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Traumatic brain injury (TBI) is one of the top three specific neurological disorders, requiring
reliable, rapid, and sensitive imaging of brain vessels, tissues, and cells for effective
diagnosis and treatment. Although the use of medical imaging such as computed
tomography (CT) and magnetic resonance imaging (MRI) for the TBI detection is well
established, the exploration of novel TBI imaging techniques is of great interest. In this
review, recent advances in fluorescence imaging for the diagnosis and evaluation of TBI are
summarized and discussed in three sections: imaging of cerebral vessels, imaging of brain
tissues and cells, and imaging of TBI-related biomarkers. Design strategies for probes and
labels used in TBI fluorescence imaging are also described in detail to inspire broader
applications. Moreover, the multimodal TBI imaging platforms combining MRI and
fluorescence imaging are also briefly introduced. It is hoped that this review will
promote more studies on TBI fluorescence imaging, and enable its use for clinical
diagnosis as early as possible, helping TBI patients get better treatment and rehabilitation.
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INTRODUCTION

Traumatic brain injury (TBI) refers to a brain damage caused by trauma, usually occurring in traffic
accidents, falls, violent blows, sports, and combat (Leeds et al., 2014; Treble-Barna et al., 2017; Li
et al., 2018). As one of the top three specific neurological disorders worldwide, TBI has become a
huge public problem that threatens human health and life. Currently, more than 50 million people
suffer from TBI every year, which puts a heavy burden on their families and the whole society (Maas
et al., 2017). During the TBI process, the initial impact causes both primary and secondary injuries.
Primary injuries include cerebral concussion, cerebral contusion, laceration, and penetrating wounds
that occur immediately as a result of direct mechanical damage (Katzenberger et al., 2013; Kwon
et al., 2016; Barbacci et al., 2017). On the other hand, some pathophysiological processes, such as
post-traumatic neurotransmitter release, free radical generation, mitochondrial dysfunction,
inflammatory response, abnormal coagulation function, and blood−brain barrier damage,
subsequently cause secondary brain injuries and lead to cerebrovascular and neurological
disorders (Brown et al., 2019; Glotfelty et al., 2019; Ghosh et al., 2020). Therefore, rapid and
sensitive imaging of brain tissues, cerebrovascular vessels, and cells is particularly important for the
diagnosis and treatment of TBI.
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Medical imaging including computed tomography (CT) and
magnetic resonance imaging (MRI) is the most used imaging
modality for TBI (Brody et al., 2015; Shin et al., 2018; Lindberg
et al., 2019). CT is capable of objectively reflecting the size, shape,
and distribution of brain tissues, while MRI can provide a higher
level of anatomical detail of brain tissues for noninvasive and
longitudinal assessment of vessel occlusion, tissue injury, and
hemodynamics (Kim and Gean, 2011; Bouts et al., 2017).
However, the radiation and carcinogenic risks to the CT
examiners cannot be ignored, especially for special populations
such as pediatric patients (Brix and Nekolla, 2012). Moreover,
challenges remain in the MRI technology concerning the
scanning protocols (e.g., spatial vs. temporal resolution),
analytical approaches, contrast agents, and sensitivity (Lelyveld
et al., 2010; Li et al., 2018). Therefore, the development and
application of new imaging techniques for TBI is of great interest.

Fluorescence imaging has attracted increasing attention in
biological imaging because of its high spatial and temporal
resolution, remarkable contrast, sensitivity, simplicity, and
noninvasiveness (Ozawa et al., 2013; Liu et al., 2018; Li et al.,
2020; Shah et al., 2020). With the rapid development of optical
technology in the past two decades, the resolution of fluorescence
imaging has experienced a dramatical improvement and reached up
to the single nanometer scale (Wöll and Flors, 2017; Wilson et al.,
2020; Zhang et al., 2020). The probes and labels employed for
fluorescence imaging have also flourished, offering excitation
ranges from single photon to two and even three photons, while
the emission window has been extended to the near-infrared II (NIR-
II, 1000–1700 nm) region (Wolfbeis, 2015; Li et al., 2019; Deng et al.,
2020; Ji et al., 2020; Liu et al., 2020; Liu et al., 2021; Yang et al., 2021).
Herein, we review recent advances in fluorescence imaging as a

promising technique for the diagnosis and evaluation of TBI. To be
specific, this review summarizes the current utilization and
performance of fluorescence imaging for visualizing cerebral
vessels, brain tissues and cells, and TBI-related biomarkers
(Scheme 1). The design strategies for TBI imaging since 2008 are
described and discussed in detail. Additionally, multimodal imaging
platforms based on the combination of MRI and fluorescence
imaging for the detection of TBI are also briefly presented. Our
goal is to help researchers stay abreast of current advances of TBI
fluorescence imaging and understand the potential opportunities and
challenges.

IMAGING OF CEREBRAL VESSELS

In patients with craniocerebral injury, cerebral ischemia is the
most common pathological change in secondary brain injuries,
and is caused by the immediate decrease in cerebral blood flow
(CBF). Peri-contusion ischemia is suggested to be induced by
vasoconstriction, microvascular compression, and cerebral
microvascular obstruction. To achieve sufficient spatial and
temporal resolution, earlier studies raised the utility of in vivo
fluorescence microscopy (IVM) for the investigation of vascular
activities and vessel diameters in the microcirculation after TBI
(Schwarzmaier et al., 2010; Obenaus et al., 2017). For example,
visualization of the microvessels was performed by intravenously
injecting fluorescein isothiocyanate-dextrane (FITC-dextrane) as
the fluorescent plasma marker (Schwarzmaier et al., 2010).
Meanwhile, white blood cells and platelets were stained with
the fluorescent rhodamine 6G. With the help of fluorescent dyes
with different emitting colors, multiple parameters of the

SCHEME 1 | Fluorescence imaging for visualizing cerebral vessels, brain tissues and cells, and TBI-related biomarkers. Partially cited from ref (Li et al., 2018), ref
(Wang et al., 2019), ref (Xie et al., 2013), ref (Maas et al., 2017).
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microcirculation (e.g., vessel diameter, leukocyte-endothelial
interactions, and microthrombus formation) can be analyzed
in the same vessel segment.

The challenges of in vivo fluorescence imaging include light
absorption and scattering, autofluorescence, and low depth
penetration. To overcome these obstacles, near-infrared (NIR,
650–1700 nm) fluorescence imaging techniques, especially NIR-II
(1000–1700 nm) fluorescence imaging, have been developed
successively. The development of NIR fluorophores is closely
related to the application of NIR fluorescence imaging in
biological and medical fields. An effective strategy for constructing
NIR fluorophores is to incorporate donor–acceptor–donor structures
to reduce the band gap of fluorophores. For instance, a NIR-II
fluorophore (IR-E1) was designed with benzo[1,2-c:4,5-c′]bis([1,2,5]
thiadiazole) (BBTD) as the acceptor and thiophene-based moiety as
the donor (Zhang et al., 2016). Under 808 nm excitation, IR-E1
showed NIR-II emission at 1071 nm, which was applied to in vivo
cerebral imaging of hypoperfusion in a TBImousemodel. Compared
to conventional fluorescence imaging, NIR-II fluorescence imaging
allows dynamic in vivo imaging of the brain without craniotomy.

Besides the NIR emission, NIR excitation can also be used for
deep tissue imaging. Two-photon fluorescence (2PF) imaging is
usually performed by two-photon NIR excitation, which is a
nonlinear process with a square dependence on the intensity of
excitation light, allowing for three-dimensional (3D) tissue
imaging with high spatial and temporal resolution. Meanwhile,
the low-energy two-photon NIR excitation light has less damages
to the tissues and deeper penetration depth. Schwarzmaier et al.
(Schwarzmaier et al., 2015) applied in vivo two-photon
microscopy to investigate vascular leakage in a clinically
relevant model of TBI via green fluorescent protein (GFP)
expression in vascular endothelial cells and intravenous
injection of fluorescent plasma marker tetramethylrhodamine-
dextran (TMRM). Arterioles and venules can be distinguished
based on the levels of GFP expression. A penetration depth of
300 µm was achieved through the cranial window.

In addition, organic fluorophores with large multiphoton
absorption cross section and high fluorescence quantum
efficiency are capable of achieving both NIR excitation and
emission. For example, Liu group developed an ultrasmall
single-chain conjugated polymer dots (CPdots) with NIR-II
excitation and bright NIR-I (700–950 nm) emission for deep
in vivo two-photon fluorescence imaging of intact mouse brain
(Wang et al., 2019). The vasculature was labeled by retro-orbital
injection of CPdots, followed by 2PF imaging of brain blood
vessels under 1200 nm fs laser excitation. With a cranial window,
the maximal imaging depth reaches 1010 µm. Moreover, Tang
group developed three-photon fluorescence (3PF) microscopy
imaging technique for the in vivo brain vascular imaging by using
a far-red/near-infrared (FR/NIR) luminogen (BTF) with
remarkable aggregation-induced emission (AIE) characteristics
(Qin et al., 2020). Through the further construction of BTF-based
nanodots with a large three-photon absorption cross section, In
vivo 3PF images and 3D high-resolution images of the mouse
brain vessels with intact skull was obtained before/after brain
thrombosis. Undoubtedly, these pioneering studies have a great
potential for clinical applications.

IMAGING OF BRAIN CELLS AND TISSUES

TBI could induce the blood–brain barrier (BBB) disruption and
neuroinflammations via regulating the lipid peroxidation and
induction of oxidative stress to induce cell death and further
disability of patient as the results of the secondary injury of TBI
(Li et al., 2020). Observation or tracking of brain cells and tissues
promote deeper understanding of injury mechanism, providing
guidance for the prognosis and treatment of TBI. Various kinds of
fluorescent labels including fluorescent proteins, small molecules,
and nanoparticles have been developed for the fluorescence
imaging of brain cells and tissues.

Neuroinflammatory responses (e.g., microglia/macrophage
activation) could be induce by TBI, which is regarded as a key
factor in the secondary injury cascade following TBI.
Immunofluorescence staining is a classic method to investigate
the mechanism of TBI-induced neuroinflammatory responses
(Readnower et al., 2010; Villapol et al., 2017; Takahata et al., 2019;
Mao et al., 2021). By double-labeling immunofluorescence, the
levels of the lipid peroxidation marker 4-hydroxynonenal (4-
HNE) and the protein nitration marker 3-nitrotyrosine (3-NT) in
brain sections after exposure to blast have been determined
(Readnower et al., 2010). The temporal course of brain
oxidative stress following exposure to blast was obtained,
which was rapidly increased at 3 h postexposure and were
resolved by 24 h postexposure. The activation of microglial/
macrophages could also be observed using double-labeling
technique with two primary antibodies (polyclonal anti-rabbit
P2Y12 for microglial cells and polyclonal anti-rat F4/80 for
macrophages), and then corresponding fluorescent-dye
conjugated secondary antibodies (anti-rabbit Alexa Fluor 568-
conjugated IgG and anti-rat Alexa Fluor 488-conjugated IgG)
(Villapol et al., 2017).

Another efficient methodology for the visual analysis of TBI is
fluorescence protein expression. Yellow fluorescent protein (YFP)
has been expressed under the promoter for the classically
activated (M1) and alternatively activated (M2) macrophages
for the identification of macrophage subset, demonstrating the
heterogeneous polarization of the macrophage response to TBI
(Hsieh et al., 2013). If YFP is expressed cortical neurons, the
fluorescent protein can be used for the assessment of axonal
injury over time within a well-defined axonal population,
enabling an evaluation of the axonal injury pathobiology
induced by TBI (Hånell et al., 2015). Moreover, fluorescent
protein-expressing mesenchymal stem cells (MSCs) can be
used for the location tracking of the MSCs during the TBI
recovery progress (Hung et al., 2010; Lam et al., 2013).

Cerebral cell death is themajor neuropathological basis in TBI,
and apoptosis and autophagic cell death account for a
considerable proportion. Molecular imaging for selective
detection of apoptosis in experimental TBI was reported as
early as 2008 (Reshef et al., 2008). Following intravenous
administration in vivo, the animals with TBI were sacrificed,
and brain tissues labelled with the apoptosis-sensitive N,N-
didansyl-L-cystine (DDC) can be imaged via fluorescent
microcopy. In addition, whole-body fluorescence imaging of
cell death could be achieved using NIR fluorescent probes in a
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mouse model of TBI (Smith et al., 2012; Xie et al., 2013). A NIR
fluorescent conjugate of a synthetic heat shock protein-90 (Hsp-
90) alkylator, (4-N-S-glutathionylacetyl amino) phenylarsonous
acid (GSAO), was utilized for labeling of apoptotic and necrotic
cells (Xie et al., 2013). The GSAO can covalently bind with the
Cys597 and Cys598 residues of Hsp-90 in mammalian cells
through the cross-links of As(III) atom of GSAO and sulphur
atoms of Hsp-90, Cys597, and Cys598. For healthy individuals,
GSAO exists in the extracellular environment and is largely
unreactive because there are few appropriately spaced cysteines
thiols. When the plasma membrane is damaged (mid-to late-
stage apoptotic cells), GSAO could enter the cell freely and
display high reactivity. The selectivity of the fluorescent probe
for dying and dead cells provides high signal-to-noise ratio and
reliability for in vivo imaging of brain lesion cell death. Moreover,
multiple biochemical changes in the early stage of TBI can be
reported by using multiple probes in a single animal (Smith et al.,
2012). A binary mixture of a NIR fluorescent probe (PSS-794) for
detecting cell death and a deep-red dye (Tracer-653) for
monitoring BBB disruption was described for multicolor
imaging of cell death and blood-brain-barrier permeability in a
single animal.

IMAGING OF BIOMARKERS

Medical imaging techniques hardly provide an accurate
prediction of the effects of brain injury (secondary injury) due
to long-term impacts and heterogeneous nature of TBI (Mondello
et al., 2011; Maas et al., 2017; Mondello et al., 2018). Biomarkers
of brain injury refer to substances that can be detected and
released into the cerebrospinal fluid and blood during brain
injury. The level of biomarkers changes in the early stage of
brain injury, which plays a crucial role in predicting early brain
injury, identifying brain injury areas, and evaluating prognosis
(Wang et al., 2018). Generally, brain injury is usually associated
with neuroinflammation or nerve damage, which produces a
number of associated biomarkers, such as acidity (pH) change,
hypochlorous acid (HOCl), peroxynitrite (ONOO−), and
calproteinase-1 (Zhai et al., 2019; Kudryashev et al., 2020; Li
et al., 2020; Song et al., 2020). The sensitivity and specificity of
biomarker detection are often more advantageous than imaging
examination.

Neuroinflammation as one of the earliest hallmark features of
TBI can cause an increased oxygen consumption and a hypoxic
state in BV-2 cells. A dramatic decrease in mitochondrial pH
appears as a result of cellular anaerobic respiration. To monitor
pH changes, a ratiometric fluorescence probe (FRET-pH) was
developed by covalently linking 6-hydroxy-quinoline-2-
benzothiazole (ADN) as a fluorescent donor to a derivative of
Rh6G (SRhB) as a fluorescent acceptor and a response group
(Zhai et al., 2019). The fluorescence of ADN (λem � 454 nm)
could be excited by absorption of one photon (λabs � 350 nm) or
simultaneous absorption of two photons (λabs � 700 nm). SRhB
exhibited intense orange-red fluorescence (λem � 562 nm)
through energy transfer from AND and was highly sensitive in
the pH range of 4.6–7.4. FRET-pH was able to clearly detect pH

changes in both BV-2 cells and rat brain tissues using 2PF
microscopy.

TBI-associated neuroinflammation can also cause sustained
oxidative stress (OT) to produce reactive oxygen species (ROS),
including HOCl, ONOO−, etc. The general strategy for detecting
mitochondrial ROS is similar to that for detecting mitochondrial
pH. For example, Liu et al. synthesized a ratiometric two-photon
fluorescence probe (Mito-P-OCl) consisting of three moieties: a
rhodanol moiety (Rhod-c), a dihydrazide moiety, and a
quaternized pyridine moiety (Song et al., 2020). They acted as
the two-photon fluorophore, the HOCl response group, and the
mitochondrial-targeting group, respectively. The as-prepared
Mito-P-OCl itself had blue fluorescence due to the occurrence
of excited-state intramolecular proton transfer (ESIPT) in the
molecule. In the presence of HOCl, the rhodol ring on Mito-P-
OCl could be opened to form Rhod-c, in which the ESIPT process
was inhibited, thus showing a strong red fluorescence. Taking
advantages of the rhodol ring-opening/ring-closing switch, Mito-
P-OCl successfully achieved the monitoring of endogenous HOCl
in living cells and brain tissue. To further expand the above
strategy to in vivo imaging, a novel targeted activatable NIR-II
nanoprobe (V&A@Ag2S) with emission at the range of
1000–1800 nm was designed and synthesized (Li et al., 2020).
The V&A@Ag2S includes three components: VCAM1 binding
peptide (VHPKQHR) for targeting the inflamed endothelium
expressing VCAM1 in TBI regions, a NIR absorber A1094 for
responding ONOO− changes, and Ag2S QD for emitting NIR-II
fluorescence. Due to the large overlap between the absorption
spectrum of A1094 and the emission spectrum of Ag2S QD, the
fluorescence of V&A@Ag2S is quenched through the energy
transfer from Ag2S QD to A1094. On the contrary, the
presence of ONOO− oxidized A1094 to decrease the
absorbance at 1094 nm, turning on fluorescence signal of the
Ag2S QD at 1050 nm. The unique optical properties of NIR-II
imaging enabled real-time dynamic measurement of ONOO− in
live mice with brain vascular injury.

MULTIMODAL IMAGING

Medical imaging including CT, MRI, X-ray is the most used
imaging modality for TBI without any surgery (James and
Dasarathy, 2014; Du et al., 2016; Kaur and Singh, 2020). Due
to different imaging principles, a single imaging modality often
has limitations in terms of sensitivity, specificity, targeting ability,
and spatial resolution. Multimodal imaging probes can provide
diagnostic information combining different imaging modalities,
which overcomes the deficiency of traditional single-modal
imaging, and widens the application range of imaging
technology. Multimodal imaging enables rapid and accurate
imaging at specific target sites to provide a comprehensive
assessment of functional, structural, and metabolic changes in
vivo (Feng et al., 2019). Therefore, the development of
multimodal probes for TBI has become the focus of research
(Guo et al., 2019; Bony et al., 2020; Schomann et al., 2020).
Among them, fluorescence/MRI bimodal probes have attracted
much attention with the superior advantages of high tissue
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resolution and imaging sensitivity. A feasible attempt is to use the
mixed lanthanide oxide magnetic nanoparticles (MNPs)
containing europium (Eu) for fluorescence imaging and
gadolinium (Gd) for MRI in TBI (Bony et al., 2020).
Moreover, these Eu–Gd NPs can be modified with different
functional poly(ethylene glycol) (PEG) to not only tune their
hydrodynamic dimensions and surface charge, but also to
improve targeting ability and biocompatibility. In a controlled
cortical impact (CCI) mouse model of TBI, MRI data showed that
Eu-Gd NPs were rapidly accumulated and retained in the mouse
brain after intravenous injection, while fluorescence imaging
revealed their spatial distribution on cells and tissues
(Figure 1). It is worthwhile to expect that more NIR and
multiphoton fluorophores suitable for tri-modal or even quad-
modal imaging can be designed and synthesized TBI.

CONCLUSION AND OUTLOOK

Over the past decade, various fluorescence imaging techniques for
TBI diagnosis have made considerable progress due to their
abilities to directly detect and visualize brain microstructures
(e.g., blood vessels, tissues, and cells) and to track dynamic
changes during TBI injury, treatment, and rehabilitation. It
overcomes the deficiency of strong radiation, low resolution
and low sensitivity of conventional brain MRI and CT,
showing great clinic potentials in the diagnosis and treatment
of TBI. Superior to conventional fluorescence imaging in the
visible and NIR-I spectral range (400–900 nm), NIR II
fluorescence imaging greatly reduces tissue scattering, light
absorption, and autofluorescence, allowing deeper tissue
penetration, higher spatial resolution, and dynamic in vivo
imaging of the brain without craniotomy. In addition, the
appearance of organic fluorophores with large photon

absorption cross sections and high fluorescence quantum
efficiency has also greatly promoted the development of two-
photon or even three-photon imaging for TBI diagnosis. With the
continuous development of fluorescence imaging technology,
researchers have begun to explore novel multimodal probes
(e.g., fluorescence/MRI dual-modal probe) to achieve
complementary parameters, so as to make more accurate
diagnosis and effective treatment of TBI.

Notably, challenges remain in translating the TBI
fluorescence imaging platform from the research setting to
more practical devices and clinical applications. Hence, more
investigations and innovations are necessary to develop
universal fluorescent dyes, improve the operability of the
method, and reduce professional and technical requirements.
NIR II or multi-photon fluorescence imaging can be regarded an
ideal candidate for in vivo and in situ imaging of brain. In order
to achieve full-scale and high-quality imaging of the brain
through the scalp and skull, fluorophores with higher
quantum yield should be designed and developed. Another
promising strategy is the combining of fluorescence imaging
with other imaging techniques (e.g., MRI, CT, and X-ray). The
multimodal imaging system can provide a more accurate and
comprehensive reference for the diagnosis and treatment of TBI,
especially for the secondary brain injury after TBI. In addition,
the neurotoxicity of fluorescent probes must be considered
when performing brain imaging. The effects of the developed
fluorescent probes on human health and brain function are
unclear, which also limits the pace of clinical applications of
fluorescent imaging.

Compared with brain structure (blood vessel, tissue, etc.)
imaging, the identification and detection of TBI-associated
biomarkers can provide a more accurate molecular level
diagnosis of TBI, which is the key to the early diagnosis of
craniocerebral injury. The identified biomarkers allow us to
measure the extent of damage and monitor the recovery
process from brain injury. It is worth noting that the
biomarkers released at different time periods of the occurrence
and development of TBI are different, thus further explore about
the optimum detection moment for different types of biomarkers
is of great significance in assessing the injury and prognosis of
patients with TBI.
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