
sensors

Article

Hybrid Task Coordination Using Multi-Hop Communication in
Volunteer Computing-Based VANETs

Abdul Waheed 1,* , Munam Ali Shah 1 , Abid Khan 2, Carsten Maple 3 and Ikram Ullah 1

����������
�������

Citation: Waheed, A.; Shah, M.A.;

Khan, A.; Maple, C.; Ullah, I. Hybrid

Task Coordination Using Multi-Hop

Communication in Volunteer

Computing-Based VANETs. Sensors

2021, 21, 2718. https://doi.org/

10.3390/s21082718

Academic Editor: Peter Chong

Received: 20 February 2021

Accepted: 28 March 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, COMSATS University Islamabad, Park Road Tarlai Kalan,
Islamabad 45550, Pakistan; mshah@comsats.edu.pk (M.A.S.); ikram.comsats.cs@gmail.com (I.U.)

2 Department of Computer Science, Aberystwyth University, Ceredigion SY23 3DB, UK; abk15@aber.ac.uk
3 Secure Cyber Systems Research Group, WMG, University of Warwick, Coventry CV4 7AL, UK;

CM@warwick.ac.uk
* Correspondence: gallian92@gmail.com

Abstract: Computation offloading is a process that provides computing services to vehicles with
computation sensitive jobs. Volunteer Computing-Based Vehicular Ad-hoc Networking (VCBV)
is envisioned as a promising solution to perform task executions in vehicular networks using an
emerging concept known as vehicle-as-a-resource (VaaR). In VCBV systems, offloading is the primary
technique used for the execution of delay-sensitive applications which rely on surplus resource
utilization. To leverage the surplus resources arising in periods of traffic congestion, we propose a
hybrid VCBV task coordination model which performs the resource utilization for task execution in
a multi-hop fashion. We propose an algorithm for the determination of boundary relay vehicles to
minimize the requirement of placement for multiple road-side units (RSUs). We propose algorithms
for primary and secondary task coordination using hybrid VCBV. Extensive simulations show that the
hybrid technique for task coordination can increase the system utility, while the latency constraints
are addressed.

Keywords: volunteer computing; vehicular networks; boundary relay nodes; resource utilization;
task offloading; multi-hop communication; latency

1. Introduction

With the rapid advancements in technologies and ongoing urbanization, the number
of vehicles and applications is growing rapidly. According to a recent Green Car report [1],
the number of vehicles on the road were 1.2 billion in 2014 and is set to reach 2 billion by
2035. This huge number of vehicles results in a tremendous increase in traffic, especially
during peak hours, which is an extensive global phenomenon. In the United States, people
travelled 6.9 billion extra hours due to traffic congestion in 2014 [2]. During such rush
hours, vehicles stuck in congestion can access remote servers to fulfill the requirements of
task execution. Using wireless communication, these vehicles are able to act as nodes in
autonomous self-organized networks, known as vehicular ad-hoc networks (VANETs). In
these networks, vehicles can connect using a dedicated short-range communication (DSRC)
service, for communication between vehicle-to-vehicle (V2V) and vehicle-to-road-side unit
(RSU) (V2R) [3].

Mobile Cloud Computing (MCC) is a promising paradigm that provides vehicles with
an opportunity to offload the computational or storage tasks to remote cloud servers. It
provides ubiquitous access to incorporated resources offered by a variety of cloud computa-
tional and storage technologies. Users gain the opportunity of executing computationally-
intensive tasks whose performance would be hindered by the computational capability
of a single user [4]. Vehicular Cloud Computing (VCC) is a similar paradigm that addi-
tionally uses the computational capabilities of vehicles in the form of vehicular clouds
(VCs). Usually, accessing remote clouds has some disadvantages such as high latency and

Sensors 2021, 21, 2718. https://doi.org/10.3390/s21082718 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3324-4605
https://orcid.org/0000-0002-4037-3405
https://orcid.org/0000-0002-4715-212X
https://doi.org/10.3390/s21082718
https://doi.org/10.3390/s21082718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082718
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082718?type=check_update&version=2

Sensors 2021, 21, 2718 2 of 22

infrastructure costs. These high latencies are not convenient for delay-sensitive applications.
Offloading to remote clouds is not practicable for services and applications that solely
depend on time and place. To address these place-bound services the best position for
computation is proximal to users [5].

Edge computing is an architecture that brings computation and storage capabilities at
the edge of the network—in user proximity. It reduces the latency incurred due to distant
clouds, and can fulfil the requirement in delay-sensitive applications. It also reduces the
size of data moved through the network [6]. Mobile Edge Computing (MEC) has brought
an opportunity to deploy servers with significant computational resources at the edge, in
the proximity of users. With the emergence of 5G radio access networks, MEC provides
a promising solution of lowering latency for task offloading. It was also benefits in task
offloading to MEC servers from vehicles that are equipped with wireless and cellular
connectivity [7]. Vehicular Edge Computing (VEC) similarly brings computation to the
edge of the network, enabling multiple vehicles to offload their tasks to servers at RSUs.
Contrary to MEC, the distinctive features of VEC are the dynamic topology changes in
vehicular networks due to the speed of vehicles. In VEC, RSUs act as VEC servers which
are responsible for collecting, storing, and processing data where vehicles have different
communication, computation, and storage resources. Due to the constrained resources
or critical nature of the applications, vehicles offload computation-intensive and delay-
sensitive tasks to the VEC servers, which can substantially lower the latency and efficiently
relieve the burden on backhaul networks [8].

Like edge computing, fog computing also provides services at devices near end
users. Fog computation avoids unnecessary network jumps and provides improvements in
latency for delay-sensitive applications [9]. Vehicular Fog Computing (VFC) is an emerging
paradigm that came into existence with the integration of fog computing and vehicular
networks [10]. There are no separate dedicated servers but dynamic clusters of vehicles
to decrease the latency while taking advantage of abundant computational resources. It
relies on the strategy of collaboration with nearby vehicles, instead of depending on the
remote dedicated servers. This strategy shortens deployment costs and delays. According
to [11], the three layers of VFC architecture are the abstraction, policy management and
application services layers. VFC provides cooperation between cloud computing and fog
computing in vehicular networks, to realize benefits for both user vehicles and intelligent
transportation systems (ITS). Additionally, the user experience can be improved without
any surplus load on V2V communication through the use of smart fog nodes at significant
data sensing points [12]. When processing is pushed from the edge of the network to the
user layer involving actuators and sensors, it further decreases the latency and increases
the self-reliance of the system [13].

The use of processing capabilities within user devices at the user layer has been termed
as mist computing [14]. This represents the first computing locations in the user networks.
It has also been labelled as Things Computing since it extends the computing and storage
processing to the things. Volunteer computing is an approach to distributed computing
where users volunteer their idle computing resources to help in solving computation-
intensive scientific problems. The basic motive for volunteer computing was to find a
free-of-cost model for solving computation-intensive problems. It also solves the problem of
the wastage of surplus resources in any computing device. Therefore, volunteer computing
is seen as the premium option for utilizing resources in any connected computing devices.
When vehicles are stuck in congestion for a long time, accessing remote servers from
various vehicles induces a great load on the Internet and remote servers for task offloading.
Volunteer Computing-Based Vehicular Ad-hoc Networking (VANET), abbreviated as VCBV,
is a new approach that is used for task execution and resource utilization in VANETs [15].

In this article, we propose a hybrid task execution method in VCBV that exploits the
infrastructure and ad-hoc coordination simultaneously for task execution and resource
utilization. Hybrid task execution utilizes the resources of vehicles in a multi-hop fashion
which increases the resource utilization by adding more resources including those lying

Sensors 2021, 21, 2718 3 of 22

out-of-range for the job coordinator. We consider a congestion scenario where most of the
resources are underutilized and task offloading to third-party service providers is at peak,
due to leisure timings for drivers and passengers. In this scenario, where tasks are initiated
from an RSU and coordinated with volunteer vehicles and extended in an ad-hoc fashion,
we formulate the problem and design the algorithm to solve the computation offloading
and resource utilization issues. The main contributions of our work are summarized
as follows.

(1) We propose a hybrid task coordination model for job execution and surplus resource
utilization. This model consists of the infrastructure and ad-hoc task coordination si-
multaneously.

(2) We propose a method to identify the boundary relay vehicles to enhance the region of
resource utilization without using additional RSUs.

(3) We design and validate the primary and secondary task coordination algorithms.

The rest of this article is structured as follows: In Section 2, we discuss the background
of task offloading in vehicles and related paradigms. Section 3 introduces hybrid VCBV
coordination. In Section 4, we describe the system model along with the communication
and computation models. Problem formulation regarding cost avoidance is presented
in Section 5, and the proposed models and algorithms are explained in Section 6. The
performance analysis is presented in Section 7 before the article is concluded in Section 8.

2. Related Works

With significant advances in technologies, new applications such as augmented/virtual
reality and autonomous driving have developed. These applications have high computa-
tional requirements for execution. Unfortunately, computational and storage resources in
a single vehicle are not capable of performing these executions in a timely manner. The
task offloading concept has been introduced to address these limitations in vehicles. In
this concept, computation-intensive tasks are fully or partly migrated from vehicles to
resource-rich remote servers/vehicles. In this section, the offloading of a task is reviewed.
We describe task offloading hosts in two categories i.e., dedicated servers and cluster of ve-
hicles with surplus resources. The first category where tasks are offloaded to remote servers
includes MCC, MEC, and VEC whereas the second category includes VCC and VFC.

MCC, the integration of cloud computing with mobile computing devices, provides
computing and storage services taking full advantage of cloud computing. The basic
functionality of computation offloading is the decision about the task to be offloaded or not,
and the server where it would be offloaded [16]. Connectivity and availability of clouds are
two requirements for effective task offloading, while the level of resources of bandwidth
and network access latency affect the decision of task offloading. Offloading computational
tasks at distant clouds may bring additional communication overhead affecting the quality
of service (QoS). Algorithms have been developed that use a game-theoretic approach,
to enable the user to decide about the offloading decision to the device itself, cloudlet,
or remote cloud [17]. Wu et al., [18] proposed an energy-efficient algorithm based on
Lyapunov optimization which optimizes energy efficiency by switching the offloading
between local, cloud, and cloudlet computing. Guo et al. [19] presented an efficient
strategy for dynamic offloading and resource scheduling for optimization of consumed
energy and latency. This problem was formulated to minimize energy consumption and
application completion time. A real testbed is used for experimentation and validation
which shows the efficiency of the proposed scheme over the existing schemes. However,
offloading to the remote cloud and increased load can affect the performance so as to
make the strategy unsuitable for delay-sensitive applications. Attempting more than one
optimization objective was also considered for the efficiency in computational offloading.
A multi-site offloading solution was proposed which addresses two average execution time
and energy. For this multi-objective task offloading scheme, an algorithm was designed to
address energy and execution time with bandwidth condition consideration [20].

Sensors 2021, 21, 2718 4 of 22

To address the higher latency incurred due to distant clouds, MEC involves the proxi-
mal placement of servers. The key idea behind MEC functionality is to provide services at
base stations where computation-intensive and energy-consuming tasks are offloaded for
execution. Usually, cellular communication services, such as 4G or 5G, are used to connect
to the MEC server. Both partial and full offloading options for migration are utilized. When
some parts of the application are offloaded to the server, it is partial offloading whereas, in
full offloading, all the parts of an application are offloaded to the MEC server. Since MEC
uses proximal servers to minimize the delay that occurred due to distance cloud, it is also
suitable for computation offloading in vehicular networks [21]. The use of MEC in vehicular
networks can improve interactive responses during the computational offloading for delay-
sensitive applications. However, the additional offloading load from dense traffic vehicles
other than the mobile devices for MEC servers may lead to optimum makespan [22,23]. In
VEC [24,25], the computational and processing tasks are also offloaded from the vehicles
to proximal servers. In earlier research, reputation management [26] and low latency in
caching [27] have been discussed. In this work a multi-objective VEC task scheduling
algorithm is proposed for task offloading from user vehicles to MEC vehicles. Extensive
simulations show reduced task execution time for task offloading with high reliability [28].
A mobility-aware task offloading scheme [29] and collaborative computation offloading
and resource allocation optimization scheme [30] are proposed for computation offloading
in MEC.

Dai et al., [31] considered the tasks of offloading and load balancing jointly. JSCO,
a low complexity algorithm was proposed and used to address the problem of server
selection and task offloading. Numerical analysis demonstrated the effectiveness of the
proposed solution. The main problem area explored was the reduced link duration of
users with static servers. The load on communication and computation resources can be
effectively managed through the use of scheduling algorithms in distributed environments.

Fog computing and vehicular network approaches can be combined to utilize surplus
resources in vehicles through the use of vehicular fog nodes. In VFC, computational task
offloading can be performed using moving or parked vehicular fog nodes. Hou et al. [32]
presented the concept of VFC where vehicles are utilized as infrastructure. Their approach
is based on the collaborative utilization of communication and computation resources
of several edge devices or end-user devices. Due to the wide geographical distribution
of fog computing, VFC is a better option for delay-sensitive applications in vehicular
networks [33]. In [34], VFC is shown as comprising three layers, namely cloud, cloudlet,
and fog layers, which cooperate for the network load balancing.

Resource allocation in VFC is a major challenge since the resources are geographically
distributed. Therefore, it is necessary to allocate the resources appropriately to minimize
the service latency. For applications having diverse QoS requirements, the admission
control problem is solved using a theoretical game approach. With the help of the proposed
scheduling algorithm, QoS requirements and scalability are achieved [35]. In another
work [36], public service vehicles are used as fog nodes for task offloading using a semi-
Markov decision process. To increase the long-term reward and gain the optimal allocation
of resources, an application-aware policy is used for offloading. Zhou et al., [37] presented
a model to minimize the load on the base station by using the underutilized resources of
vehicles with the help of an efficient incentive mechanism and by using the stable matching
algorithm based on pricing.

In an effort to efficiently park vehicles, vehicular fog computing has been employed [38].
In this work, the scheme is introduced to guide the vehicles for parking places with fog
nodes and smart vehicles. Efficiency is achieved with the help of parked and moving
vehicles with surplus resources. The participating vehicles in service offloading were
incentivized with monetary rewards. When task offloading, total delay comprising commu-
nication and computation delays can be critical for delay-sensitive jobs. For VFC systems
that provide offloading services, the long-term reward is very important; this depends
on resource availability, heterogeneity, transmission, and computation delays. Wu et al.

Sensors 2021, 21, 2718 5 of 22

formulated a model named SMDP which consists of the components required for task
offloading [39]. With the help of an iterative algorithm based on the 802.11p standard, the
target of maximal reward was achieved.

Vehicles with automated driving capabilities must have accuracy and sensing coverage.
To overcome the limitations of computing resources in a single vehicle, Du et al. [40]
proposed Li-GRU. The simulations show the improvement in sensing and coverage of a
single vehicle. Parallel computing is an effective process for the on-time completion of tasks.
Resource aware based parallel offloading [41] was proposed to find suitable nodes for task
offloading. The effectiveness of the proposed scheme is validated through simulations.

In this article, the idle resources of vehicles stuck in traffic are utilized using hybrid
VCBV to execute jobs offloaded to a central entity (RSU) from vehicles, pedestrians, or an
internet of things (IoT) device. The objective of this article is to fully utilize the resources in
a multi-hop fashion without using additional infrastructures as well as avoid monetary
costs payable to third party vendors.

3. Hybrid Volunteer Computing Based VANET

Volunteer computing is a type of distributed computing in which any computing
device can share its surplus computing resources voluntarily to perform computation-
intensive tasks. Using volunteer computing, resource-intensive tasks can be performed
without the use of expensive computing infrastructure. VC has previously been applied
successfully in a variety of domains to solve computation-intensive tasks [42]. The num-
ber of vehicles on roads is growing rapidly and the resources of vehicles in the form of
on-board units (OBUs)—the small computers mounted on vehicles for communications
and computation—are often left idling, and can be utilized with the help of volunteer com-
puting. To utilize the surplus resources in VANETs, volunteer computing and VANET are
merged into a new architecture named VCBV [15]. The computing power of vehicles can
be utilized without requiring connectivity to the Internet, whether vehicles are parked or
idling in congestion. Amjid et al. [43] used volunteer computing over VANETs to support
autonomous vehicles, utilizing resources through a centralized job manager. A number
of algorithms, differentiated by node-registration, were evaluated for job completion rate,
latency and throughput, using NS2 and SUMO. However, hybrid coordination using in-
frastructure and ad-hoc networking simultaneously for resource utilization has not yet
been considered. Further, the impact of using volunteer computing in VANETs in terms of
makespan and monetary cost for a job has not been evaluated.

In this article, we use hybrid VCBV to utilize the resources of vehicles in congestion.
The major advantage of this type of computing is to utilize the resources within VANETs,
thereby reducing latency. In hybrid VCBV, the RSU maintains a queue of jobs received from
pedestrians, vehicle drivers, passengers, or even from IoT devices. DSRC communication is
used for initial offloading to the RSU. The RSU arranges the jobs and decides for selection
of jobs for coordination. The RSU receives notification of willingness from volunteers
located in its communication range and partitions the selected jobs into the appropriate
number of tasks. In the hybrid VCBV scenario, an RSU can select another job coordinator,
which can be another RSU or a willing volunteer vehicle. This second coordinator is known
as the secondary coordinator and can be found using boundary relay vehicles. The primary
difference between hybrid and other types of VCBV is that hybrid uses both RSU and
ad-hoc task coordination simultaneously as shown in Figure 1.

Sensors 2021, 21, 2718 6 of 22

Figure 1. Hybrid VCBV.

4. Hybrid VCBV System Model

In this section, we present our proposed hybrid VCBV architecture and elaborate on
the system model in detail. The important notations used in this paper are presented in
Table 1.

Table 1. List of notations.

Notation Description

V, n Set/number of volunteer vehicles
δir Distance of node i from the boundary
Dir Distance between vehicle i and RSU

RV2V
t , RV2R

t Data transmission rate for the wireless channel between V2V and V2R
Rr Communication range of an RSU
tpi A tuple representing the task allocated to vehicle i

tpiID Identity of the task sent to vehicle i
Do Output data size

tpiIS Input size of the task allocated to vehicle i
tpiCR Required computational resources for computing task ti
CVeh

i The computational capability of the volunteer vehicle
CCC The computational capability of the cloud

CEdge The computational capability of the edge
Tcomp

tpi
Time taken by a task to complete execution on an OBU

Tj Makespan for job j
Texec

avg Average execution time for all m jobs
Ti The total time taken for a task from transmission time to completion of task
Ji Number of jobs for vehicle i

Wi The number of tasks a vehicle i has for execution
O1, O2, O3 Objective functions

α, β, γ Constants used for differentiation of available computation capabilities
LET Link expiration time
Vi Vehicle i

Su f System utility function

4.1. Network Model

The scenario considered in this paper is of vehicles in congestion that voluntarily
process tasks. The network model of hybrid VCBV can be explained in Figure 2. In the
scenario, there is a primary job initiator/coordinator, a secondary initiator/coordinator
and volunteers. The details are as follows:

Sensors 2021, 21, 2718 7 of 22

Figure 2. System Model for Hybrid VCBV.

4.1.1. Primary Job Initiator

In hybrid VCBV, a vehicle, RSU, pedestrian, or IoT device having some job to be
performed acts as a job initiator. The job initiator sends a job (or jobs) to the RSU for
further coordination. The job initiator and task coordinator might be the same or different
depending upon the situation.

4.1.2. Primary Task Coordinator

In hybrid VCBV, an RSU is usually the primary task coordinator, receiving jobs from
the primary job initiator. It then schedules the jobs according to priority/incentives,
and obtains willingness notifications from volunteers. After receiving the willingness, it
partitions the job into the required number of tasks and coordinates the tasks between
suitable volunteers.

4.1.3. Volunteer Vehicles

Volunteer vehicles are the vehicles present in the communication range of a task
coordinator that are willing to participate in volunteer computing. In the aforementioned
scenario, these vehicles are in congestion and can be used as volunteer resources to per-
form computational tasks. A job is partitioned into some tasks according to available
volunteer resources. We assume there are n vehicles in the communication range of job
initiator (RSU/vehicle) willing to serve as volunteers. We denote a set of vehicles as
V = {1, 2, 3, . . . n}.

4.1.4. Secondary Job Initiator

Boundary relay nodes from the n volunteers can play the role of secondary job ini-
tiators to maximize resource utilization and minimize the makespan incurred during job
execution. If the distance of vehicle i from the primary job coordinator is larger than the
distance between the coordinator and all other volunteer vehicles, then vehicle is termed
to be a boundary relay node as shown in Figure 3. Let Rr be the communication range of
RSU and Dir be the distance of vehicle i and RSU. Node i would the boundary relay node
if δir is minimum positive value for all i ∈ V:

δir = Rr − Dir (1)

from all boundary nodes, i and j two boundary nodes would be selected as secondary job
coordinators which have the maximum distance Dij between them.

Sensors 2021, 21, 2718 8 of 22

Figure 3. Boundary relay nodes.

4.1.5. Secondary Task Coordinator

Either the secondary job initiator obtains the willingness of volunteers in its communi-
cation range and acts as coordinator, or it forwards the task to another vehicle or an RSU
which can then acts as a task coordinator. This type of coordinator is termed a secondary
task coordinator and accumulates further volunteers, resulting in an increase in resource
utilization and optimized makespan.

4.2. Communication Model

In the scenario we have presented, it is assumed that vehicles are stopped and use
the IEEE 802.11p standard for communication between V2V and V2R, providing 3 Mbps
to 27 Mbps data rates over 10 MHz bandwidth [44]. Request-to-send (RTS) and clear-to-
send (CTS) are both mechanisms used to reduce collisions in task transmission and result
gathering. The data transmission rates between V2V and V2R using Shannon’s formula are
as follows:

RV2V
t = bcm

V2V log2(1 + SNRV2V) (2)

RV2R
t = bcm

V2R log2(1 + SNRV2R) (3)

where Rt is the data transmission rates for the wireless channel, b is bandwidth allocated and
SNR is signal-to-noise ratio respectively. SNR can be found using the following formula:

SNR =
Pd−α

IV2V + σ2 (4)

where P is the received signal power of the channel, I is interference, and σ is the noise
power. α is the path loss component that depends on distance d between two communicat-
ing entities which can be found using the following formula:

dij =
√(

xi − xj
)2

+
(
yi − yj

)2 (5)

The data transmission latency between RSU and a volunteer vehicle “i” is given by
the following equation, where tpiIS is task input size allocated to vehicle “i”.

Tt
Ri =

tpiIS

RR2V
t

(6)

4.3. Task Model

Here we present a task model for hybrid VCBV. Each job can be partitioned into a
number of distinct tasks of the same sizes which may be carried out on OBUs. Every task is
presented in the form of a tuple tpi =

{
tpiID , tpiIS , tpiCR

}
, where “i” represents the vehicle

ID from set “V” willing to participate in task execution, tpiID is separate identity allotted
to each partitioned task, tpiIS describes the input size (in bits) of the task sent and tpiCR
shows the computational resources required (CPU cycles per bit) to complete the task tpi.

Sensors 2021, 21, 2718 9 of 22

Task processing mainly relies on its input size (tpiIS) and computational requirement (tpiCR)
which is also known as the complexity factor. This factor is crucial to explain the distinct
computational requirements. Some tasks, such as applying filters on an image, normally
require fewer CPU cycles than applying an algorithm for face detection in a video [45].

4.4. Vehicle Computation Model

The makespan incurred for a job consists of three types of delay for a single task,
namely transmission time, computation time, and results collection time. Transmission time
depends upon the transmission rate of the channel and the size of the task. The computation
time of the task relies on two elements which are the computational requirements of a task
and the computational capability of the volunteer vehicle. The third type of delay is the
result collection time from the volunteer to the RSU which is dependent on the size of the
output data. The time taken for a task to complete its execution on a volunteer vehicle is
shown in the following equation:

Tcomp
tpi

=
tpiIS × tpiCR

CVeh
i

(7)

The total time to transmit and execute a task on a volunteer vehicle is shown in the
following equation:

Ttpi =
tpiIS

RR2V
t

+
tpiIS × tpiCR

CVeh
i

(8)

The total makespan for a job j to complete with the help of n vehicles is as follows:

TVeh
j =

n

∑
i=0

tpiIS

RR2V
t

+ max
i∈n

tpiIS × tpiCR

CVeh
i

+
n

∑
i=0

Doi

RR2V
t

(9)

Similarly, the average execution time for all m jobs is as follows:

TVeh
avg =

∑m
j=0 TVeh

j

m
(10)

4.5. Cloud Computation Model

The offloading from vehicle to cloud includes transmissions from the vehicle to the
RSU and then from the RSU to the cloud. Vehicles use DSRC for connectivity to the RSU
and backhaul links such as fiber and core networks are used to offload jobs from an RSU to
cloud servers placed thousands of miles away [30]. Transmission time includes offloading
input tasks and getting back the results. Total time to offload and execute a job j on cloud
is “TCC

j ” which is expressed as follows:

TCC
j =

∑n
i=1 tpi IS

RR2V
t

+
α×∑n

i=1 tpi IS

RR2C
t

+
β×∑n

i=1 tpi IS × tpiCR

CCC +
Do

RR2C
t

+
Do

RR2V
t

(11)

where α and β are constants and Do is the output data size. For the aforementioned scenario,
it is assumed that all the jobs are already at the RSU.

Therefore:

TCC
j =

α×∑n
i=1 tpi IS

RR2C
t

+
β×∑n

i=1(tpi IS × tpiCR)

CCC +
Do

RR2C
t

(12)

Similarly:
TCC

avg =
(
∑m

j=0 TCC
j

)
/m (13)

Sensors 2021, 21, 2718 10 of 22

4.6. Edge Computation Model

Edge servers are placed at RSUs installed alongside the roads, and play the role of
wireless access points, and are smaller but closer computation and data centers compared
to cloud servers. After receiving a job from a vehicle, the RSU places the job in the queue
and executes it in turn. In the aforementioned scenario, we assume that all jobs are present
in the queue of an RSU. Therefore, the computation time for job j at the edge as follows:

TEdge
j =

γ×∑n
i=1(tpi IS × tpiCR)

CEdge (14)

TEdge
avg =

(
∑m

j=0 TEdge
j

)
/m (15)

4.7. System Utility Function

In this subsection, we define a logic function named the system utility function (Su f)
which depends upon latency and monetary cost, two important metrics for task offloading.
Since low latency and costs are requirements of efficiency for task offloading, this system
utility function increases monotonically with a decrease in latency or the cost paid. This
function represents user satisfaction:

Sj
u f =

1
ln
[
Tj + ψ + θ × Pc ×∑n

i=1(tpi IS × tpiCR)
] (16)

where Pc is price coefficient and θ and ψ are weight constants.
Similarly:

Savg
u f =

(
∑m

j=0 Sj
u f

)
/m (17)

5. Avoiding Costs Paid to Third-Party Vendors

We formulate the optimization problem of lowering the makespan for task execution
and considering the monetary cost at the same time. According to already explained
communication and computation models, the system optimization problem relies on these
two factors. Strategies lacking balanced resource allocation can affect the performance of
the model which can raise the offloading latency while comparing to local computing. The
optimization includes the minimization of makespan while comparing with a benchmark
of total job execution time at a single vehicle. The optimization goals are to minimize job
execution time, the cost paid to third party venders and restrict the makespan to benchmark.
These optimization objectives are as follows:

O1 : min
m

∑
j=0

Tj (18)

O2 : max
m

∑
j=0

Sj
u f (19)

O3 :
n

∑
i=1

Ti <
∑n

i=1 tpiIS × tpiCR

CVeh (20)

The solution to our problem is based on the achievement of these aforementioned
objectives while identifying the possible constraints. If any coordination algorithm fulfils
these objectives while handling the constraints, it will be considered as a suitable algo-
rithm. Computation and communication constraints need to be satisfied by the proposed
algorithm. The computations performed by vehicles cannot exceed the resource it owns.
The link expiration time (LET) between the job coordinator and the volunteer vehicle must
not be less than the time taken to complete the task execution by the volunteer. The task

Sensors 2021, 21, 2718 11 of 22

transmission time of offloading to volunteers or cloud must not exceed the computation
time at the edge server. All these constraints are shown as follows:

C1 : tpiIS × tpiCR < Ci (21)

C2 : LET <
tpiIS × tpiCR

Ci
(22)

C3 : ∑n
i=1

tpiIS

RR2V
t

<
γ×∑n

i=1
(
tpiIS × tpiCR

)
CEdge (23)

C4 : ∑n
i=1

tpiIS

RR2C
t

<
γ×∑n

i=1
(
tpiIS × tpiCR

)
CEdge (24)

6. Proposed Offloading and Resource Allocation Model

In this section, hybrid VCBV is proposed which is used for resource allocation during
task execution. We consider a congested road as shown in Figure 4. The solution to the
above problem encompasses the strategy of multi-hop task coordination to fully utilize the
surplus resources of vehicles beyond the range of an RSU. A decomposition technique is
used to fragment the aforementioned problem for solution and optimization. To maximize
the system utility the problem is divided into boundary relay vehicles determination
(BRVD), hybrid VCBV task coordination (HVTC), and secondary task coordination (STC).
We design an algorithm for resource utilization using hybrid VCBV and without using any
edge or cloud server.

Figure 4. Hybrid VCBV scenario.

6.1. Boundary Relay Vehicles Determination Algorithm

To achieve the aim of resource utilization in VCBV multi-hop access to volunteers is
used. In task coordination, boundary relay vehicles are determined after the identifying the
willingness of volunteer vehicles in the communication range of the RSU. These boundary
relay vehicles are used to approach the volunteer vehicles which are out-of-the-range of
the RSU. The reason to choose the boundary relay vehicles for secondary task coordination
is to enhance the region for task coordination. On a congested road, vehicles on both sides
of an RSU can play the role of boundary relay vehicles. Each side of the RSU will have
exactly one boundary node which will play the role of secondary task coordinator.

Algorithm I is used to determine the boundary relay nodes from a set of volunteers, V.
It first computes the distance between the RSU and all the volunteers during the beaconing
process. Vehicles with maximum distance but under the communication range of the RSU
are boundary relay vehicles for primary task coordination on both sides of the RSU.

Sensors 2021, 21, 2718 12 of 22

Algorithm I: Proposed BRVD algorithm for Hybrid VCBV

6.2. Hybrid Based VCBV Task Coordination Algorithm

As mentioned before, to execute the jobs and utilize the surplus resources of vehicles
stuck in traffic congestion, we use hybrid VCBV task coordination. This type of coordination
leverages the use of infrastructure as well as ad-hoc coordination simultaneously. To
enhance resource utilization and optimize the system utility, hybrid task coordination
opts for primary and secondary task coordination. Based on the problem analysis and
constraints, the HVTC algorithm is used to maximize the system utility.

We decouple the optimization problem into resource allocation, primary task coor-
dination, determination of boundary relay vehicles, and carrying out the secondary task
execution. This algorithm obtains the willingness of n + 2 vehicles from which n vehicles
are volunteers and two vehicles are boundary relay nodes. It picks three jobs for simulta-
neous task coordination. The first job is executed using primary task coordination with
the resources available in the communication range of the job coordinator. The second
and third jobs are offloaded to boundary relay vehicles for secondary task coordination
which are allocated to volunteers, not in the range of primary task coordinator. The RSU is
responsible for the collection and aggregation of results from primary and secondary task
coordination nodes.

Sensors 2021, 21, 2718 13 of 22

Algorithm II: Proposed HBVTC algorithm for Hybrid VCBV

6.3. Secondary Task Coordination

This type of coordination is executed in two modes, depending upon the availability
of sufficient volunteers. In the first case, it obtains the willingness of n volunteer vehicles,
where the boundary relay vehicle acts as a secondary task coordinator. In the second case,
on failing to get willingness from sufficient volunteers, the boundary relay vehicle offloads
the job to another vehicle willing to be a coordination node. The STC algorithm below
shows the whole process of task coordination.

Sensors 2021, 21, 2718 14 of 22

Algorithm III: Proposed STC algorithm for Hybrid VCBV

7. Performance Evaluations

In this section simulation experiments, conducted in NS3 and Python, are described.
The proposed HVTC is evaluated and a performance comparison is made with the follow-
ing schemes, from which only RVC uses volunteer computing for the execution of jobs.

• The Entire Local Computing (ELC) scheme, where all the jobs are executed on the vehicles
locally. We take ELC as a benchmark for the decision to offload. Any offloading job ex-
pected to have makespan more than ELC will be rejected for the offloading procedure.

• The Entire Cloud Computing (ECC) scheme, where all the jobs are offloaded to cloud
servers for execution. ECC is modelled using the eDors algorithm [19] which optimizes
the consumed energy and latency using dynamic offloading and resource scheduling
at the cloud.

• The Entire Edge Computing (EEC) scheme, where all the jobs are executed at edge servers.
In VEC, these edge servers are placed at RSU and named as VEC servers. We use
JSCO [31], a low complexity algorithm to model EEC.

• The RSU-based VCBV Computing (RVC) using the single-hop scheme, where all the
jobs are executed using volunteers in the communication range of the RSU. This
scheme uses infrastructure based VCBV where all the volunteer vehicles are lying in
the communication range (one hop) of the RSU.

7.1. Simulation Setup

In the simulations, an RSU is placed near a 1000m straight road congested with
vehicles as shown in Figure 3. The VEC server and cloud server have computational

Sensors 2021, 21, 2718 15 of 22

capabilities of 2× 1010 and 1.5× 1011 CPU cycles per second, respectively; the vehicles
have the computational capability of 1× 109 CPU cycles per second [46]. Backhaul link
capacity for cloud (RR2C

t) is 107 bits/s whereas output data size (Do) is 200 Kb. α, β, and γ

are constants and depend on the availability of RSU to cloud communication bandwidth,
cloud, and edge computation capabilities, respectively.

In hybrid VCBV, an RSU obtains the willingness of volunteer vehicles by sending
the beacon frames (BFs) and receiving the beacon frame responses (BFRs). A BF contains
information regarding the task to be offloaded. From the BFs, the volunteer vehicles acquire
the information of required resources and send a BFR to the RSU indicating the availability
and willingness of volunteer. After obtaining the willingness of sufficient volunteers, the
RSU sends the task data (input data) for executing the computational procedure. After the
execution of the assigned task, the results are sent back to the job coordinator.

For RVC and HVTC, we consider one RSU located alongside a two-lane unidirectional
road in an urban environment. In our simulation, we consider n = 20 vehicles, which
may increase in real situations depending upon the willingness of volunteers. We assume
these vehicles are in congestion and resource utilization may be accomplished to a higher
level depending upon the availability and willingness of volunteers. RVC considers
20 vehicles for coordination and after getting the willingness of these volunteer vehicles,
its task coordination is performed. Whereas HVTC considers 22 vehicles for primary
coordination and out of these volunteer vehicles, 2 vehicles are considered as boundary
relay vehicles which then take part in secondary task coordination. We use NS-3.27 to find
the communication costs for initialization, task offloading, and return of results. These
results are used for numerical analysis.

Table 2 shows the parameter settings for experimentation.

Table 2. Parameter Settings.

Notation Description Values

BF Hello packet size 20 B
TA Data packet size 1000 B

∑n
i=1 tpi IS Input data size [47] [400,1000] Kb

Do Output data size [47] [50,200] Kb
Doi Output data size for tpiIS [2,10] Kb

CVeh
i Vehicle computation capacity [47]

[
1× 109, 2× 109] CPU cycles/s

CEdge Edge computation capacity [46]
[
2× 1010, 8× 1010] CPU cycles/s

CCC Cloud computation capacity [46]
[
1.5× 1011, 6× 1011] CPU cycles/s

RR2C
t Backhaul link capacity [46] [5× 106, 50× 106] bits/s
Rv Communication Range of vehicles [48] 150 m
Rr Communication Range of RSU [48] 200 m

PCloud
c Computation resource cost at cloud [30] $0.015/GHz

PEdge
c Computation resource cost at edge [30] $0.03/GHz

tpiCR Task computational requirements [47] 1500 CPU cycles per bit

7.2. Performance Comparisons

In this section, we evaluate the performance of ELC, ECC, EEC, RVC, and HTVC in
terms of average execution time and system utility parameters for three different scenarios.
In the first scenario, the aforementioned parameters are compared to a different number of
tasks. In the second scenario, these parameters are analyzed for a fixed number of tasks but
different task sizes. In the third scenario, the analysis is conducted for varied computational
requirements, for tasks whereas the input size and number of tasks are kept constant.

7.2.1. Different Number of Tasks

In this scenario, the size of the task is fixed at 1000 Kbits and the number of tasks
varies from 10 to 50. We first, compute the average execution time and system utility
function for ELC. The performance of ELC is taken as a benchmark for all other computing
algorithms. In Figure 5, we observe the benchmark values for average execution time and
system utility. Any task with a higher average execution time than ELC will be rejected

Sensors 2021, 21, 2718 16 of 22

for offloading for any of the computing algorithms. Task execution time increases with an
increase in the number of tasks, but average execution time remains constant for several
tasks due to the fixed computation requirements and similar OBU types.

Figure 5. Average execution time and system utility for ELC.

It is observed in Figure 6 that the average execution time for a small number of tasks
is lower when using cloud or edge mechanisms over VCBV algorithms. The reason for this
good performance is due to the higher computation resources of cloud and edge computing
than the OBUs within vehicles. As the number of tasks increases, the performance of ECC
and EEC decreases due to communication and computation constraints. Both RVC and
HVTC use volunteer computing for resource allocation but differ in the number of hops.
HVTC shows better performance than RVC. The reason behind this is better resource
allocation in HVTC, due to multi-hop communication. Even for a smaller number of tasks,
HVTC uses three times more resources. It uses the same number of volunteers as is used in
RVC, only in primary coordination. Using a multi-hop resource allocation increases the
number of volunteers resulting in lower computation time. This technique optimizes the
makespan but occupies more communication resources during the offloading process.

Figure 6. Average execution time for a varied number of tasks.

Figure 7 shows the simulation results of the system utility function for computing
algorithms for a varying number of tasks. The system utility of any computing algorithm

Sensors 2021, 21, 2718 17 of 22

depends on the makespan and cost paid to third party vendors such as cloud and edge
provision. The lower the makespan and monetary cost, the higher the system utility of the
algorithm. The reason to use system utility for comparison is to highlight the importance of
free of cost computing services. RVC and HTVC have better performance and higher system
utilities comparing to ECC and EEC because RVC and HTVC use volunteer computing
and charge no monetary cost.

Figure 7. System utility for a varied number of tasks.

7.2.2. Varied Task Size

For near-optimal solution, effective computation offloading relies on the makespan
which comprises communication and computation delays. Computation cost can be
optimized by using more resources from the cloud, edge, or volunteer resources. Similarly,
communication cost depends on the size of input and output data. We have performed
experiments to determine the effect of varied task size on communication and computation
costs. First, we perform local computation and analyze the effect of varied data size on
average execution time and system utility.

Figures 8 and 9 show the benchmark performance for average execution time and
system utility for various sizes of task. We observe that with the increase in input data size,
the average execution time increases while system utility decreases.

Figure 8. Average execution time for ELC with varied task size.

Sensors 2021, 21, 2718 18 of 22

Figure 9. System utility for ELC with varied task size.

For simulations, we fix the number of tasks at 20 and vary the task input data size
from 400 Kb to 1000 Kb. From Figure 10, it can be observed that EEC and ECC have
higher average execution time compared to volunteer computing-based algorithms. An
increase in the number of tasks affects the performance of edge and cloud due to increase
communication and computation requirements. However, a task with a smaller input size
has a lower execution time. According to Figure 11, ECC and EEC have smaller system
utility compared to volunteer computing-based algorithms.

Figure 10. Average execution time for varied task size.

7.2.3. Varied Computational Requirements

Task offloading in vehicular networks is usually performed for two reasons. The first,
is when the processing requirements of a task is more than the computational capacity of
a vehicle. Secondly, when there is some requirement of a deadline to meet which is not
possible with ELC due to the higher makespan. The decision to offload a task or not usually
depends on the ratio of computing to communication costs. The third factor on which
makespan incurred for task offloading depends is the task computational requirements.
In this scenario, the size of the task and number of tasks are fixed to 1000 Kbits and 20
respectively. We vary task computational requirements from 150 to 1500 CPU cycles per bit.

Sensors 2021, 21, 2718 19 of 22

These computational requirements are investigated for the different type of workloads
from data to video processing tasks [49].

Figure 11. System utility for varied task size.

From Figure 12, it is observed that the tasks with computation requirements less than
300 CPU cycles per bit have better average execution time than offloading to other devices.
Here communication cost incurred due to offloading is greater than the time required for
ELC. RVC and HVTC show better performance than the other offloading techniques. Since
HVTC incurs additional offloading overheads, it has almost the same performance as RVC
for tasks having fewer computational requirements. Similarly, EEC has better performance
due to the only dependency being on computational requirements.

Figure 12. Average execution time for varied task computational requirements.

Figure 13 shows the system utility values for varied task computational requirements.
ELC shows better system utility because it does not involve offloading and monetary costs.
Even with lower computational capabilities, it shows better performance for tasks with
low computational requirements. HVTC has the highest system utility except for the task
with computational requirements of less than 300 CPU cycles per bit. Like ELC it does not
involve the monetary cost, but it has a communication cost for offloading.

Sensors 2021, 21, 2718 20 of 22

Figure 13. System utility for varied task computational requirements.

8. Conclusions

In this article, we have proposed a hybrid volunteer computing-based model in
vehicular networks to minimize latency and maximize system utility. We achieve this by
utilizing the surplus resources in vehicular networks. In particular, the surplus resources
of vehicles in congestion are considered for efficient utilization. The volunteer model not
only optimizes the latency but reduces the monetary costs required for task offloading
to third party vendors. We analyze the task coordination model in a single and multi-
hop fashion by using boundary relay nodes which minimize the need for additional
infrastructures. Extensive simulations are performed to validate the performance of the
hybrid coordination model which show that hybrid VCBV is not only better in latency but
shows a higher system utility over existing schemes. It saves on the financial costs used to
employ task offloading services, utilizes surplus resources, and achieves a lower makespan
given sufficient availability and willingness of volunteers. The VCBV model supplements
edge and cloud technologies and minimizes third-party reliance. Our proposed model
considers the resource utilization of vehicles stuck in congestion in an urban environment.
In future, we will consider the resource utilization of vehicles moving on highways using
game theory.

Author Contributions: Conceptualization, A.W. and M.A.S.; methodology, A.W., I.U. and A.K.;
software, C.M. and I.U.; validation, A.W., I.U. and M.A.S.; resources, C.M.; writing—original draft
preparation, A.W. and I.U.; writing—review and editing, M.A.S., C.M. and A.K.; supervision, M.A.S.;
project administration, C.M. funding acquisition, C.M. All authors have read and agreed to the
published version of the manuscript.

Funding: Professor Maple gratefully acknowledges the support of the Engineering and Physical
Sciences Research Council (EPSRC) through the Academic Center of Excellence in Cyber Security
Research-University of Warwick under Grant EP/R007195/1, The Alan Turing Institute under Grant
EP/N510129/1, Autotrust under Grant EP/R029563/1, and the National Centre of Excellence for the
IoT Systems Cybersecurity, PETRAS under Grant EP/S035362/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 2718 21 of 22

References
1. Voelcker, J. 1.2 Billion Vehicles On World’s Roads Now, 2 Billion By 2035. Available online: https://www.greencarreports.com/

news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report (accessed on 27 November 2020).
2. Afrin, T.; Yodo, N. A survey of road traffic congestion measures towards a sustainable and resilient transportation system.

Sustainability 2020, 12, 4660. [CrossRef]
3. Zhao, C.; Han, J.; Ding, X.; Shi, L.; Yang, F. An analytical model for interference alignment in broadcast assisted vanets. Sensors

2019, 19, 4988. [CrossRef]
4. Li, H.; Lan, C.; Fu, X.; Wang, C.; Li, F.; Guo, H. A secure and lightweight fine-grained data sharing scheme for mobile cloud

computing. Sensors 2020, 20, 4720. [CrossRef] [PubMed]
5. Huang, Q.; Yang, Y.; Shi, Y. SmartVeh: Secure and efficient message access control and authentication for vehicular cloud

computing. Sensors 2018, 18, 666. [CrossRef] [PubMed]
6. Chen, S.; Li, Q.; Zhou, M.; Abusorrah, A. Recent advances in collaborative scheduling of computing tasks in an edge computing

paradigm. Sensors 2021, 21, 779. [CrossRef]
7. Li, D.; Xu, S.; Li, P. Deep reinforcement learning-empowered resource allocation for mobile edge computing in cellular v2x

networks. Sensors 2021, 21, 372. [CrossRef]
8. Li, Z.; Peng, E. Software-defined optimal computation task scheduling in vehicular edge networking†. Sensors 2021, 21, 955.

[CrossRef]
9. Losada, M.; Cortés, A.; Irizar, A.; Cejudo, J.; Pérez, A. A flexible fog computing design for low-power consumption and low

latency applications. Electronics 2021, 10, 57. [CrossRef]
10. Ran, M.; Bai, X. Vehicle cooperative network model based on hypergraph in vehicular fog computing. Sensors 2020, 20, 2269.

[CrossRef]
11. Sookhak, M.; Yu, F.R.; He, Y.; Talebian, H.; Safa, N.S.; Zhao, N.; Khan, M.K.; Kumar, N. Fog Vehicular Computing: Augmentation

of Fog Computing Using Vehicular Cloud Computing. In IEEE Vehicular Technology Magazine; IEEE: Piscataway Township, NJ,
USA, 2017; pp. 55–64. [CrossRef]

12. Hussain, M.M.; Alam, M.S.; Beg, M.M.S. Vehicular Fog Computing-Planning and Design. Procedia Comput. Sci. 2020, 167,
2570–2580. [CrossRef]

13. Preden, J.S.; Tammemäe, K.; Jantsch, A.; Leier, M.; Riid, A.; Calis, E. The Benefits of Self-Awareness and Attention in Fog and Mist
Computing. Computer 2015, 37–45. [CrossRef]

14. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog
computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]

15. Waheed, A.; Shah, M.A.; Khan, A.; ul Islam, S.; Khan, S.; Maple, C.; Khan, M.K. Volunteer Computing in Connected Vehicles:
Opportunities and Challenges. IEEE Netw. 2020, 34, 212–218. [CrossRef]

16. Elazhary, H. Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging
computing paradigms: Disambiguation and research directions. J. Netw. Comput. Appl. 2019, 128, 105–140. [CrossRef]

17. Cardellini, V.; De Nitto Personé, V.; Di Valerio, V.; Facchinei, F.; Grassi, V.; Lo Presti, F.; Piccialli, V. A game-theoretic approach to
computation offloading in mobile cloud computing. Math. Program. 2016, 157, 421–449. [CrossRef]

18. Wu, H.; Sun, Y.; Wolter, K. Energy-Efficient Decision Making for Mobile Cloud Offloading. IEEE Trans. Cloud Comput. 2018, 8,
570–584. [CrossRef]

19. Guo, S.; Liu, J.; Yang, Y. Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud
Computing. IEEE Trans. Mob. Comput. 2019, 18, 319–333. [CrossRef]

20. Goudarzi, M.; Zamani, M.; Haghighat, A.T. A fast hybrid multi-site computation offloading for mobile cloud computing. J. Netw.
Comput. Appl. 2017, 80, 219–231. [CrossRef]

21. Cui, Y.; Liang, Y.; Wang, R. Resource Allocation Algorithm with Multi-Platform Intelligent Offloading in D2D-Enabled Vehicular
Networks. IEEE Access 2019, 7, 21246–21253. [CrossRef]

22. Hu, Q.; Wu, C.; Zhao, X.; Chen, X.; Ji, Y.; Yoshinaga, T. Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE
802.11p and mmWave. IEEE Access 2017, 6, 1995–2004. [CrossRef]

23. Ranadheera, S.; Maghsudi, S.; Hossain, E. Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning.
Available online: http://arxiv.org/abs/1711.09012 (accessed on 24 June 2020).

24. Guo, H.; Liu, J.; Zhang, J. Computation offloading for multi-access mobile edge computing in ultra-dense networks. IEEE
Commun. Mag. 2018, 56, 14–19. [CrossRef]

25. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Futur. Gener. Comput. Syst. 2019, 97,
219–235. [CrossRef]

26. Huang, X.; Yu, R.; Kang, J.; Zhang, Y. Distributed reputation management for secure and efficient vehicular edge computing and
networks. IEEE Access 2017, 5, 25408–25420. [CrossRef]

27. Siming, W.; Zehang, Z.; Rong, Y.; Yan, Z. Low-latency caching with auction game in vehicular edge computing. In Proceedings of
the IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22–24 October 2017; pp. 1–6.

28. Sun, J.; Gu, Q.; Zheng, T.; Dong, P.; Qin, Y. Joint communication and computing resource allocation in vehicular edge computing.
Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]

https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report
https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report
http://doi.org/10.3390/su12114660
http://doi.org/10.3390/s19224988
http://doi.org/10.3390/s20174720
http://www.ncbi.nlm.nih.gov/pubmed/32825602
http://doi.org/10.3390/s18020666
http://www.ncbi.nlm.nih.gov/pubmed/29495269
http://doi.org/10.3390/s21030779
http://doi.org/10.3390/s21020372
http://doi.org/10.3390/s21030955
http://doi.org/10.3390/electronics10010057
http://doi.org/10.3390/s20082269
http://doi.org/10.1109/MVT.2017.2667499
http://doi.org/10.1016/j.procs.2020.03.313
http://doi.org/10.1109/MC.2015.207
http://doi.org/10.1016/j.sysarc.2019.02.009
http://doi.org/10.1109/MNET.011.1900603
http://doi.org/10.1016/j.jnca.2018.10.021
http://doi.org/10.1007/s10107-015-0881-6
http://doi.org/10.1109/TCC.2018.2789446
http://doi.org/10.1109/TMC.2018.2831230
http://doi.org/10.1016/j.jnca.2016.12.031
http://doi.org/10.1109/ACCESS.2018.2882000
http://doi.org/10.1109/ACCESS.2017.2781263
http://arxiv.org/abs/1711.09012
http://doi.org/10.1109/MCOM.2018.1701069
http://doi.org/10.1016/j.future.2019.02.050
http://doi.org/10.1109/ACCESS.2017.2769878
http://doi.org/10.1177/1550147719837859

Sensors 2021, 21, 2718 22 of 22

29. Yang, C.; Liu, Y.; Chen, X.; Zhong, W.; Xie, S. Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks.
IEEE Access 2019, 7, 26652–26664. [CrossRef]

30. Junhui, Z.; Qiuping, L.; Yi, G.; Ke, Z. Computation Offloading and Resource Allocation for Cloud Assisted Mobile Edge
Computing in Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 8, 1320–1323. [CrossRef]

31. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint load balancing and offloading in vehicular edge computing and networks. IEEE
Internet Things J. 2019, 6, 4377–4387. [CrossRef]

32. Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. Vehicular Fog Computing: A Viewpoint of Vehicles as the Infrastructures. IEEE
Trans. Veh. Technol. 2016, 65, 3860–3873. [CrossRef]

33. Kai, K.; Cong, W.; Tao, L. Fog computing for vehicular Ad-hoc networks: Paradigms, scenarios, and issues. J. China Univ. Posts
Telecommun. 2016, 23, 56–65. [CrossRef]

34. Ning, Z.; Huang, J.; Wang, X. Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wirel.
Commun. 2019, 26, 87–93. [CrossRef]

35. Klaimi, J.; Senouci, S.M.; Messous, M.A. Theoretical Game Approach for Mobile Users Resource Management in a Vehicular
Fog Computing Environment. In Proceedings of the 2018 14th International Wireless Communications and Mobile Computing
Conference, IWCMC 2018, Limassol, Cyprus, 25–29 June 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 452–457. [CrossRef]

36. Wang, Z.; Zhong, Z.; Ni, M. Application-aware offloading policy using SMDP in vehicular fog computing systems. In Proceedings
of the 2018 IEEE International Conference on Communications Workshops, ICC Workshops 2018-Proceedings, Kansas City, MO,
USA, 20–24 May 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–6. [CrossRef]

37. Zhou, Z.; Liu, P.; Feng, J.; Zhang, Y.; Mumtaz, S.; Rodriguez, J. Computation Resource Allocation and Task Assignment
Optimization in Vehicular Fog Computing: A Contract-Matching Approach. IEEE Trans. Veh. Technol. 2019, 68, 3113–3125.
[CrossRef]

38. Zhang, Y.; Wang, C.Y.; Wei, H.Y. Parking Reservation Auction for Parked Vehicle Assistance in Vehicular Fog Computing. IEEE
Trans. Veh. Technol. 2019, 68, 3126–3139. [CrossRef]

39. Wu, Q.; Liu, H.; Wang, R.; Fan, P.; Fan, Q.; Li, Z. Delay-Sensitive Task Offloading in the 802.11p-Based Vehicular Fog Computing
Systems. IEEE Internet Things J. 2020, 7, 773–785. [CrossRef]

40. Du, H.; Leng, S.; Wu, F.; Chen, X.; Mao, S. A New Vehicular Fog Computing Architecture for Cooperative Sensing of Autonomous
Driving. IEEE Access 2020, 8, 10997–11006. [CrossRef]

41. Xie, J.; Jia, Y.; Chen, Z.; Nan, Z.; Liang, L. Efficient task completion for parallel offloading in vehicular fog computing. China
Commun. 2019, 16, 42–55. [CrossRef]

42. Mengistu, T.M.; Che, D. Survey and taxonomy of volunteer computing. ACM Comput. Surv. 2019, 52. [CrossRef]
43. Amjid, A.; Khan, A.; Shah, M.A. VANET-Based Volunteer Computing (VBVC): A Computational Paradigm for Future Au-

tonomous Vehicles. IEEE Access 2020, 8, 71763–71774. [CrossRef]
44. Wang, Y.; Duan, X.; Tian, D.; Lu, G.; Yu, H. Throughput and Delay Limits of 802.11p and its Influence on Highway Capacity.

In Proceedings of the Procedia-Social and Behavioral Sciences; Elsevier B.V.: Amsterdam, The Netherlands, 2013; Volume 96, pp.
2096–2104. [CrossRef]

45. Mahn, T.; Wirth, M.; Klein, A. Game Theoretic Algorithm for Energy Efficient Mobile Edge Computing with Multiple Access
Points. In Proceedings of the 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering,
MobileCloud, Oxford, MS, USA, 13–16 April 2020; pp. 31–38. [CrossRef]

46. Ren, J.; Yu, G.; He, Y.; Li, G.Y. Collaborative Cloud and Edge Computing for Latency Minimization. IEEE Trans. Veh. Technol. 2019,
68, 5031–5044. [CrossRef]

47. Zhang, J.; Guo, H.; Liu, J.; Zhang, Y. Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution. IEEE
Trans. Veh. Technol. 2020, 69, 2092–2104. [CrossRef]

48. Raza, S.; Liu, W.; Ahmed, M.; Anwar, M.R.; Mirza, M.A.; Sun, Q.; Wang, S. An efficient task offloading scheme in vehicular edge
computing. J. Cloud Comput. 2020, 9. [CrossRef]

49. Miettinen, A.P.; Nurminen, J.K. Energy efficiency of mobile clients in cloud computing. In Proceedings of the 2nd USENIX
Workshop on Hot Topics in Cloud Computing, Boston, MA, USA, 22 June 2010. HotCloud: 2010. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2900530
http://doi.org/10.1109/lwc.2019.2915618
http://doi.org/10.1109/JIOT.2018.2876298
http://doi.org/10.1109/TVT.2016.2532863
http://doi.org/10.1016/S1005-8885(16)60021-3
http://doi.org/10.1109/MWC.2019.1700441
http://doi.org/10.1109/IWCMC.2018.8450313
http://doi.org/10.1109/ICCW.2018.8403696
http://doi.org/10.1109/TVT.2019.2894851
http://doi.org/10.1109/TVT.2019.2899887
http://doi.org/10.1109/JIOT.2019.2953047
http://doi.org/10.1109/ACCESS.2020.2964029
http://doi.org/10.23919/JCC.2019.11.004
http://doi.org/10.1145/3320073
http://doi.org/10.1109/ACCESS.2020.2974500
http://doi.org/10.1016/j.sbspro.2013.08.236
http://doi.org/10.1109/MobileCloud48802.2020.00013
http://doi.org/10.1109/TVT.2019.2904244
http://doi.org/10.1109/TVT.2019.2959410
http://doi.org/10.1186/s13677-020-00175-w
http://doi.org/10.1109/TVT.2019.2904244

	Introduction
	Related Works
	Hybrid Volunteer Computing Based VANET
	Hybrid VCBV System Model
	Network Model
	Primary Job Initiator
	Primary Task Coordinator
	Volunteer Vehicles
	Secondary Job Initiator
	Secondary Task Coordinator

	Communication Model
	Task Model
	Vehicle Computation Model
	Cloud Computation Model
	Edge Computation Model
	System Utility Function

	Avoiding Costs Paid to Third-Party Vendors
	Proposed Offloading and Resource Allocation Model
	Boundary Relay Vehicles Determination Algorithm
	Hybrid Based VCBV Task Coordination Algorithm
	Secondary Task Coordination

	Performance Evaluations
	Simulation Setup
	Performance Comparisons
	Different Number of Tasks
	Varied Task Size
	Varied Computational Requirements

	Conclusions
	References

