleic acids and multi-model structures were discarded. At the end, we were left with 32468 PDBs (Fig. 1). 
The average resolution of retained protein-protein complexes was ~2 Å. For these 32468 PDBs, the interacting 
atoms between each unique pair of protein chains of each PDB were demarcated.

Two atoms belonging to two different protein chains of a PDB were considered to be in contact and demar-
cated as an atomic contact pair (ACP) if the intervening distance between them was less than the sum of their 
van der Waals radii plus 1 Å as tolerance factor (Fig. 2). Tolerance factor was incorporated to compensate for the 
structural aberrations by virtue of resolution and/or thermal fluctuations. A similar definition of interatomic 
atomic contact was earlier used by Conte et al.33, Sol and O’Meara34 (with a tolerance limit of 0.5 Å), and Kulharia 
et al.35. Another type of distance criteria for demarcating the PPI has been to use a sphere of fixed radius (generally 
5 or 6 Å)36,37 centered on the interacting atoms. Here we have used the atom specific distance criteria wherein the 
threshold value to determine the presence or absence of interaction is calculated by taking into account the type 
of atoms. The collection of ACPs between a pair of interacting protein chains was referred as “Protein-Protein 
Interaction Interface” (PPII). For the notational purpose, atoms from each protein chain involved in PPII for-
mation were collectively termed as a protein-protein interaction patch (PPIP). With these definitions, a total of 
111857 PPIIs, with around 32 million ACPs in them, were generated from the 32468 PDBs and given the name of 
Protein-Protein Interaction Sitesbase (PPInS).

Construction of a non-redundant subset of PPInS: NRDB. NRDB is a subset of PPInS. It was created 
by removing all structural redundancies at the level of SCOP superfamily. The manually curated SCOP38 version 

Figure 1. Protein-protein complexes covered in the creation of PPInS. A: Total PDBs, B: PDBs reported in 
SCOPe 2.06, C: PDBs covered in PPInS.
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1.75 was used which had structural classification data for 38221 PDBs. Using the same filtering approach as 
mentioned in designing of PPInS, 13797 PDBs were shortlisted for the construction of NRDB (Fig. 3). For these 
13797 PDBs, ACPs between each unique pair of protein chains of all the shortlisted PDBs were demarcated. In 
this version of PPIIs collections, PPIIs with more than 20 ACPs were considered only. There were 317 such PDBs 
that could not fulfil this criterion. Therefore, a total of 43509 PPIIs were identified with respect to 13480 PDBs. 
Further, to make this collection of 43509 PPIIs a non-redundant, a cognate “SCOP superfamily pair” (represent-
ing the SCOP superfamily of interacting chains in PPII) was assigned to each PPII. The redundancy was reduced 
at the structural level by selecting only one PPII (one with the maximum number of ACPs) for each SCOP super-
family pair as a part of NRDB. This was done to maximize the information content of NRDB. The NRDB thus 
formed contained a total of 2265 unique SSP-based PPIIs, demarcated from 1931 PDB files and representing 
43509 PPIIs and SCOP superfamily pairs.

PPInS Implementation
Web server for PPInS (http://www.cup.edu.in:99/ppins/home.php) was designed using php scripts and Apache 
web server. The complete overview of PPInS implementation is given in Fig. 4. Part I of the figure describe the 
process of PPII generation for a hypothetical ternary complex containing three protein chains (α, β, γ). The 
initial step requires separation of the ternary complex into its constituent binary components (say α::β and β::γ) 
followed by the identification of interacting amino acids from each of its constituent binary components to fetch 
the atomic details of the rectangle portion of Fig. 4(ii). The concept of ACP, given in Fig. 4(iii), was used identify 
the interacting atoms. The collection of obtained ACPs for each pair of protein chains is stored in the form of files 
(PPII files) containing the atomic details of proteins chains involved in interaction and the interatomic distance 
between the interacting atoms pairs Fig. 4(iv). All of the PPIIs were made a part of “PPII File Storage” to make 
them available for downloading purpose. The information derived from these PPIIs is used to create a local data-
base of PPIIs containing information like SCOP superfamily of the interacting protein chains, number of amino 
acids in each interacting chains and role of amino acids involved.

Part II of the figure describes the stepwise usage of PPInS. On receiving a suitable input from the user in the 
form of a four-letter alphanumeric PDB ID or a five-digit SCOP superfamily or protein sequence in fasta format. 
For a PDB ID or SCOP ID based input, PPInS retrieve the list of PPIIs available for the entered input from the 
local database. Subsequent to this, PPInS gives the option of downloading the retrieved PPIIs and their on-site 
analysis. The request from the user to download the PPIIs is served by providing the requested PPII files from the 

Figure 2. Definition of an atomic contact pair (ACP).

Figure 3. PDBs covered in the creation of NRDB. A: Total protein complexes in PDB, B: PDBs reported in 
SCOP 1.75, C: PDBs selected for PPII generation, D: PDBs for which PPIIs were generated, E: PDBs covered in 
NRDB.

http://www.cup.edu.in:99/ppins/home.php


www.nature.com/scientificreports/

4SCientifiC REPORTS |  (2018) 8:12453  | DOI:10.1038/s41598-018-30999-1

“PPII File Storage” (flat files stored in a computer system) in a downloadable format to the user. For on-site analy-
sis of PPIIs, information like cognate SCOP superfamily of the interacting protein chains in the PPIIs, number of 
amino acids in interacting chains and their role in PPII (in terms of interacting, non-interacting and missing or 
unknown), are fetched from the local database and displayed to the user. A feature to compare the query protein 
sequence of a given PPII against the database of protein sequences of PPInS, using BLAST39 algorithm, is also 
provided which allows the user to analyze the PPIIs in which similar kind of protein chain is playing the role of 
interacting partner. The three-dimensional view of the protein-protein complex under study is also provided 
using JSmol online viewer.

PPInS also provide for an additional utility, to identify close homologs for a given protein sequence that par-
ticipates in formations of PPIIs. To improve the speed for the homolog detection, all protein chains from the 
known three-dimensional complexes included in PPInS are clustered on the basis of their sequence similarity 
using CD-HIT40 algorithm. We have kept the threshold for sequence similarity as ≥90% to ensure only close 
homologs are clustered in one group. For each cluster, a cluster head (or cluster representative) is designated 
amongst the cluster members by CD-HIT in such a manner that the cognate cluster members have sequence 
similarity of ≥90% to the cluster head. In this way, a total of 13190 clusters were produced. The protein sequence 
entered by user is aligned with cluster heads of these 13190 clusters and cluster heads with ≥90% sequence sim-
ilarity are presented to the user. Such cluster heads, along with their cluster members, are seen participating as 
PPIPs in PPII formation, therefore, these clusters heads are provided to user in the forms of PPII for downloading 
purpose. Two case studies describing the usage of PPInS is also provided here.

Case Study 1: When a PDB ID is searched for PPIIs. Let us consider the PDB ID “150 L” (structural 
model for “Conservation of Solvent-Binding Sites in 10 Crystal Forms of T4 Lysozyme”) as an input. This file has 
a pentanary complex which can be deconvoluted as five binary protein-protein complexes viz. A_B_150 L.int, 
A_C_150 L.int, B_C_150L.int, B_D_150L.int, and C_D_150L.int, representing the PPIIs between chains “A&B”, 
“A&C”, “B&C”, “B&D” and “C&D”, respectively. The user has an option of downloading these PPIIs files selectively 
or collectively in zip format by clicking on the “Download” button. The user can also access more information on 
PPII by clicking on “More Info” button given next to each PPII, which includes:

Figure 4. Overview of PPInS.
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SCOP Superfamily. The SCOP superfamily identity of both the protein chains involved in PPII is displayed 
to the user. For example, in the current instance of PDB “150L”, each of its protein chains participating in its 
five PPIIs belong to SCOP superfamily ID 53955. It is also possible for a protein chain to have multiple SCOP 
superfamily identities i.e. when one domain of protein belongs to one SCOP superfamily while a different SCOP 
superfamily is reported for another domain.

Amino acid sequences. The amino acid sequences of the chains involved in a PPII is also displayed to the user. 
The role of each amino acid in the formation of PPII is depicted by a coloring scheme. The amino acids are 
marked red, blue and pink representing the “interacting”, “non-interacting” and “missing or unknown amino 
acids”, respectively.

Sequence similarity of a protein chain. The user has an option to identify proteins similar in sequence (hence also 
in function) to a given protein. This feature is a method for the user to look for the homologous protein-protein 
complex interface. Each protein chain is compared for sequence similarity, using BLAST, against the comprehen-
sive database of interacting protein chains from which the PPInS has been derived. The results are displayed in 
a format of <chain one>_<chain two>_<PDB code>. For example “A_C_150L” specifies that “A” chain of the 
PPII between protein chains A and C of 150L is similar to the queried protein chain. The extent of sequence sim-
ilarity for these two protein chains (i.e., queried and target protein chain from PPInS), is also mentioned as a part 
of the BLAST result. The PPIIs A_C_150L and C_A_150L both are same, and only the former exists in the PPInS.

3D-view of protein complex. The three-dimensional view of protein structure using the JSmol online viewer.

Case Study 2: When a SCOP Superfamily is searched for PPIIs. On inputting SCOP superfamily 
“63707” to the PPInS, a list of 10 PPIIs will be displayed with an option to download them. Each of these 10 PPIIs 
has at least one interacting protein chain which belongs to SCOP superfamily “63707”. All the functions that are 
discussed for the retrieved PPIIs in case study 1 are also applicable here too.

Diversity of information contained in PPInS
Number of residues involved in PPIPs. The PPIPs in PPInS are very diverse in terms of number of inter-
acting residues they contained. The number of interacting residues in PPIPs varied from as low as a solitary 
residue to as high as 300. Overall around 4.66 million residues had contributed in the formation of 223714 PPIPs 
for 111857 protein-protein complexes. The largest PPIP had 310 interacting residues and it belonged to homod-
imeric structure of Pyruvate Ferredoxin oxidoreductase from Desulfovibrio africanus. This was not surprising as 
homodimer generally tend to have larger interacting interface due to symmetrical structural arrangement around 
interaction zone. The analysis of PPInS revealed that around 19.39% PPIPs were very short ones and comprised 
of 1–5 amino acids, 42.37% PPIPs consisted of 6–20 interacting residues, 25.91% PPIPs were reported with 21–40 
interacting residues, while only 7.91% PPIPs were made up of 41–60 interacting residues (Fig. 5). Hence, more 
than 95% of total PPIPs comprised of less than 60 interacting residues and less than 1% PPIPs had more than 100 
interacting residues. The PPIPs with interacting 1–5 residues can probably also result from the crystallization 
conditions, therefore, there is clear literature support that such complexes should be treated with care.

Solvent accessible surface area (SASA) of PPIPs. The extent of SASA of apo-protein structures 
shielded from solvent due to the complex formation is an important indicator of the inter-surface interaction 
affinity. In PPInS a very wide range of SASA precluded from making contacts with the solvent was observed. The 
SASA of interacting residues in PPIPs varied from very low to very high (approx. 17000 Å2). It was observed that 
53.08% of PPIPs had less than 1000 Å2 SASA, 27.53% PPIPs had 1001–2000 Å2, while 12.03% PPIPs were reported 
with 2001–3000 Å2 SASA (Fig. 6). Only 5% of PPIPs had SASA in the range of 4000–17000 Å2. The largest PPIP 
had a SASA of 17409 Å2 and it belonged to homodimeric structure of Pyruvate Ferredoxin oxidoreductase from 
Desulfovibrio africanus.

Figure 5. Involvement of amino acids in PPIPs.
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Hydrophobic nature of PPIPs. The binding energy of protein-protein interaction have a significant contri-
bution of the hydrophobic effect. We determined the diversity in terms of hydrophobicity score of PPIIs covered 
in PPInS. The hydrophobic index given by Hessa et al.41 in which amino acid residues are scored on a linear scale 
from −0.6 (for isoleucine) to 3.49 (for aspartic acid) was used for this purpose. A PPIP with the less hydrophobic 
score on this scale implies its high hydrophobicity. Observations made from this analysis underlined the hydro-
phobic nature of PPI sites as it was observed that 82.64% PPIPs were reported with hydrophobicity score of less 
than 10 and 14.2% PPIPs were reported with hydrophobicity score in the range of 11–20 (Fig. 7). Only 3.16% 
PPIPs had hydrophobicity score ranging from 21 to the maximum value reported (i.e. 114.41). The most hydro-
phobic PPIPs were reported in PPII between the protein chains A and B of complex PDB 2B97. The hydrophobic-
ity score reported for these PPIPs was −1.38 and −1.24 for protein chain A and B, respectively.

Homo and heterodimeric nature of PPIPs in PPIIs. The sequence similarity between the interacting 
PPIPs of PPInS had revealed that 73.26% of total PPIPs were homologous to each other with the sequence similarity 
score ranging from 75% to the absolute similarity. This is in line with the earlier reports in the literature which state 
that homodimers are more prevalent in nature. Only 1.34% of PPIPs were reported with 50–75% sequence similarity 
score, the percentage of the dataset with sequence similarity in the range of 25–50 was 11.15% and the correspond-
ing figure for the sequence similarity between 0–25 was 14.22% (Fig. 8). This is particularly interesting because this 
could demonstrate that evolutionary mechanism that drives the surface interaction/molecular recognition. A muta-
tion in case of homodimeric proteins is more likely to destabilize the complex rather than strengthening it.

It is also likely that initial events of mutations would only weaken and probably not abolish the homodimeric 
protein-protein complex and only when the mutations either accumulate beyond a certain threshold (thus chang-
ing the very basis of interaction) or when a single mutation is catastrophic in itself for the structural integrity 
of the complex does the protein-protein interaction partners stop interacting. This is analogous to the trend 
observed in Fig. 8 depicting that there were around 57% PPIIs with 100% sequence similarity but as the sequence 
similarity decreased (due to mutations) even by a small fraction, the proteins’ ability to bind with suitable part-
ners decreased drastically to 7% PPIIs with 99% homologous sequences and kept on decreasing thereon (Fig. 9). 
This demonstrates that a small perturbation in the sequence (thereby the structure) reducing the sequence simi-
larity around 80% minimizes the interaction potential. On the other hand, when the sequence similarity further 
reduces (say around 75%) the heterodimeric complex formation is favoured.

Figure 6. Protein surface area contributed in PPIPs.

Figure 7. Hydrophobic nature of PPIPs.
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Discussion
Proteins are the most important molecular machines whose functional involves a network of dynamic interaction 
with different molecular surfaces. Understanding these interaction networks help in getting a clearer picture of 
the cellular processes. A number of experimental and theoretical approaches have been implemented by various 
research groups for the study of the PPIs. These have resulted in the generation of the very wide amount of data. In 
this paper, a novel approach to organizing the interaction data is presented in the form of PPInS. Such databases 
are very useful for the researchers for mining the available information in a logical, systematic and comprehensive 
fashion. PPInS looks at the protein-protein interaction at the atomic level interaction of the protein surfaces and 
categorizes the interactions based on the SCOP superfamily (a measure of evolutionary conservation of struc-
ture). PPInS has been designed to solely from the experimentally determined structures. To keep the confidence 
level in the complex structures and to minimize the experimental errors we have restricted the PPInS to include 
only those structures that have resolution better than 2.5 Å. The interacting partners of protein-protein complexes 
were demarcated by incorporating the concept of interatomic distances and van der Waals radii of atoms from 
the interacting proteins of the known protein-protein complex. The PPIIs demarcated in this work has been used 
in examining the PPIPs with respect to hydrophobicity, solvent accessible surface area, and the number of amino 
acids contributing in the interacting patch. The homo and heterodimeric nature of the PPIPs in PPIIs was also 
determined. From which it was observed that 42.37% of total PPIPs were made up of 6–20 interacting residues, 
53.08% PPIPs had contributed ≤1000 Å2 their protein surface in PPII formation, 82.64% PPIPs were reported 
with hydrophobicity score ≤10, and 73.26% PPIPs were homologous to each other with the sequence similarity 
score ranging from 75–100%.

PPInS offers the maximum output in terms of the sheer size and the vast coverage of protein-protein com-
plexes categorized on the evolutionary structural conservation of the interacting proteins. The additional 
information provided in the context of interacting proteins like graphical representation of the interacting, 
non-interacting and missing amino acids, SCOP superfamily of interacting proteins, total number of amino acids 
in interacting proteins, functionality to search for similar protein sequences in PPInS, and three-dimensional 
structural representation of the protein-protein complex under observation, makes the PPInS more informative.

An unbiased and “proportionally representative” comprehensive dataset is critical for the development of 
novel PPI prediction tools. In the recent past, vast gamut of methods have been developed for predicting the 
interacting interface residues, the affinity of protein-protein interaction and conformational changes associated 
with the binding process. These methods use sequence, protein structure information or more fundamental 
descriptors for physicochemical characteristics. Such information has been used to generate knowledge-defined 

Figure 8. Homo and heterodimeric nature of interacting PPIPs in PPIIs.

Figure 9. Zoomed-in view of complex destabilization on mutation.
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prediction methods (based on semantics and syntactic of protein sequence or structure) or for training the 
machine learning methods based on protein sequences recently proposed by You et al.42 and Taherzadah et al.43, 
structure based approaches of Moal et al.44 and Xue et al.45, energy based approaches of Lise et al.46, evolutionary 
conservation based methods of Kotlyar et al.47, Li et al.48, Huang et al.49, position-specific scoring matrix based 
approaches for identification of self-interacting proteins by An et al.50, and machine learning based approach 
of Guo et al.51. The non-redundant database of PPIIs (NRDB) is created to facilitate the developments of such 
prediction tools. The NRDB is peculiar in having very stringent redundancy control which makes it suited for 
assessing the various PPI sites parameters (as mentioned above) on a larger scale to draw patterns about the PPI 
sites and interacting partners.

Data availability. PPInS can be accessed from www.cup.edu.in:99/ppins/home.php.
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