DOI: 10.1002/ctm2.1082

COMMENTARY

CLINICAL AND TRANSLATIONAL MEDICINE

WILEY

Quantitative and single nucleotide RNA m⁶A detection technology boosts clinical research based on tissue and cell free RNA modification

Lulu Hu

Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Cancer Center, Fudan University Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China

Correspondence

Lulu Hu, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Cancer Center, Fudan University Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.

Email: luluhu@fudan.edu.cn

KEYWORDS

quantitative, RNA m6A, sequencing technology, single nucleotide

We recently reported m^6A Selective Allyl Chemical labelling and sequencing (m^6A -SAC-seq) to map wholetranscriptome RNA m^6A at single-nucleotide resolution with stoichiometric information. This method does not rely on antibodies and can track the m^6A dynamics with limited RNA samples. The m^6A -SAC-Seq technology is currently the only method that can be widely used in various biological contexts and has good prospects in both basic biological research and clinical applications.

Based on the central dogma, genetic information is stored in DNA and mRNA is considered as message transmitter. The discovery of mRNA epigenetic modifications has expanded the function of mRNA. Post-transcriptional modifications at the RNA level can regulate gene expression through cis- or trans-mechanisms, which are crucial for cell function and cell fate determination. To date, more than 150 chemical modifications have been found on RNA, including m⁶A, m¹A, pseudo-uridine and m⁵C.^{1,2} These modifications regulate gene expression at a critical level of the 'epitranscriptome'.

 m^6A is the most abundant internal mRNA and the most extensively studied modification to date. Previous research work showed that m^6A tends to occur in the (G/A) (m^6A) C canonical motif. m⁶A affects the metabolic process of mRNA such as splicing, nuclear export, degradation and translation to regulate gene expression and plays important roles in developmental, physiological and pathological processes.¹

The earliest whole-transcriptome maps of m⁶A modifications were published in 2012 (m⁶A-Seq or MeRIP-Seq), using m⁶A antibodies to enrich m⁶A-containing RNA fragments, resulting in profiling maps with the resolution of 100–200 nt.^{3,4} The current mainstream sequencing method for RNA m⁶A is antibody-based MeRIP. However, MeRIP has several shortcomings, including low resolution, inability to quantify, limitations in comparing m⁶A differences under different circumstances, and the need for a large amount of input RNA for library construction. m⁶A sequencing methods developed in recent years (such as Mazter-seq,⁵ m⁶A-REF-seq,⁶ m⁶A-label-seq⁷ etc.) although greatly expand the dimension of m⁶A function research, have only partially solved the above-mentioned limitations.

Recently, we published an article entitled 'm⁶A RNA modifications are measured at single-base resolution across the mammalian transcriptome' in the journal

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

^{© 2022} The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

FIGURE 1 m⁶A-SAC-seq flow chart. m⁶A-SAC-seq utilises MjDim1 and allylic-SAM as a co-factor to label m⁶A to allyl⁶m⁶A, followed by cyclization upon I₂ treatment. N^{I} , N^{6} -cyclised-m⁶A induce misincorporation during reverse transcription.

*Nature Biotechnology.*⁸ The new method m⁶A-SAC-Seq (Selective Allyl Chemical labelling and sequencing) developed in this study starts to overcome this bottleneck. By directly labelling m⁶A, m⁶A-SAC-seq could recover m⁶A sites in Gm⁶AC canonical motifs, and detect m⁶A stoichiometry at single-nucleotide resolution.

The strategy of m⁶A-SAC-seq is as follows (Figure 1): It utilizes the Methanocaldococcus jannaschii homolog MjDim1 from the Dim1/KsgA family of dimethyl transferases, which transfers the methyl group from S-adenosyl-L-methionine (SAM) to adenosines, forming m^6A and then N^6 , N^6 -dimethyl-adenosine ($m^6{}_2A$) in consecutive methylation reactions. MjDim1 shows highly processive kinetics of converting m⁶A into m⁶₂A. Employing the chemically modified allylic-SAM as the co-factor, MjDim1 could label m⁶A with an allyl chemical group, converting m⁶A into allyl-modified m⁶A (N⁶-allyl, N⁶-methyl adenosine or a^6m^6A). Subsequent I₂ treatment converts a⁶m⁶A into homologs of N¹, N⁶-ethanoadenine.⁹ The HIV-1 RT generates misincorporation at the cyclised a⁶m⁶A sites. m⁶A distribution in the transcriptome can be profiled based on the mutation site. Mutation rates of m⁶A in the calibration probes in different sequence contexts provide normalization standards to determine modification stoichiometries of individual m⁶A sites in sample RNA (Figure 2).

Using m⁶A-SAC-seq, we identified approximately 10 000 loci with m⁶A stoichiometric information in each of HeLa, HEK293 and HepG2 cell lines, and the these m⁶A loci on transcripts were enriched at stop codons, CDS and 3' UTR, consistent with previous reports. By combining the analysis of RNA degradation (decay) sequencing data, we also found that m⁶A stoichiometry and RNA half-life showed significant negative correlation. Transcripts with high m⁶A stoichiometry tend to have short half-life (lifetime). Our

FIGURE 2 Calibration of the m^6A stoichiometries with m^6A -SAC-seq. Calibration curve for each GGACU motif is generated by linear regression. Mutation rates of m^6A in the calibration probes in different sequence contexts provide normalization standards to determine RNA m^6A modification stoichiometries.

findings further clarify the function of m⁶A modification in the regulation of mRNA turnover.

In addition, we also successfully mapped the dynamics of m^6A stoichiometry during human umbilical cord bloodderived hematopoietic stem cells (HSPC) differentiation into monocytes using m^6A -SAC-seq technology. During differentiation, m^6A sites in different regions of the mRNA showed a large amount of redistribution and dynamic changes among the different regions of the mRNA during differentiation. This study demonstrates the potential of m^6A -SAC-seq technology to obtain transcriptome-wide changes of m^6A content, which could be informative to trace the m^6A stoichiometric changes between normal and diseased tissue samples in clinical area.

Of note, although m⁶A-SAC-Seq technology requires 30 ng of mRNA or rRNA depleted total RNA in this study, we have subsequently optimized the method. The current experimental procedures only require 2 ng of mRNA or fragmented RNA extracted from FFPE sample. The m⁶A-SAC-Seq technology utilizes enzymatic labelling strategy to directly label m⁶A modification instead of harsh chemical treatment. Unlike MAZF strategy, it does not require reverse subtraction of unmodified 'A', hence greatly reducing background noise and improving the accuracy. The m⁶A-SAC-Seq technology has the technical advantage of low input RNA sample and is promising to be optimised to detect m⁶A at the single-cell level.

The m^6 A-SAC-Seq technology has great potential to become a 'gold standard' that conquers the technological bottleneck of quantitative m^6 A sequencing and boosts clinical research based on tissue and cell free RNA modification.

ACKNOWLEDGEMENT

L.H. is supported by National Key R&D Program of China, 2021YFA1100400.

CONFLICT OF INTEREST

A patent application for m⁶A-SAC-seq has been filed by the University of Chicago.

REFERENCES

- Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. *Science*. 2018;361:1346-1349. https://doi.org/10.1126/science.aau1646
- Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. *Cell*. 2017;169:1187-1200. https://doi.org/10.1016/j.cell.2017.05.045
- Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. *Nature*. 2012;485:201-206. https://doi.org/10.1038/ nature11112
- 4. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. *Cell*. 2012;149:1635-1646. https://doi.org/10.1016/j.cell.2012.05.003
- Garcia-Campos MA, Edelheit S, Toth U, et al. Deciphering the "m(6)A Code" via antibody-independent quantitative profiling. *Cell*. 2019;178:731-747.e16. https://doi.org/10.1016/j.cell.2019. 06.013. e716.
- Zhang Z, Chen Li-Q, Zhao Yu-Li, et al. Single-base mapping of m(6)A by an antibody-independent method. *Sci Adv.* 2019;5:eaax0250. https://doi.org/10.1126/sciadv.aax0250
- Shu X, Cao J, Cheng M, et al. A metabolic labeling method detects m(6)A transcriptome-wide at single base resolution. *Nat Chem Biol.* 2020;16:887-895. https://doi.org/10.1038/s41589-020-0526-9
- Hu L, Liu S, Peng Y, et al. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. *Nat Biotechnol.* 2022:1210-1219. https://doi.org/10.1038/s41587-022-01243-z
- Shu X, Dai Q, Wu T, et al. N(6)-Allyladenosine: a new small molecule for RNA labeling identified by mutation assay. J Am Chem Soc. 2017;139:17213-17216. https://doi.org/10.1021/jacs. 7b06837

How to cite this article: Hu L. Quantitative and single nucleotide RNA m⁶A detection technology boosts clinical research based on tissue and cell free RNA modification. *Clin Transl Med.* 2022;12:e1082. https://doi.org/10.1002/ctm2.1082