
REVIEW ARTICLE
published: 12 September 2014

doi: 10.3389/fimmu.2014.00432

T cell–macrophage interactions and granuloma formation
in vasculitis
Marc Hilhorst 1,Tsuyoshi Shirai 1, Gerald Berry 2, Jörg J. Goronzy 1 and Cornelia M. Weyand 1*
1 Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
2 Department of Pathology, Stanford University, Stanford, CA, USA

Edited by:
Augusto Vaglio, University Hospital of
Parma, Italy

Reviewed by:
Augusto Vaglio, University Hospital of
Parma, Italy
F. David Carmona, Instituto de
Parasitología y Biomedicina López
Neyra CSIC, Spain

*Correspondence:
Cornelia M. Weyand, Division of
Immunology and Rheumatology,
School of Medicine Stanford
University, CCSR Building, Room
2225, Mail Code 5166, 269 Campus
Drive West, Stanford, CA
94305-5166, USA
e-mail: cweyand@stanford.edu

Granuloma formation, bringing into close proximity highly activated macrophages and T
cells, is a typical event in inflammatory blood vessel diseases, and is noted in the name of
several of the vasculitides. It is not known whether specific properties of the microenviron-
ment in the blood vessel wall or the immediate surroundings of blood vessels contribute to
granuloma formation and, in some cases, generation of multinucleated giant cells. Gran-
ulomas provide a specialized niche to optimize macrophage–T cell interactions, strongly
activating both cell types. This is mirrored by the intensity of the systemic inflammation
encountered in patients with vasculitis, often presenting with malaise, weight loss, fever,
and strongly upregulated acute phase responses. As a sophisticated and highly organized
structure, granulomas can serve as an ideal site to induce differentiation and maturation of
T cells.The granulomas possibly seed aberrantTh1 andTh17 cells into the circulation, which
are known to be the main pathogenic cells in vasculitis. Through the induction of mem-
ory T cells, aberrant innate immune responses can imprint the host immune system for
decades to come and promote chronicity of the disease process. Improved understanding
of T cell–macrophage interactions will redefine pathogenic models in the vasculitides and
provide new avenues for immunomodulatory therapy.
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INTRODUCTION
Protecting the host from infection and maintaining tissue integrity
relies on two highly complex and evolutionary distinguished sys-
tems, the innate and adaptive immune system. The two arms of
the immune system have developed a sophisticated and efficient
crosstalk to defend the host. Monocytes that come into contact
with penetrating pathogens differentiate into specialized antigen-
presenting cells (APC), such as macrophages and dendritic cells
(DC) (1). After phagocytosis and degradation of the pathogen,
proteins are presented to specialized cells of the adaptive immune
system, specifically T cells. Interactions between macrophages and
T cells are critical in the communication between innate and adap-
tive immunity. Errors in this interaction may result in immun-
odeficiency, failure to destroy invading pathogens, or damage to
host–tissues in the form of autoimmunity. Although the princi-
pal function of macrophages was recognized a long time ago (2),
the precise mechanisms of macrophage physiology are only now
beginning to be unraveled.

Chronic (aberrant) macrophage–T cell interaction leads to
the formation of organized lymphoid organ structures, such as
granulomas. Granulomas are typically formed during infection,
especially when the host has difficulties to eliminate the infectious
organism. Classic examples are granulomas induced by Mycobac-
terium tuberculosis infection, often considered a mechanism to
contain the infectious organism (3). Granuloma formation is
equally important in non-infectious disease states, such as inflam-
matory blood vessel disease. In giant-cell arteritis (GCA; formerly
known as temporal arteritis), granulomas are an almost obligatory

part of the disease process. In granulomatosis with polyangi-
itis (GPA; formerly known as Wegener’s granulomatosis), gran-
uloma formation is captured in the disease name. An important
issue in granulomatous diseases is whether the highly activated
macrophages building the granulomatous structures have primar-
ily a protective function or whether they are key drivers of tissue
damage and disease propagation (4).

In the current review, we compare and contrast the interaction
of macrophages and/or DC with T cells in the context of gran-
uloma formation and vasculitis and focus on GCA and GPA as
quintessential model systems of how the interface between innate
and adaptive immunity contributes to disease pathogenesis.

MACROPHAGES AND DENDRITIC CELLS INFLUENCE T CELLS
Monocytes relocate to inflammatory lesions upon sensing a
chemokine gradient (5) and can differentiate into distinct types
of APC on site. A discussion of the similarities and differences
between DC and macrophages is beyond the scope of this review
(6). Macrophage subtypes form two main groups: M1 or clas-
sically activated macrophages (CAM) and M2 or alternatively
activated macrophages (AAM). M1 generally specialize in ampli-
fying inflammatory reactions and produce high levels of TNFα,
IL-6, and IL-1β. In contrast, M2 are primarily active in tissue repair
and their product profile includes IL-10, TGF-β, and growth fac-
tors. An active TGF-β pathway results in suppression of inducible
nitric oxide synthase (iNOS) expression and NO secretion in
macrophages, deviating the cells away from M1 differentiation
(7). M1 have been described as “fighting” or “soldier” cells and M2

www.frontiersin.org September 2014 | Volume 5 | Article 432 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00432/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00432/abstract
http://www.frontiersin.org/people/u/181382
http://www.frontiersin.org/people/u/88967
http://www.frontiersin.org/people/u/181672
http://www.frontiersin.org/people/u/90710
http://www.frontiersin.org/people/u/85090
mailto:cweyand@stanford.edu
http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive


Hilhorst et al. T cell–macrophage interactions

as “fixing” or “repair” cells (8, 9). The M2 or AAM subtype is not as
well defined and much debated (4). It is plausible that monocytes
can differentiate into macrophage subtypes positioned somewhere
on the M1–M2 or CAM–AAM continuum and are endowed with
varying adaptability and plasticity (8, 10).

ANTIGEN RECOGNITION AND PRESENTATION
Macrophages recognize pathogens through so-called pathogen
associated molecular patterns, which are detected through Toll-
like receptors (TLR) (11, 12), thus distinguishing between self
and non-self. As critical recognition structures, TLR enable the
build-up of a defensive immune response, they also participate in
shaping immune responses underlying autoimmunity (13, 14). To
orchestrate tissue cleanup and repair, macrophages must be able
to recognize and remove modified host proteins and lipids, e.g.,
oxidized proteins and lipids. Such products are often described as
danger-associated molecular patterns and require competent TLR
as recognition structures (15). Oxidation of host proteins, lipids,
and nucleic acids results from the action of reactive oxygen species
(ROS), often derived from activated macrophages themselves. The
latter process has been implicated in the development and prop-
agation of atherosclerosis (16). Importantly, T cells also express
TLR, but it is currently unknown what the precise role of these
receptors is in modulating T cell function (14, 17).

MACROPHAGE-INDUCED POLARIZATION OF T CELL
DIFFERENTIATION
Macrophages are principal regulators of immunity by process-
ing and presenting antigens to T cells (18), which are charged
with distinguishing self from non-self (19). Antigen recognition
by T cells involves the highly polymorphic major histocompati-
bility complex (MHC) molecules classes I and II (20, 21), which
selectively bind antigen peptides and present them on the surface
of APC. While T cell receptors bind to HLA–peptide complexes,
costimulatory molecules such as CD28 are co-ligated, a mecha-
nism that is mandatory for a more powerful induction of T cell
activation (22–24). After entering the T cell activation cascade, T
cells differentiate into distinct functional lineages. Some of them
become effector cells; others specialize as memory T cells and
position themselves in lymphoid storage sites (25). The fate of
individual T cells is ultimately shaped by the microenvironment,
composed of cytokines, chemokines, and tissue-specific signals
(26). The exact mechanism by which macrophages induce activa-
tion, proliferation, and differentiation of T cells is incompletely
understood (27). Antigen dose, the type of APC and the contact
between APC and T cell are all important variables (28). It has been
proposed that DC are more powerful partners of naïve T cells and
preferentially interact with T cells in organized lymphoid tissue.
Conversely, macrophages function as APC for naïve and memory
T cells, encountering them in peripheral tissue lesions (29). DC
are thought to skew CD4+ cells toward Th1 differentiation in an
IL-12 dependent manner (30). Other studies have demonstrated
a similar effect of macrophages on CD4+ cells (31). DC that have
been activated by inflammatory mediators can stimulate Th1 pro-
liferation in vitro, but these same DC could not do so in vivo,
possibly due to lacking pathogen contact, resulting in diminished
IL-12p40 production (32).

Importantly, one study found inflammatory DC to be more
potent inducers of Th17 cells when compared to inflammatory
macrophages. The authors concluded that this difference was
reflective of differential IL-23 production, which was observed in
inflammatory DC but not in macrophages (33). In contrast, other
DC subsets have been implicated in inducing regulatory T cells by
virtue of producing TGF-β or expressing PD-L1 (34). Suppression
of T cell function and proliferation may also result from the local
action of IL-10 and TGF-β, typically secreted by M2 macrophages.
Gut-residing macrophages have been implicated in inducing reg-
ulatory T cells, whereas DC were found to induce Th17 cells by
secreting IL-6 combined with TGF-β and possibly IL-23 (35).

MACROPHAGE-INDUCED INHIBITION OF T CELLS
Generally, macrophages inhibit the proliferation of T cells via cell–
cell contact. Abundantly studied inhibitory mechanisms in T cells
are the programed death (PD1) and cytotoxic T lymphocyte anti-
gen (CTLA) pathways. PD1 and CTLA-4 are found on T cells and
mediate inhibitory signals when engaged by their respective lig-
ands expressed on the surface of interacting macrophages (36).
Malfunctioning of these inhibitory signals, e.g., due to polymor-
phisms, increases susceptibility for autoimmunity (37–39). Both
DC and macrophages express membrane-integrated ligands for
PD-1 and CTLA-4 (24). Blockade of PD-L1 on DC is a powerful
mechanism to enhance T cell proliferation and cytokine release
(34, 40). Besides polymorphisms in PD-1 and CTLA-4, a series
of gene polymorphisms, including genes relevant for cytoplas-
mic signaling pathways, have been associated with susceptibility
for autoimmunity (41, 42). As minor variations in threshold set-
tings of cytoplasmic signaling cascades have the potential to bias
immune interactions profoundly, it is likely that they impact
macrophage–T cell interactions both by accelerating as well as
downregulating immune responses.

Another concept has been that resting macrophages pref-
erentially dampen immune responses. Accordingly, resting
macrophages have been reported to induce allogeneic T cell anergy,
partly by enhancing regulatory T cells. In one study, T cells prolif-
erated when co-cultured with immature DC, became anergic when
in a second co-culture with macrophages and proliferated when
co-cultured with mature DC in a third co-culture, finally produc-
ing IL-2 and IFN-γ. Immature and mature DC both expressed high
levels of MHC class II (HLA-DR), but macrophages did not. The
costimulatory molecules CD80 and CD86 were present at higher
density on mature DC than on immature DC or on macrophages
(43). These studies support the notion that APC functions of
macrophages and DC are fundamentally distinct.

In some infectious settings, specifically in filarial and yeast
infections, the pathogen undermines protective immune responses
by inducing macrophages and DC that are able to suppress T cell
activation (44, 45). This mechanism is dependent on the produc-
tion of TGF-β and/or IL-10 in combination with a lack of IL-6.
Also, co-culturing allogeneic naïve CD4+ T cells with immature
DC has been reported to lead to the expansion of IL-10 produc-
ing T cells, whereas mature DC promote the proliferation of Th1
cells (46).

Under hypoxic conditions, macrophages were found to sup-
press the proliferation of T cells via hypoxia-inducible factor
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1α (HIF-1α). More HIF-1α knockout macrophages were neces-
sary to suppress T cells as compared to wild-type macrophages
(47). HIF-1α may enhance the production of nitric oxide
species, which directly suppress T cell proliferation. In con-
trast, under hypoxic conditions, which enrich the environment
for macrophage-derived oxidative species, T cells preferentially
differentiated into Th17 cells. HIF-1α-dependent proteosomal
degradation of the transcription factor Foxp3 and enhance-
ment of IL-17 expression via RORγt and Stat3 have been pro-
posed as the underlying mechanism (48). The HIF-1α dependent
processes have been shown to play an important role in rheuma-
toid arthritis and may be of importance in other autoimmune
diseases (49).

T CELLS REGULATE THE MATURATION OF MACROPHAGES
AND DENDRITIC CELLS
The differentiation of monocytes into macrophages is a rapid
process controlled by cytokines in the environment and cell–cell
interactions (10). Thus, neighboring cells can effectively regu-
late the induction, functional differentiation, and the survival of
macrophages (1, 50). It is believed that the polarization of mono-
cytes into M1 or M2 can occur in the absence of T cells (51).
However, generally it is assumed that Th1 cells skew monocytes
toward M1 whereas Th2 cells skew monocytes toward M2 (4).
The lineage commitment of M1 and M2 cells has been associ-
ated with the induction of distinct arginine metabolical path-
ways (52). How T cells regulate this process, however, is not
understood.

IL-17 was shown to induce macrophages to produce high levels
of IL-6, IL-1β, and TNFα, as well as lower levels of IL-10, IL-12,
and PGE2 (53), suggesting that Th17 cells bias monocytes toward
an M1-like phenotype. Another study demonstrated that pretreat-
ment of monocytes with IFN-γ (in addition to IL-10 and gluco-
corticoids) prevented the differentiation of monocytes into M2c

cells. Instead, IFN-γ-treated monocytes had a higher expression
of Fas and were apoptosis susceptible. Interestingly, monocytes
treated with IL-17 (in addition to IL-10 and glucocorticoids) dif-
ferentiated into M2c and had enhanced phagocytic capacity (54).
In essence, Th17 cells may regulate phagocytic effector functions.
In vivo, however, the source of IL-17 can be heterogeneous since
neutrophils, DC, and macrophages are all capable to produce
IL-17, although in low amounts (55, 56).

In mice, CD4+CD25+ regulatory T cells exert a potent sup-
pressive effect on splenic APC, which cannot be overcome by
preactivation (57). In humans, CD4+CD25+Foxp3+ regulatory
T cells were found to direct monocytes toward M2; characterized
by high surface expression of CD206 and CD163 but low levels
of HLA-DR (58). Also, human CD4+CD25+ T cells decrease the
production of TNFα and IL-6 and increase the production of IL-
10 in co-cultured monocytes (59). Murine CD4+CD25−Foxp3−

cells can temper the production of proinflammatory cytokines
in macrophages via close cell–cell contact. Biologic relevance
of this mechanism is suggested by the observation that in the
absence of CD4+ T cells, innate immune responses are so vig-
orous that they cause a cytokine storm and death (60). A more
recent murine study has demonstrated that both memory and
effector CD4+ T cells decrease IL-1β production in bone marrow-
derived macrophages without affecting TNFα or IL-6 production,
possibly by selective inhibition of the inflammasomes NLRP3 and
NLRP1 (61).

In summary, selected macrophages and DC can shape T cell
differentiation through the secretion of IL-1β, IL-6, and TNFα,
whereas other macrophages and DC can suppress T cells via cell–
cell contact and the secretion of IL-10 and TGF-β (Table 1).
Vice versa, Th1 and Th17 activate macrophages via IFN-γ and
IL-17, respectively. Regulatory T cells can suppress the activity of
macrophages by secreting IL-10, thus driving them toward the M2
phenotype (Table 2).

Table 1 | Summary of macrophage products in relation to possible effects onT cells.

Producer Giant-cell

arteritis

Granulomatosis

with polyangiitis

Effect

IL-1β M1 ++ +++ Proinflammatory

IL-6 M1 ++ + Proinflammatory

IL-8 M1 +/− + Proinflammatory

IL-18 M1/M2 unknown + Neutrophil attractant and primer

TNFα M1 + + Proinflammatory; granuloma formation

IL-23 M1 + + Th17 sustaining

CCL2 M1 + + Monocyte attractant

PGE2 M1 unknown + Phagocytosis

IL-15 M1/M2 unknown + T cell and NK-cell activation; vitamin D pathway

Vitamin D M1/M2 unknown + Anti-inflammatory

Osteopontin M2 unknown ++ Monocyte and neutrophil chemoattractant

VEGF M2 ++ + Neoangiogenesis

PDGF M2 ++ + Tissue remodeling and repair

TGF-β M2 + ++ Anti-inflammatory; Th17 inducing

IL-10 M2 + + Anti-inflammatory; Treg inducing

Macrophage products involved in vasculitis.
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Table 2 | Summary ofT cell products in relation to possible effects on macrophages.

Producer Giant-cell arteritis Granulomatosis

with polyangiitis

Effect

IL-17 Th17 ++ ++ Proinflammatory; M1 supporting

IL-21 Tfh; Th17 ++ + Proinflammatory

IL-22 Th22 unknown unknown Proinflammatory

GM-CSF Th17 + unknown M1 supporting

IFN-γ Th1 ++ ++ Proinflammatory; M1 supporting; drives multinucleation

IL-27 Th1 + unknown Proinflammatory

IL-32 Th1 + + Proinflammatory

IL-10 Treg +/− + Anti-inflammatory; M2 supporting

T cell products involved in vasculitis and granulomatous microenvironments.

GRANULOMA FORMATION
Designed to protect the host from infection and cancer, the adap-
tive immune system displays complex microarchitectures to opti-
mize immune responses. One of these lymphoid microstructures
has been named granuloma and typically consists of a sphere
of highly activated macrophages, surrounded by a shell, i.e., a
peripheral layer of T lymphocytes (Figure 1) (62). The current par-
adigm holds that antigens that are difficult-to-eliminate are prone
to elicit granuloma formation. Persistent particulate substances,
such as silica, beryllium, or zirconium, but also suture material,
are often considered as typical triggers of non-infectious granu-
lomas (63). Difficult-to-eliminate antigens eventually induce the
palisading of monocytes/macrophages, which depend on activat-
ing signals from other cell populations to form the sophisticated
structure of a granuloma. Lymphocytes, especially CD4+ T cells,
and DC consistently participate in granulomatous infiltrates, but
neutrophils, eosinophils, and B cells have also been described (64).
Cells are attracted to granulomas by chemokines, cytokines such
as interleukins and complement breakdown products. Over time
granulomas mature, resulting in the formation of multinucleated
giant-cells and epithelioid cells. The precise composition of gran-
ulomas may differ according to the inciting agent or pathogen, but
the overall architecture of granulomas is usually maintained.

Much of the knowledge on granulomas originates from study-
ing the model system of M. tuberculosis infection (3), which
remains one of the most prevalent and lethal infectious diseases
on the planet (65). It is believed that tuberculous granuloma for-
mation reflects a strategy of the immune system to encapsulate the
infection and prevent spreading throughout the body. Tuberculous
granulomas have been a rich source of information on the bi-
directional interaction between macrophages and T cells (66, 67).
One of the hallmark events on the side of macrophages and DC are
cell–cell fusions, resulting in multinucleated giant cells. Why and
under what circumstances these phagocytes fuse is incompletely
understood. Culturing monocytes with IFN-γ in vitro reliably
results in multinucleation, emphasizing the role of Th1 cells in the
formation of giant cells (68). Th1 cells are critical drivers in the
M1 differentiation of macrophages and M1 cells have been impli-
cated in the formation and/or maintenance of granulomas (69).
One study has suggested that DC fusion takes place under the influ-
ence of autocrine IL-17 and exogenous IFN-γ (56), proposing that

FIGURE 1 | Schematic drawing of the gross architecture of a
granuloma with macrophages, dendritic cells, and multinucleate
giant-cells forming the core of the sphere, surrounded by a shell of
lymphocytes. By clustering innate and adaptive immune cells, the
granuloma has great potential to induce and perpetuate immune responses,
but is equally powerful in causing damage to surrounding tissues.

the concerted action of several cytokines is necessary to promote
the optimal granuloma function. In sarcoidosis, believed to be a
Th1-dependent disease, granulomas are more inflammatory than
suture granulomas or fungal granulomas, based on significantly
higher production of IL-6, CCL2, IFN-γ, and Nox2 (70).

The role of TNFα in the formation of granulomas is debated.
In tuberculosis, some studies have shown that TNFα induces the
formation of granulomas (71) and that TNFα deficient mice have
a more severe M. tuberculosis infection, possibly due to deficient
granuloma formation and thus inability to contain the infection
(72). Administering anti-TNFα medication in humans, however,
does not appear to suppress granulomatous inflammation (73) or
cause disassembly of existing granulomas more effectively than
corticosteroids alone (74).

Increased numbers of IL-17 positive cells have been found in
granulomas in patients with sarcoidosis (75), suggesting that Th17
cells may participate in the assembly of sterile granulomas. Alter-
natively, the cytokine milieu of granulomas may provide ideal
conditions to polarize peripheral T cells toward the Th17 lineage.
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Over time, granulomas can become necrotic or fibrotic. It is
unknown which factors regulate the progression of the granulo-
matous reaction. Differences in the architecture, in the tissue dis-
tribution, and in the persistence of granulomas strongly support
the notion that granuloma formation is distinct in different dis-
ease states. As a common rule, granulomatous infiltrates reflect an
intense immune response, associated with marked inflammation
and potential of tissue damage.

EFFEROCYTOSIS
Besides being a site of concentrated cytokine production, gran-
ulomas have a critical function in debris removal, including the
removal of apoptotic cells; a process named efferocytosis (76).
It is conceivable that the inefficiency of efferocytosis could lead
to the persistence of the granulomatous reaction and this could
be particularly important in disease states characterized by sterile
granulomas. The notion of ineffective phagocytosis in granuloma-
tous disease was suggested in the past (77). Impaired efferocytosis
has been described in chronic granulomatous disease, typically
associated with a hyperinflammatory state (78). The deficiency
of efferocytosis has been related to a defect in phosphatidylserine
(PS) signaling and has been reversed by treating macrophages with
IL-4, essentially skewing them toward M2.

GRANULOMA FORMATION AND HYPERVITAMINOSIS D
Patients with granulomatous disease can present with hypercal-
cemia, considered a result of hypervitaminosis D. This excess
vitamin D originates from the granulomas, most likely from the
macrophages within. In sarcoidosis, macrophages can produce vit-
amin D and this production is increased upon stimulation with
IFN-γ (79). In line with these findings, a TLR-mediated micro-
bicidal pathway has been reported to upregulate the vitamin D
receptor (VDR). The enzyme converting 25-hydroxyvitamin D
into the active form of vitamin D, 1,25-hydroxyvitamin D, known
as CYP27b1, is also upregulated upon activation of the above
mentioned microbicidal pathway (80). In tuberculosis, IFN-γ can
increase the production of autocrine IL-15, upregulating CYP27b1
and expression of the VDR. Upon inhibiting the VDR on mono-
cytes, a reduction in autophagy as measured by LC3-positive
vesicles was noted. The authors, therefore, suggest that enhanced
production of vitamin D and the upregulation of the VDR in
monocytes after IFN-γ stimulation result in maturation of the
phagosome (81). It is unknown whether the vitamin D pathway
is impaired or hyperactive in patients with sterile granulomatous
disease.

Interestingly, in GPA and in sarcoidosis variations of disease
prevalence patterns according to hours of sunlight per year (and
thus dermal vitamin D production) have been discussed. Also, less
exposure to sunlight and/or low levels of vitamin D increases the
risk for developing GPA or a disease relapse (82, 83).

GIANT-CELL ARTERITIS
Giant-cell arteritis is a medium- to large-vessel vasculitis almost
exclusively diagnosed in patients older than 50 years (84). In
brief, presenting symptoms are such of an intense acute phase
response; e.g., fever, malaise, weight loss, and laboratory abnor-
malities of systemic inflammation combined with manifestations

FIGURE 2 | Histological section showing a granulomatous infiltrate in
the temporal artery of a 77-year-old patient with giant-cell arteritis. The
granulomatous reaction is localized at the media-intima border and includes
fragments of the lamina elastica externa. Lymphocytes are surrounding
highly activated macrophages and giant cells (hematoxylin and eosin
staining).

of tissue ischemia. It mainly affects extracranial and upper extrem-
ity branches of the aorta (e.g., temporal arteries, axillary arteries)
and the aorta itself (85). The gold standard for diagnosis remains
the biopsy of the temporal artery (86). Typical histopathologi-
cal findings are granulomatous lesions and/or lymphomonocytic
infiltrations in the vessel-wall layers, often containing multinucle-
ated giant cells (87) (Figure 2). In contrast to tuberculous granulo-
mas and granulomas found in Crohn’s disease [the latter assumed
to result from a host–commensal bacteria homeostasis gone awry
(88, 89)], granulomatous lesions in GCA have not been connected
to an infectious agent (90). Reported associations between GCA
and pre-existing infection with parvovirus B19, Chlamydia tra-
chomatis and Mycoplasma pneumonia have raised the possibility of
an infectious trigger, but subsequent studies could not always con-
firm these associations (91). Nevertheless, there is strong evidence
for antigen-driven chronic T cell responses (92), particularly Th1
and Th17 responses (93). The induction of Th1 cells in GCA may
originate from excessive IL-12 production, which has been found
increased in GCA lesions during active disease and during remis-
sion (94). The source of IL-12 in GCA remains obscure, but DC
have recently been described to produce high levels of IL-12 (95).

Dendritic cells and macrophages are obligatory components of
the granulomatous infiltrates in the wall of GCA-affected arter-
ies (96). DC are thought to act as gate-keepers of the vasculitis
by inducing T cell activation, and display a phenotype of strong
immune-stimulatory APC (92). It has been demonstrated that
vessel-wall residing DC are specifically activated via TLR4 or
TLR5 (97), enabling them to activate p38 MAPK, and activate
downstream TNFα and IL-1β (98).

Accordingly, serum IL-6 and IL-1β levels have been found
strongly increased in patients with active GCA (74, 99) and
associated with disease activity (100, 101). While the precise cel-
lular source of the excess IL-6 and IL-1β has not been determined,
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highly activated macrophages and DC in the vasculitic lesions
emerge as the likely producers (102). There is evidence that the
granulomatous infiltrates in GCA contribute to IL-6 secretion
(103), together with production of TGF-β, another well-known
product of activated macrophages (104). IL-6 levels in GCA
patients decrease upon treatment with corticosteroids, but remain
higher in some patients when compared to healthy controls,
indicating a more chronic course of disease (99).

Recently, IL-33 was reported to be increased in vessel-wall
lesions of patients with GCA (105). IL-33 is secreted by endothelial
cells when under stress or becoming apoptotic. This stress possibly
results from high levels of circulating IL-6. Importantly, IL-33 has
been found to favor M2 polarization of macrophages, implicating
this macrophage subset in the pathogenesis of GCA (106).

Giant-cell arteritis is considered an antigen-dependent disease
in which Th1 cytokines dominate and Th2 cytokines are gener-
ally absent. Moreover, during early and untreated disease, Th1
and Th17 cells co-exist in the vasculitic lesions (93) (Figure 2).
The granulomatous inflammation may present the platform that
allows differentiation of entering naïve T cells toward Th1 and
Th17 under the influence of macrophage and DC products
(Table 1). By seeding Th1 and Th17 cells into the periphery,
granulomas could have a major impact on the composition of
the overall immune system. Since differentiated memory cells are
long-lived cells, even a temporary granulomatous reaction could
permanently remodel the immune system and have long-term
implications for the host. During corticosteroid treatment, Th17
cells decrease, but Th1 cells appear to persist (93). In line with
these findings, increased serum levels of IL-12, IL-17, IL-21, IL-23,
IL-27, IL-32, and IFN-γ have been observed in patients with active
GCA (74, 107). Granulomas may represent an important source of
IL-17, with elevated protein levels and mRNA observed within the
granulomatous vessel-wall infiltrates (108, 109). It is important to
consider that the overall frequencies of Th17 cells are low, outnum-
bered by Th1 cells by a factor of 10 or higher. This may be partic-
ularly relevant during the chronic phase of GCA, when persistent
inflammation relies on Th1 cells and their major product, IFN-γ.
Other Th1 products produced in the inflamed vessel wall include
IL-27 and IL-32. Both have been reported to induce M1 cells (107).

Since the differentiation of T cells into distinct lineages results
from the exposure of non-committed T cells to antigen plus polar-
izing cytokine environment, it is highly likely that macrophages
and DC residing in the vessel wall ultimately shape vasculito-
genic T cell responses (Figure 3). Differentiation of Th17 cells
depends on the combined action of IL-6, TGF-β, and IL-23 (110,
111). Recent data have given rise to the concept that Th17 cells
are plastic and, dependent on environmental signals, can be redi-
rected to acquire regulatory T cell (Treg) functions (112). There
is some evidence that Tregs may be underrepresented in GCA
patients, perhaps explaining the inability of affected patients to
clear granulomatous lesions (109).

Granulocyte-macrophage colony-stimulating factor (GM-
CSF) is distinctly elevated in the serum of patients with GCA.
Terrier et al. have reported that GM-CSF is essential for the
production of IL-6 and IL-23 by DC; thus indirectly promoting the
generation of Th17 cells (113). DC in GM-CSF−/− mice produce
lower levels of IL-6, resulting in deficient proliferation of T cells

in general and reduced Th17 differentiation. More recently, it has
been reported that Th17 cells produce GM-CSF when stimulated
with IL-23 and that this production is upregulated by IL-1β (114).

Given the central role of granulomatous infiltrates in GCA,
disrupting granuloma formation should be a valuable therapeu-
tic target. Surprisingly, anti-TNF therapy has failed to reduce
steroid requirements or prevent disease flares in GCA patients
when combined with corticosteroids (115).

With the knowledge of macrophages and DC forming the
basis of granuloma formation, inhibiting these cells directly may
prove beneficial in treating GCA; bearing in mind, however, the
risk of infectious complications associated with a deficient innate
immune system. As mentioned earlier, TLR play an important role
in the activation of APC in infectious and in sterile inflammatory
settings. TLR may, therefore, represent a therapeutic target to treat
sterile granulomatous inflammation by inhibiting granuloma for-
mation and reducing tissue damage (116). Other receptors and
APC markers are being studied for their suitability in new thera-
peutic interventions. Targeting CD14 with anti-CD14 antibodies
has been attempted in septic models, but not in autoimmune set-
tings (117). In murine sepsis, blocking the innate immune system
results in less inflammation, less intense cytokine storms, and a
higher survival rate.

GRANULOMATOSIS WITH POLYANGIITIS
Small-vessel vasculitides associated with the production of autoan-
tibodies reactive to proteinase-3 (PR3) or myeloperoxidase (MPO)
are collectively called anti-neutrophil cytoplasmic antibodies
(ANCA)-associated vasculitides (AAV). The group of AAV encom-
passes GPA, microscopic polyangiitis, and eosinophilic GPA (118).
The pathogenesis of these vasculitides is incompletely under-
stood, but great progress has been made in diagnosis and therapy
of these autoimmune diseases. Yearly incidence rates are esti-
mated at 20 cases per million individuals (119). A high mortality
and (co)morbidity unfortunately persists despite improvement
of therapy and knowledge of the disease process (120–122). In
GPA, granulomas are typically found in the ear, nose, and throat
region, in the lungs, periglomerularly in the kidneys, and more
rarely in other organs (123) (Figure 4). The autoantigens rec-
ognized by the autoantibodies in AAV are intracellular enzymes
produced by neutrophils and monocytes. In both cell types, PR3
and MPO are expressed on the cell membrane in low levels in
healthy controls and in aberrantly high levels in AAV patients,
especially during active disease (124, 125). Over 75% of GPA
patients are PR3-ANCA positive with the remainder being either
MPO-ANCA positive or ANCA-negative, especially in patients of
Caucasian descent (126). Interestingly, when monocytes differ-
entiate into macrophages they lose expression of PR3 and MPO
on their cell membrane. Thus, monocytes can be activated by
ANCA (127), whereas mature macrophages cannot (128), placing
antibody-dependent disease mechanisms early into the pathogenic
immune response (Figure 5).

The neutrophil, playing a central role in the pathogenesis of
GPA, degranulates once ANCA bind to surface PR3 or MPO
(129). Neutrophils then become apoptotic and are cleared by
macrophages. While dying, neutrophils excrete so-called neu-
trophil extracellular traps (NETs), physiologically meant to “trap”
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FIGURE 3 | Schematic summary of the pathogenic pathways implicated
in granulomatous lesions in giant-cell arteritis. The upper panel represents
pathogenic events in GCA. All immune recognition events and tissue damage
occur within the vessel wall, not the perivascular tissue. Wall-resident DC,
so-called vasDC, coordinate the recruitment and the differentiation of
macrophages and T cells. IL-12 is instrumental in biasing T cells toward the Th1
lineage; IL-6, TGF-β, and IL-23 provide signals for Th17 differentiation.
Dependent on their positioning in the vessel-wall monocytes commit to
distinct functional profiles; e.g., metalloproteinases production, release of
ROS, secretion of cytokines. Treg are underrepresented, partially due to
inhibitory effects from IFN-γ. The lower panel shows the typical localization of
granulomatous infiltrates on the adventitia side of the vessel wall. Monocytes
(Mo) enter these lesions via the vasa vasorum and mature in the lesions
under the influence of specific microenvironments. Different M1 cells are
presumed to influence Th0 cells into Th1 and Th17 cells via cell–cell contact

and the secretion of cytokines. Activated macrophages and DC may fuse and
form multinucleate giant cells, a hallmark of GCA. The granulomatous infiltrate
is a highly inflammatory microenvironment, which promotes the
differentiation of Th0 to Th1 and Th17, which are then seeded into the
circulation. Due to their localization, granulomatous infiltrates in GCA
influence vascular smooth muscle cells (VSMCs) and myofibroblasts. The
latter expand in number, migrate and result in concentric media hypertrophy.
Also, the external lamina elastica disintegrates as a result of damage from
ROS and matrix metalloproteases (MMPs). Although M1 are assumed the
most frequent in granulomatous infiltrates, M2 cells have been proposed as a
counter-mechanism and implicated in supporting tissue repair. Vascular
endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF)
have been described in the vasculitic lesions of GCA and networks of
neoangiogenic microvessels typically accompany the process of intimal
hyperplasia (167, 168).
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FIGURE 4 | Histological section of a granulomatous lesion in the lung
of a 56-year-old patient with granulomatosis with polyangiitis. The
core of the granuloma consists of multinucleate giant cells, macrophages,
and neutrophils and is encircled by a rim of lymphocytes (hematoxylin and
eosin staining).

pathogens in a network of decondensed chromatin, MPO, PR3,
and other enzymes, but causing damage in the case of GPA by
releasing more autoantigen into the granulomatous lesion (130).
The clearance of apoptotic neutrophils by macrophages has been
termed efferocytosis (see above) and is associated with secretion
of a variety of cytokines and chemokines, including TNFα and
prostaglandin E2 (PGE2) (131). Strongly activated macrophages
have been localized within and around glomeruli affected by pauci-
immune necrotizing crescentic glomerulonephritis, the pathogno-
monic lesion of AAV (132). These macrophages have been found
to produce IL-18, thus attracting more neutrophils to the granulo-
matous inflammation (133). Such, activated macrophages express
high levels of HLA class II molecules, enabling them to act as highly
efficient APC (132). Of the leukocytes infiltrating the glomeruli
and the tubulointerstitium, macrophages are the most prevalent,
followed by granulocytes (134), differentiating GPA from GCA, in
which granulocytes essentially do not participate. In renal biop-
sies from patients with active GPA, DC, and macrophages are
localized in glomeruli and in periglomerular infiltrates, whereas
DC and macrophages are absent from normal renal tissue. DC
and T cells appear to interact within the periglomerular infiltrates
(135), consistent with antigen recognition events orchestrating the
tissue-damaging immune responses.

Moderately elevated levels of serum IL-1β and IL-6 have been
reported in GPA patients during active disease, in line with persis-
tent activation of macrophages in the tissue lesions (136–138).
IL-1β and IL-6 are produced by M1 (138), but also by dam-
aged endothelial cells (139). Serum levels of IL-1β, TNFα, and
sIL-2R have been correlated with the presence of corresponding
mRNA in tissue lesions, suggesting that mononuclear cells in vas-
culitic lesions are the origin of these proinflammatory mediators
(140). In a mouse model of small-vessel vasculitis, IL-1β pro-
duced by monocytes has been associated with glomerulonephritis

and blocking the IL-1β receptor with anakinra has resulted in a
decrease of cellular crescents and hematuria (141).

The enzyme PR3 may play a central role in granuloma forma-
tion since it was found to be capable of cleaving IL-32, thereby
enhancing its activity. IL-32 is produced by Th1 cells and its
active form results in macrophage activation, leading to TNFα and
IL-8 production (142). In addition, PR3 can cleave the protease-
activated receptor 2 located on the cell surface of macrophages,
leading to downstream inflammation, particularly IL-18, CXCL2,
and IL-8 (142, 143). IL-18 is a known neutrophil attractant
(Figure 5).

In search for the mechanisms through which autoantibodies
mediate pathology in GPA, PR3-ANCA have been shown to induce
upregulation of TLR2, 3, 4, 7, and 9, as well as NOD-1 and NOD-
2 (144). Nucleotide-binding oligomerization domain-containing
protein 2 (NOD-2) is an intracellular pattern-recognition mole-
cule enabling macrophages to recognize bacterial molecules that
contain muramyl dipeptide (MDP). In contrast to Crohn’s dis-
ease, where mutations in NOD2 have been implicated as disease
risk factors (145), no such mutations were found in GPA patients
(146). Interestingly, however, another study showed an association
between mutations in the TLR9 gene and PR3-ANCA positivity
as opposed to MPO-ANCA positivity (147). In mice, ligands for
TLR2 and TLR9 have both been implicated in kicking off autoim-
munity. Notably, ligands for TLR2 have led to an expansion of
Th17 cells, whereas ligands for TLR9 preferentially facilitate the
expansion of Th1 cells (148). A possible role of TLR2 ligands
in the pathogenesis of GPA is supportive of an involvement of
Staphylococcus aureus in the development (83) as well as the risk
for relapse in GPA (149), as S. aureus is a known ligand for TLR2
(150). In support of this notion, monocytes from patients with
GPA have been found to express higher levels of TLR2 on the
cell surface (151). Genetic factors are likely to be associated with
the process of granuloma formation: these factors remain difficult
to establish. One study found an association between the PTPN22
R620W polymorphism and the presence of granulomatous lesions
(especially in the ENT region) specifically in patients with GPA, as
opposed to patients with MPA or EGPA (152).

A macrophage product previously associated with granu-
loma formation in tuberculosis and silicosis is osteopontin
(153). Interestingly, osteopontin is elevated in patients with
active GPA (154) and has been detected in crescentic lesions
in glomeruli (155). Osteopontin production has been associated
with macrophage activation and it has been proposed that this
monokine functions as a monocyte chemoattractant, securing the
influx of fresh monocytes into the granulomatous lesions. Impor-
tantly, osteopontin synthesis is stimulated by active vitamin D, the
latter, as mentioned above, a signifying product of active granu-
lomas (156). There is evidence that osteopontin may play a role
in TLR4-mediated IL-10 production in T cells, which suppress
macrophages (157), delineating a negative feedback loop via which
T cells can minimize granuloma-associated tissue damage.

Considering the destructive consequences of granuloma for-
mation in GPA, it would be advantageous to treat GPA patients
with therapies inhibiting this process. Studies on the use of anti-
TNFα treatment in GPA patients have suggested that it may have a
place in induction therapy (158), but patients remained at a higher
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FIGURE 5 | Schematic summary of the pathogenic pathways
implicated in granuloma formation in granulomatosis with
polyangiitis. The upper panel represents the pathogenesis of
granulomatosis with polyangiitis (GPA). Upon priming neutrophils bring
to their surface high levels of proteinase-3 (PR3) and myeloperoxidase
(MPO), the autoantigens recognized by ANCA. The priming process is
believed to be mediated by TNFα. TNFα production may be induced by a
variety of triggers; e.g., S. aureus, silica, etc. Anti-PR3 or anti-MPO
antibodies are then able to bind these enzymes on the cell surface,
causing neutrophils to degranulate, bind to endothelial cells, enter the
perivascular tissue, and release ROS; thereby damaging the vessel wall.
In the tissue, neutrophils releases so-called neutrophil extracellular traps
(NETs), which are networks of fibers and DNA to trap pathogens. Many
of the highly activated neutrophils become apoptotic and are then
phagocytosed by resident M2 macrophages, a process that has been
named efferocytosis and that may be deficient in GPA. During
efferocytosis, macrophages release TGF-β, IL-8, and CCL2. Monocytes
may also be activated by circulating ANCA, enhancing their chemotactic
responsiveness and enabling them to participate in granuloma formation.

The lower panel represents the formation of a sterile granuloma in
extravascular tissue. Monocytes and CD4+ cells enter the granuloma
following a gradient of chemokines and cytokines; a process sufficient to
transform monocytes into macrophages. Commitment to the M1 or M2
lineage is dependent on the specific cytokine environment. Neutrophils
and eosinophils are commonly found in granulomas in GPA. Also, B cells
have been reported in the surroundings of granulomas, where they may
undergo further maturation. Multinucleate giant cells are present within
the granulomas, resulting from the fusion of either macrophages or
dendritic cells. The organized arrangement of the granuloma provides an
ideal platform for macrophage–T cell interaction. CD4+ cells coming into
contact with IL-6 and TGF-β producing M1 cells are skewed toward the
Th17 lineage. M1 also secrete IL-23; sustaining the Th17 population. In
turn, Th17 cells can secrete granulocyte and GM-CSF in addition to IL-17
and IL-22, thus stabilizing M1 differentiation. However, M2 cells are
equally represented in granulomas and secrete IL-10 and TGF-β. M2 cells
are a source of vascular endothelial growth factor (VEGF) and support the
outgrowth of microvessels, critically important as the granuloma grows
in size.
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risk for relapse (159). Depletion of B cells by anti-CD20 antibod-
ies provides effective immunosuppression in patients with GPA
(160). Whether this therapeutic approach functions by depressing
autoantibody-dependent mechanisms or whether B cells provide
other disease relevant functions, such as cytokine production and
antigen presentation, remains speculative. It is conceivable that
B cells are critically involved in toning the immune system and
that their depletion impairs innate as well as adaptive immunity.
Directly targeting macrophages may hold promise in immunosup-
pressing patients with GPA, although loss of macrophage function
may further weaken their ability to mount protective immunity,
especially against microbial pathogens.

FUTURE DIRECTIONS
It is currently unknown whether macrophages trapped in granu-
lomas can be easily assigned to a functional lineage, e.g., M1 and
M2, or whether residence in a granuloma directs macrophages
into a separate differentiation program. Circulating cytokines in
granulomatous disease favors the concept that the majority of
macrophages may be M1. However, M2 have been localized in
granulomatous lesions. This may simply be a negative feedback
mechanism to temper inflammation in order to prevent excessive
tissue damage. Indeed, one study found both M1 and M2 in the
vessel lesions in GCA patients (105). A distinguishing feature of
granulomas is the high cell turnover, giving rise to the need to clear
apoptotic short-lived cells, such as neutrophils and macrophages.
Effective removal of apoptotic bodies relies on the process of effe-
rocytosis, again placing macrophages at a center stage. The current
paradigm suggests that mainly M2 are responsible for effective
efferocytosis. The intactness of these mechanisms in granuloma-
tous vasculitis is unknown, but it could be hypothesized that a
major defect lies in the inability of the patients to turn down M1
macrophage activation and bring to bear M2 macrophages.

Interestingly, GCA and GPA are distinct diseases affecting dif-
ferent sizes of blood vessels, but they are both characterized by
granulomatous lesions. The granulomatous infiltrates in GCA are
predominantly located in the vessel wall, where monocytes arrive
via the vasa vasorum (87). In contrast, the granulomatous lesions
in GPA are more often extravascular and, in the case of renal
involvement, periglomerular (161). The classic granuloma with
palisading as described by Godman and Churg in 1954 (162), can
be found in GPA but not in GCA. The overall architecture of
granulomas, characterized by an inner core of macrophages and
DC surrounded by T cells, however, is present in both vasculi-
tides. Importantly, the cellular composition of GCA- and GPA-
associated granulomas seems to be different. Due to the intramural
localization of the granulomatous lesion in GCA, vascular smooth
muscle cells (VSMCs) and myofibroblasts are in intimate rela-
tionship to the granuloma-forming immune cells. Neutrophils
are found exclusively in granulomas of GPA patients, as well as
eosinophils. Also, B cells are absent from lesions in GCA (163) but
they can be found in granulomas of GPA patients (164), where
they may be able to mature and contribute to B cell dependent
pathology. It has been proposed that the granuloma in GPA may
participate in autoantibody production (165).

Granulomatous vasculitides reflect abnormalities in both, the
innate and adaptive arm of the immune system. Activation

products of innate cells, in particular cytokines, have attracted
much attention as potential biomarkers of disease and effort has
been invested to test whether they can help in quantifying disease
burden. Similarities in the abnormal immune reactions of distinct
vasculitides make it unlikely that a single cytokine will emerge
as a disease-specific biomarker. However, cocktails of cytokines
may have value in assessing how active the disease is in indi-
vidual patients. Quantifying adaptive immunity beyond antibody
formation has been challenging. In AAV, autoantibodies against
PR3 and MPO have served an important diagnostic role, as they
can help in rapidly reducing differential diagnosis in acutely sick
patients. There is currently insufficient evidence that the titer of
these autoantibodies is a good marker of disease activity. During
the chronic course of AAV, autoantibody titers have limited use in
helping make therapeutic decisions (166).

The possibility remains that granulomas will guide the search
for the disease inducing antigens; as such antigens should be
enriched in these tissue sites. Understanding the mechanisms of
granuloma formation and the role of these lymphoid microstruc-
tures in perpetuating pathology could greatly enhance the spec-
trum of therapeutic targets. In all inflammatory vasculopathies,
corticosteroids remain a cornerstone of therapy. Their thera-
peutic benefit may mainly result from their ability to suppress
macrophage function. Temporary suppression of macrophage
function, while effective in reducing acute phase responses, has lit-
tle impact on the long-lived cells of the adaptive immune system,
and thus fails to induce durable remission.

There remain considerable challenges in optimizing the man-
agement of patients with inflammatory blood vessel disease,
despite enormous progress in deciphering processes of innate and
adaptive immunity. The initial triggers derailing host protective
immunity are undetermined. Given the importance of granuloma
formation in protective and pathogenic immunity, speculations
about infectious agents setting off vasculitis have held steady over
decades. Hopes for the identification of such a disease inducer have
not been met with success. Clustering of risk in geographic regions
and populations have nurtured the belief that genetic risk factors
are important, but could equally well support the role of environ-
mental determinants. Most of the vasculitides are HLA associated
diseases, providing further support for a critical contribution
of antigen recognition and adaptive immunity in pathogenesis.
Granulomas remain fascinating structures that bring together
innate and adaptive immune cells and may ultimately hold the key
to understanding why the power of immune protection is misused
to harm the host.
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