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Objective. To clarify the function of miRNA-19b-3p in accelerating myocardial ischemia-reperfusion injury- (MIRI-) induced
cardiomyocyte apoptosis by downregulating gene of phosphate and tension homology deleted on chromsome ten (PTEN), thus
influencing the progression of acute myocardial infarction. Materials and Methods. miRNA-19b-3p and PTEN levels in HCM
cells undergoing hypoxia/reoxygenation (H/R) were determined. Meanwhile, activities of myocardium injury markers [lactate
dehydrogenase (LDH), malondialdehyde; malonic dialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase
(GSH-PX)] in H/R-induced HCM cells were tested. Through dual-luciferase reporter gene assay, the binding between miRNA-
19b-3p and PTEN was verified. Regulatory effects of miRNA-19b-3p and PTEN on apoptotic rate and apoptosis-associated
gene expressions (proapoptotic protein Bcl-2 associated X protein (Bax), antiapoptotic protein B-cell lymphoma-2 (Bcl-2), and
cytochrome C) in H/R-induced human cardiac myocytes (HCM) cells were examined. Results. miRNA-19b-3p was
upregulated, while PTEN was downregulated in H/R-induced HCM cells. Knockdown of miRNA-19b-3p decreased activities of
LDH, MDA, and GSH-PX, but increased SOD level in H/R-induced HCM cells. The binding between miRNA-19b-3p and
PTEN was confirmed. More importantly, knockdown of miRNA-19b-3p reduced apoptotic rate, downregulated proapoptosis
gene expressions (Bax and cytochrome C), and upregulated antiapoptosis gene expression (Bcl-2), which were reversed by
silence of PTEN. Conclusions. miRNA-19b-3p is upregulated in HCM cells undergoing hypoxia and reoxygenation, which
accelerates MIRI-induced cardiomyocyte apoptosis through downregulating PTEN.

1. Introduction MIRI and develop effective therapeutic targets for clinical treat-
ment of AMIL

Acute myocardial infarction (AMI) is an important cause of miRNAs are a class of noncoding DNAs expressed in

death and disability worldwide [1-3]. Timely myocardial reper-
fusion is the most effective intervention for alleviating ischemia-
induced myocardium injury. However, reperfusion itself
induces myocardial cell death, that is, myocardial ischemia-
reperfusion injury (MIRI) [4-6]. Apoptosis is a process of pro-
grammed cell death influencing MIRI and cardiomyocyte loss
during cardiac remodeling at post-AMI [7]. A growing number
of evidences have suggested that cardiomyocyte apoptosis
occurs primarily in the surviving myocardium following ische-
mia [8]. It is necessary to uncover the pathogenic mechanism of

eukaryotic cells, ranging in length from 20 to 25 nucleotides
[9-11]. Mature miRNAs are processed by primary tran-
scripts through various nucleases, which are then assembled
into an RNA-induced silencing complex (RISC). Subse-
quently, RISC binds 3" UTR of target mRNAs through com-
plementary base pairing, thus degrading mRNAs or
inhibiting their translation [12, 13]. miRNAs are extensively
distributed in different types of cells and human diseases,
such as ischemic cardiomyopathy [14], cardiac remodeling
[15], heart failure [16], and arrhythmia [17]. In recent years,
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FIGURE 1: miRNA-19b-3p was upregulated in H/R-induced cells. (a) miRNA-19b-3p level in HCM cells undergoing normoxic or H/R
induction. (b) Transfection efficacy of miRNA-19b-3p inhibitor. (c)-(f) Activities of LDH (c), MDA (d), GSH-PX (e), and SOD (f) in H/
R-induced HCM cells or those transfected with miRNA-19b-3p inhibitor.

critical functions of miRNAs in MIRI have been identified
[18-20]. These miRNAs could be utilized as therapeutic tar-
gets for clinical treatment of AML

miRNA-19b-3p is a member of the miR-17-92 cluster
located on the human chromatin 13. Biological functions
of miRNA-19b-3p have been discovered in multiple types
of tumors [21-25]. In a recent study, exosomal miRNA-
19b-3p of tubular epithelial cells promotes M1 macrophage
activation in kidney injury [26]. Further, circulating miR-
19a-3p and miR-19b-3p characterize the human aging pro-
cess and their isomiRs associate with healthy status at
extreme ages [27]. However, the role of miR-19b-3p in
AMI was unknown. In this paper, regulatory effects of
miRNA-19b-3p on AMI-induced cardiomyocyte apoptosis
were determined.

2. Materials and Methods

2.1. Cell Culture and H/R Induction. Human cardiac myo-
cytes (HCM) provided by American Type Culture Collec-
tion (ATCC, Manassas, VA, USA) were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma,
Louis, MO, USA) containing 10% fetal bovine serum (FBS,
Invitrogen, Carlsbad, CA, USA). HCM cells were cultured
in a humidified incubator containing 5% CO, and 95% N,
for 4h. Later, reoxygenation was conducted by cell culture
in DMEM containing 10% glycerol in a humidified incuba-
tor containing 5% CO, and 95% air for 3 h. After normoxic
culture overnight, cells were harvested for functional exper-
iments. Normoxic-preconditioning HCM cells were har-
vested as controls.
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F1GURE 2: Knockdown of miRNA-19b-3p alleviated cardiomyocyte apoptosis. HCM cells were cultured in H/R environment and transfected
either with miRNA-19b-3p inhibitor or not. (a) Viability. (b) Apoptotic rate. (c) The mRNA levels of Bax, Bcl-2, and cytochrome C. (d) The

protein levels of Bax, Bcl-2, and cytochrome C.

2.2. Transfection. Transfection vectors were provided by
GeneChem, (Shanghai, China). Cell transfection was con-
ducted using Lipofectamine TM 2000 (Invitrogen, Carlsbad,
CA, USA). Six hours later, transfection efficacy was verified.
Transfected cells were collected for H/R exposure.

2.3. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR). TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) was
applied for isolating cellular RNA. Complementary deoxyri-
bonucleic acids (cDNAs) was obtained by reverse transcrip-
tion of 2 ug RNA using cDNA synthesis kit (TaKaRa, Tokyo,
Japan) and amplified on the MiniOpticon qPCR determina-
tion system (Bio-Rad, Hercules, CA, USA). Relative level
was calculated using the 27°4“T method. miRNA-19b-3p,
F: 5'-AGUUUUGCAUGGAUUUGCAC-3' and R: 5'-
UUUGCAUGGAUUUGCACAUU-3"; PTEN, F: 5'-TGGT
GAGGTTTGATCCGCATA-3" and R: 5'-CCCAGTCAG
AGGCGCTATG-3'; Bax, F: 5'-CACAACTCAGCGCAAA
CATT-3' and R: 5'-ACAGCCATCTCTCTCCATGC-3';
Bcl-2, F: 5'-GAAGCACAGATGGTTGATGG-3" and R: 5'
-CAGCCTCACAAGGTTCCAAT-3'; cytochrome C, F: 5'-

TAAATATGAGGGTGTCGC-3' and R: 5'-AAGAATAGT
TCCGTCCTG-3'.

2.4. Western Blot. Radio immunoprecipitation assay (RIPA)
was applied for isolating cellular protein. Protein sample was
quantified by bicinchoninic acid (BCA) method and under-
went electrophoresis (Beyotime, Shanghai, China). Protein
was transferred on a polyvinylidene fluoride (PVDF) mem-
branes (Roche, Basel, Switzerland) and blocked in phosphate
buffer saline (PBS) containing 5% skim milk for 2h. Subse-
quently, membranes were reacted with primary antibodies
at 4°C overnight and secondary antibodies for 2h. Band
exposure was achieved by enhanced chemiluminescence
(ECL) and analyzed by Image Software (NIH, Bethesda,
MD, USA).

2.5. Dual-Luciferase Reporter Gene Assay. Wild-type PTEN
(NM_000314.8) 3'untranslated region (3'UTR) was ampli-
fied and inserted into the pGL3 vector. Predicted binding
sequences between PTEN 3'UTR and miRNA-19b-3p were
mutated using the QuickChange Site-Directed Mutagenesis
Kit (Stratagene, Heidelberg, Germany). After cotransfection
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FiGure 3: PTEN was the direct target of miRNA-19b-3p. (a) Potential binding sequences in the promoter regions of PTEN and miRNA-
19b-3p. (b) Luciferase activity in HCM cells cotransfected with miRNA-19b-3p mimics/NC and WT-PTEN/MT-PTEN. (c) PTEN
expression in H/R-induced HCM cells or those transfected with miRNA-19b-3p inhibitor.

with miRNA-19b-3p mimics/NC and WT-PTEN/MT-
PTEN for 48, relative luciferase activity was determined.

2.6. Cell Counting Kit-8 (CCK-8). Cells were inoculated in a
96-well plate at 80% confluence. Viability was determined at
the appointed time points using CCK-8 kit (Dojindo Labo-
ratories, Kumamoto, Japan). Absorbance at 450nm was
recorded for plotting the viability curve.

2.7. Determination of Levels of LDH, MDA, SOD, and GSH-
PX. Relative commercial kits were obtained from Sangon
Biotech, (Shandong, China). Transfected cells were har-
vested for determining levels of myocardial injury markers
based on the manufacturer’s recommendations.

2.8. Flow Cytometry. Cells were digested in 0.25% trypsin,
centrifuged, and washed with PBS for three times. Cells were
dual-stained with Annexin-V-FITC (fluorescein isothiocya-
nate) and subjected to flow cytometry (FACSCalibur; BD
Biosciences, Detroit, M1, USA) for measuring apoptotic rate.

2.9. Statistical Analysis. Statistical Product and Service Solu-
tions (SPSS) 20.0 (SPSS, Chicago, IL, USA) was used for data
analyses. Data were expressed as mean + standard deviation.
The Student t-test was applied for analyzing differences
between the two groups.p < 0.05 was considered statistically
significant.

3. Results

3.1. miRNA-19b-3p Was Upregulated in H/R-Induced Cells.
H/R was conducted in HCM cells to mimic the in vitro envi-
ronment of MIRI. Compared with HCM cells under normo-
xic conditions, H/R induction markedly upregulated
miRNA-19b-3p in HCM cells (Figure 1(a)). Subsequently,
transfection of miRNA-19b-3p inhibitor markedly downreg-
ulated miRNA-19b-3p level in H/R-induced HCM cells, pre-
senting an effective transfection efficacy (Figure 1(b)).
Myocardial injury markers were determined here. As the
data revealed, knockdown of miRNA-19b-3p decreased
activities of LDH, MDA, and GSH-PX, but increased SOD
level in H/R-induced HCM cells (Figures 1(c)-1(f)). It is
demonstrated that miRNA-19b-3p was involved in MIRI.

3.2. Knockdown of miRNA-19b-3p Alleviated Cardiomyocyte
Apoptosis. In H/R-induced HCM cells, transfection of
miRNA-19b-3p  inhibitor accelerated cell viability
(Figure 2(a)). Nevertheless, apoptotic rate decreased after
knockdown of miRNA-19b-3p in H/R-induced HCM cells
(Figure 2(b)). Expression levels of apoptosis-associated
genes, Bax, Bcl-2, and cytochrome C were determined. Both
mRNA and protein levels of Bax and cytochrome C were
downregulated, and Bcl-2 was upregulated in H/R-induced
HCM cells transfected with miRNA-19b-3p inhibitor
(Figures 2(c) and 2(d)).
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FIGURE 4: miRNA-19b-3p accelerated cardiomyocyte apoptosis by downregulating PTEN. (a) PTEN level in HCM cells undergoing
normoxic or H/R induction. HCM cells were cultured in H/R environment and transfected with miRNA-19b-3p inhibitor or miRNA-
19b-3p inhibitor + si-PTEN. (b) Viability. (c) Apoptotic rate. (d) The mRNA levels of Bax, Bcl-2, and cytochrome C.

3.3. PTEN Was the Direct Target of miRNA-19b-3p. To further
uncover the mechanism of miRNA-19b-3p in influencing
MIRI, we found potential binding sequences in the promoter
regions of miRNA-19b-3p and PTEN as predicted in Targets-
can (Figure 3(a)). Dual-luciferase reporter gene assay demon-
strated that the overexpression of miRNA-19b-3p quenched
luciferase activity in wild-type PTEN vector, while it did not
affect mutant-type PTEN vector (Figure 3(b)). In addition,
PTEN level was markedly upregulated in H/R-induced HCM
cells transfected with miRNA-19b-3p inhibitor (Figure 3(c)).
It is concluded that PTEN was the direct target of miRNA-
19b-3p and negatively regulated by it.

3.4. miRNA-19b-3p Accelerated Cardiomyocyte Apoptosis by
Downregulating PTEN. Compared with HCM cells cultured in
the normoxic environment, PTEN was markedly downregu-
lated in H/R-induced cells (Figure 4(a)). It is speculated that

PTEN was involved in cardiomyocyte apoptosis influenced by
miRNA-19b-3p. CCK-8 assay showed that the enhanced viabil-
ity in H/R-induced HCM cells with miRNA-19b-3p knock-
down was partially reversed by cotransfection of si-PTEN
(Figure 4(b)). Besides, decreased apoptotic rate after knock-
down of miRNA-19b-3p was elevated by transfection of si-
PTEN (Figure 4(c)). Similarly, regulatory effects of miRNA-
19b-3p on apoptosis-associated gene expressions were reversed
by silence of PTEN (Figure 4(d)). Therefore, PTEN was respon-
sible for miRNA-19b-3p-mediated cardiomyocyte apoptosis
following MIRL

4. Discussion

Currently, thrombolysis, bypass surgery, and other inter-
ventions have been applied for reperfusion of blood flow
and protection of ischemic myocardium [28].



Nevertheless, the sudden reperfusion of blood flow would
result in secondary cardiovascular injury, that is, MIRI.
MIRI results in cardiomyocyte apoptosis and necrosis,
and even cardiac arrest [29]. Cell apoptosis is a vital
event during the prognosis of MI. Inhibition of cardio-
myocyte apoptosis and reduction of infarcted myocar-
dium area could effectively alleviate the prognosis of
AMI [30, 31].

Accumulating evidences have uncovered the role of
miRNAs in regulating reperfusion in ischemic myocardium.
In this paper, miRNA-19b-3p was upregulated in HCM cells
under H/R precondition. Silence of miRNA-19b-3p mark-
edly reduced activities of LDH, MDA, and GSH-PX and ele-
vated SOD level in H/R-induced HCM cells. In addition,
knockdown of miRNA-19b-3p resulted in viability elevation
and apoptosis suppression in HCM cells. Our findings dem-
onstrated the involvement of miRNA-19b-3p in MIRI-
induced pathological changes. Furthermore, apoptosis-
related genes were determined in H/R-induced HCM cells.
Previous studies proposed that Bcl-2/Bax ratio is the key
indicator reflecting the apoptotic level [32, 33]. Bcl-2 protein
locates in the outer mitochondrial membrane, exerting an
antiapoptosis function. Under normal circumstance, Bax is
expressed in the cytoplasm. Once AMI occurs, apoptosis-
related signaling triggers the translocation of cytoplasmic
Bax into mitochondria, thus initiating the endogenous apo-
ptosis. Here, silence of miRNA-19b-3p downregulated
mRNA and protein levels of Bax and cytochrome C, and
upregulated Bcl-2.

PTEN is a lipoprotein phosphatase that negatively regu-
lates the PI3K/Akt pathway through PIP3 dephosphoryla-
tion and Akt translocation on the cell membrane [34, 35].
A recent study illustrated the crucial role of PTEN in
mitochondrial-dependent apoptosis [36].

PTEN is considered to be an important pathway
involved in MI. Previous studies have demonstrated that
the upregulated miR-21 during MI affects collagen produc-
tion by interfering with VEGF-mediated PTEN pathway
[37]. In previous studies, miRNAs were reported to regu-
lating target genes by binding to the 3'UTR area as a
sponge thus to inhibit the translation of mRNA [38, 39].
In this paper, PTEN was confirmed to be the direct target
of miRNA-19b-3p and negatively regulated by it. Besides,
PTEN was lowly expressed in H/R-induced HCM cells.
To elucidate the involvement of PTEN in HCM cell
behaviors influenced by miRNA-19b-3p, gain-of-function
experiments were conducted. Notably, knockdown of
PTEN reversed regulatory effects of miRNA-19b-3p on
apoptotic rate and apoptosis-associated gene expressions
in H/R-induced HCM cells. As a result, PTEN was
responsible for miRNA-19b-3p to influence MIRI-
induced cardiomyocyte apoptosis.

5. Conclusions
miRNA-19b-3p is upregulated in HCM cells undergoing

hypoxia and reoxygenation, which accelerates cardiomyo-
cyte apoptosis through downregulating PTEN.
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