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ABSTRACT

Purpose: The utility of 18-fluordesoxyglucose positron emission tomography ([18F]-FDG-
PET) combined with computer tomography or magnetic resonance imaging (MRI) in gastric 
cancer remains controversial and a rationale for patient selection is desired. This study aims to 
establish a preclinical patient-derived xenograft (PDX) based [18F]-FDG-PET/MRI protocol for 
gastric cancer and compare different PDX models regarding tumor growth and FDG uptake.
Materials and Methods: Female BALB/c nu/nu mice were implanted orthotopically and 
subcutaneously with gastric cancer PDX. [18F]-FDG-PET/MRI scanning protocol evaluation 
included different tumor sizes, FDG doses, scanning intervals, and organ-specific uptake. 
FDG avidity of similar PDX cases were compared between ortho- and heterotopic tumor 
implantation methods. Microscopic and immunohistochemical investigations were 
performed to confirm tumor growth and correlate the glycolysis markers glucose transporter 
1 (GLUT1) and hexokinase 2 (HK2) with FDG uptake.
Results: Organ-specific uptake analysis showed specific FDG avidity of the tumor tissue. 
Standard scanning protocol was determined to include 150 μCi FDG injection dose and scanning 
after one hour. Comparison of heterotopic and orthotopic implanted mice revealed a long 
growth interval for orthotopic models with a high uptake in similar PDX tissues. The H-score of 
GLUT1 and HK2 expression in tumor cells correlated with the measured maximal standardized 
uptake value values (GLUT1: Pearson r=0.743, P=0.009; HK2: Pearson r=0.605, P=0.049).
Conclusions: This preclinical gastric cancer PDX based [18F]-FDG-PET/MRI protocol reveals 
tumor specific FDG uptake and shows correlation to glucose metabolic proteins. Our findings 
provide a PET/MRI PDX model that can be applicable for translational gastric cancer research.
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INTRODUCTION

Gastric cancer is characterized by tumor tissue heterogeneity and aggressive biological 
behavior [1]. The development and establishment of new drugs including targeted drugs 
on selected patients and tumors with certain molecular profiles is of major importance 
for successful gastric cancer treatment. Thus, diagnostic accuracy and therapy response 
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assessment is essential for tailored clinical approaches aiming to improve the poor outcome 
in advanced gastric cancer. The clinical utility of 18-fluordesoxyglucose positron emission 
tomography ([18F]-FDG-PET) in gastric cancer, however, remains controversial, especially 
due to the aforementioned tumor heterogeneity. Contrarily, it remains a commonly used 
diagnostic tool especially in doubtful clinical findings and several studies have showed that 
glucose transporter overexpression in gastric cancer is a rationale for glucose metabolism 
imaging [2-5]. While earlier attempts to predict therapeutic responses in gastric cancer using 
[18F]-FDG-PET (computer tomography [CT]) had failed, recent results have suggested that 
[18F]-FDG-PET/magnetic resonance imaging (MRI) may improve diagnostic accuracy [6-8]. 
[18F]-FDG-PET is further under investigation for detecting peritoneal metastasis in advanced 
gastric cancer in a prospective observational trial [9]. In order to improve the clinical use 
of [18F]-FDG-PET/MRI and gain more knowledge about the molecular features of glucose 
metabolism, a preclinical [18F]-FDG-PET model is highly desired. Such a model may help 
to better investigate the prediction of therapy response, diagnostic accuracy, and establish 
profiles for reasonable patient selection based on biological characteristics.

This study aimed to establish a preclinical [18F]-FDG-PET/MRI gastric cancer patient-derived 
xenograft (PDX) model using subcutaneous and orthotopically implanted gastric cancer tissue.

MATERIALS AND METHODS

Orthotopic and heterotopic PDX model
All procedures involving in vivo mouse studies were approved by the Institutional Animal 
Care and Use Committee (IACUC) at Seoul National University and complied with the Guide 
for the Care and Use of Laboratory Animals (SNU-170704-3). Female BALB/c nu/nu mice aged 
6–8 weeks (Orient Bio., Sungnam, Korea) were used to establish the mouse tumor models. To 
minimize the murine stromal contamination in PDX models and patient characteristic loss 
[10-12], we used PDX tissues with early passage numbers (P2 or P3).

The orthotopic tumor was implanted under general gas anesthesia. The mice were placed 
in the right supine position and the whole abdominothoracic area was disinfected. The 
stomach was exposed by a transverse subcostal incision. A 7-0 nonabsorbable monofilament 
suture was applied seromuscular in a longitudinal direction of the corpus of the stomach. 
This suture was first used as the stay suture to expose the stomach during implantation and 
afterwards to cover the implantation site. The implantation site was chosen in the corpus 
part of the stomach in the middle of the stay suture, therefore the border to squamous cell 
epithelium had to be identified safely before. Then a small gastrotomy was performed by 
micro-scissor, ensuring that the mucosa is exposed. After one edge of the gastrotomy was 
caught by another 7-0 suture, the PDX tissue (size approximately 27 mm3) was beaded on 
the thread and positioned on the gastrotomy. The corresponding edge was sutured and 
then gently tied over the PDX tissue. It had to be ensured that the PDX tissue connected to 
the mucosa but did not completely subside in the lumen. Next, the longitudinal stay suture 
was tied over the implantation site in order to completely cover it. Two other 7-0 sutures 
were applied cranial and caudal to the first one. If the implantation site was completely 
covered, the abdominal cavity was closed by 4-0 an absorbable polyfilament suture in 2 
layers: abdominal muscle layer and skin (Fig. 1). A sham model was performed with similar 
technique without tumor implantation.
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The heterotopic PDX model was prepared in a standardized manner by implanting the tumor 
tissue via subcutaneous trocar into the right or left flank. For PET imaging, the optimal 
location of the tumor tissue should not overlap with the kidney or heart location in order to 
receive a clear signal discrimination. In this case, the tumor is located caudal to the heart and 
cranial to the ipsilateral kidney.

The clinicopathological features of the donor patients for the PDX tissues used in the 
orthotopic and heterotopic mouse models are summarized in Table 1.

Sham-orthotopic model
A sham orthotopic tumor model was prepared as the control using the identical procedure 
as that for orthotopic tumor implantation, eventually not implanting the tumor. The models 
were scanned in intervals and the images were evaluated for signal/uptake changes due to 
inflammation. A longitudinal scanning was also performed for the orthotopic tumor model 
for the same reason.

62https://jgc-online.org https://doi.org/10.5230/jgc.2020.20.e7

PET Protocol for Gastric Cancer PDX

BA

C D

Corpus

Fore-stomach

PDX

PDX tumor
Gastrostomy

Fig. 1. Orthotopic xenograft model of gastric cancer PDX. Schematic illustration of modeling with photographs. (A) A small gastrotomy pouch to expose mucosa. 
(B) Preparation of PDX tissue. (C) Position in the gastrotomy pouch. (D) Suturing over the tissue. 
PDX = patient-derived xenograft.

Table 1. Clinicopathological characteristics of the donor patients
PDX ID SNU-JAX-G080 SNU-JAX-G263
Sex Female Male
Age 67 56
TNM stage IIIc IIb
Lauren classification Mixed Diffuse
Histologic type Others* PD tub†

Gross type Borrmann 3 EGC-IIc
SUVmax 5.91 3.90
EGC = early gastric cancer; TNM = tumour, node and metastasis; SUVmax = maximal standardized uptake value.
*Mixed carcinoma (mixed tubular adenocarcinoma, moderately differentiated [60%] and poorly cohesive 
carcinoma [40%]); †Tubular adenocarcinoma, poorly differentiated.
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[18F]-FDG-PET/MRI imaging
The mice were starved for 12–16 h and subsequently anesthetized with 2% isoflurane (Hana 
Pharm, Kyonggi-Do, Korea) before injecting 150 μCi/0.1 mL [18F]FDG, produced using Seoul 
National University Hospital Cyclotron facilities. The body temperature was kept at 20-30°C 
throughout the whole procedure [13].

Animals were scanned for simultaneous PET/MRI imaging using the SimPET simultaneous 
PET/MRI scanner (Aspect Imaging, Shoham, Israel) [14]. [18F]-FDG was intravenously 
injected into the tail vein with an uptake time of 1 hour. The urinary bladder was emptied 
before imaging in order to reduce artefacts.

The final imaging protocol used was as follows:
• �Simultaneous PET/MRI scans were acquired for 30 minutes. MRI imaging protocol 

consisted of T2-weighted fast spin echo sequences with 3,070 ms repetition time and 
63.8 ms echo time. The acquired PET images were reconstructed with the 3 dimensional 
ordered subset expectation maximization algorithm.

• �Acquired PET and MRI images were spatially registered for the FDG standard uptake 
value (SUV) evaluation in the tumor sites.

To determine the adequate [18F]-FDG dose, longitudinal PET/MRI imaging at different 
intervals after [18F]-FDG injection was carried out. Four mice baring heterotopic tumors were 
injected with higher [18F]-FDG dose (545±5.6 μCi/0.1 mL). The images were captured 1, 3, and 
5 hours after injection. The corresponding [18F]-FDG dose was calculated with respect to the 
half-life of F-18, 109.8 minutes [15].

Image and statistical analyses
The PET/MRI images were converted into digital imaging and communications in medicine 
files and analyzed with OsiriX MD (Food and Drug Administration certified; Pixmeo, Bernex, 
Switzerland). The maximal standardized uptake value (SUVmax) was measured by volume 
of interests (VOIs). The VOIs were drawn based on the MRI images and tumor glucose 
metabolism was measured from the PET images. The FDG retention was also quantified in 
hind leg muscles and liver tissues in order to illustrate changes over time and correlate with 
tumor signal.

The statistical analysis and figure calculation were performed using GraphPad Prism 
(GraphPad Software 8.1.2; GraphPad Software Inc., San Diego, CA, USA) and P<0.05 was 
considered statistically significant. Results for SUVmax are presented as the mean values 
with standard deviation. The Mann-Whitney U test was conducted for the consecutive 
imaging and the PET images in the comparison between orthotopic and heterotopic models 
to measure the P-value.

Histology and immunohistochemistry (IHC)
After imaging, mice were euthanized by CO2 and macroscopically investigated for cancer 
metastases. The primary tumor was excised, fixed in 10% formalin, and paraffin embedded. 
Histological confirmation of tumor was performed by an expert pathologist (WHK) on 4 μm 
hematoxylin & eosin stained slides. For immunohistochemical staining, 4 μm slides were 
stained with glucose transporter 1 antibody (GLUT1; ab115730; Abcam, Cambridge, UK), 
which corresponds to the human glucose transporter GLUT1 aa 450 to the C-terminus, and 
hexokinase 2 antibody (HK2; MA5-14849; Thermo Fisher Scientific, Waltham, MA, USA), 
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which corresponds to the sequence of human hexokinase (isoform II). The staining was 
performed with Bond-Max Immunostainner and a BondPolymer Refine Detection Kit (Leica 
Microsystems, Wetzlar, Germany) according to the manufacturer's instructions.

Immunohistochemical assessment was performed by applying the H-score that combines the 
intensity and degree of staining in tumor tissue [16].

RESULTS

Selection of optimal tumor size and dose for [18F]-FDG-PET imaging protocol
Serial imaging of [18F]-FDG-PET/MRI with 449±33.3 μCi injection dose using a heterotopic 
model showed comparable FDG uptake in tumors and revealed a tumor size of more than 
400 mm3. It comes along with central necrosis of the tumor that affects the global uptake of 
the tumor tissue (Fig. 2A and B). Consecutive imaging of heterotopic model with primary 
injection of 545±5.6 μCi after 1, 3, and 5 hours resulted in distinctive signal of tumor, liver, 
and muscle in SNU-JAX-G080 tissue-bearing mice (Fig. 2C and D). The difference of tumor, 
muscle, and liver signals was shown to be stable over time, resulting in satisfactory results 
after 5 hours with an approximate of 100 μCi [18F]-FDG dose. No benefits were seen for a 
higher dose. With respect to the standard uptake time of 1 hour after injection, a primary 
injection dose of 150 μCi was expected to show stable results and was, therefore, chosen for 
the protocol (Fig. 2E).

Inflammatory signal aspect for orthotopic model
The sham model underwent FDG-PET/MRI scanning 18, 33, 57, and 95 days after sham 
implantation (Fig. 3A). FDG uptake analysis revealed that the SUVmax value decreased 
from 1.62 at day 18 to 0.71 at day 95 in the same intervals (Fig. 3B). Two mice without any 
manipulation at any site (“healthy control”) showed a stomach site with SUVmax of 0.77 and 
0.54. The day 95 sham model showed SUVmax (0.71) comparable with that of the control 
mice (SUVmax=0.66±0.16).

Comparison of corresponding PDX tissue in heterotopic and orthotopic models
The histomorphology of heterotopic and orthotopic PDX models are demonstrated in Fig. 4A. 
Six mice were used for heterotopic models with 2 different subcutaneously implanted PDX 
tissues (Table 1). Eight mice were orthotopically implanted with the same PDX tissues. Two 
mice deceased before scanning. All (100%) heterotopic and 7 (87.5%) orthotopic model mice 
presented histologically proven cancer growth upon microscopic investigation (Table 2).
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Table 2. Summary of successful rate between heterotopic and orthotopic models
Variables Heterotopic Orthotopic
Total used mice 6 8
SNU-JAX-G080 (Passage No.) 3 (P2) 4 (P2)

Tumor growth 3/3 (100) 4/4 (100)
Decease 0/3 (0) 1/4 (25)

SNU-JAX-G263 (Passage No.) 3 (P2) 4 (P2)
Tumor growth 3/3 (100) 3/4 (75)
Decease 0/3 (0) 1/4 (25)

Model successful rate 6/6 (100) 7/8 (87.5)
Values are presented as number (%).
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The remaining orthotopic mice were scanned 95 days after implantation (Fig. 4B). All 
heterotopically implanted mice underwent FDG-PET/MRI with a mean tumor size of 134.9 
mm2 after a mean time of 39 days.

The [18F]-FDG avidity of orthotopic and heterotopic PDX models with identical tissues is 
demonstrated in Fig. 4B and C. Results suggest a higher avidity of tumor in orthotopic 
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Fig. 2. Selection of optimal tumor size and dose for [18F]-FDG-PET imaging protocol. (A) Serial PET/MRI images in a heterotopic model at 54 (1st imaging), 61 
(2nd imaging), and 72 (3rd imaging) days after modeling. The green ellipsoid indicates a tumor. (B) Evaluation of [18F]-FDG uptake in different sized tumors. (C) 
Consecutive PET/MRI images of mice bearing heterotopic PDX tumor 1, 3, and 5 hours following [18F]-FDG injection (n=4). The yellow arrow indicates a tumor. 
(D) [18F]-FDG uptake in tumors and normal background tissues. Box plots with error bars indicate the mean uptake and standard deviation across the mice. (E) 
Injection dose selection for PET imaging protocol from the theoretical decay curve of F-18. 
[18F]-FDG-PET = 18-fluordesoxyglucose positron emission tomography; PET = positron emission tomography; MRI = magnetic resonance imaging; PDX = patient-
derived xenograft; SUVmax = maximal standardized uptake value; ns = not significant. 
*P-value ≤0.05.
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environment as the mean SUVmax in these cases was measured to be 0.8 and 0.7 in SNU-
JAX-G080 and SNU-JAX-G263, respectively, in heterotopic and 1.3 and 1.2 in orthotopic 
models. The orthotopic tumor growth could be clearly distinguished in MRI.

Expression levels of GLUT1 and HK2 in PET-scanned tumors
Results of GLUT1 and HK2 IHC are shown in Fig. 5. Orthotopic cases showed a high 
expression of both GLUT1 and HK2 corresponding to a high SUVmax in orthotopic cases. 
Comparing all cases, the model with the highest SUVmax (1.3, SNU-JAX-G080, orthotopic) 
showed the highest scores for GLUT1 (177) and HK2 (170). The case with the lowest SUVmax 
(0.69, SNU-JAX-G263, heterotopic) showed the lowest scores for GLUT1 (57) and HK2 (73). 
Comparison between SUVmax and each marker showed significant positive correlation 
(GLUT1: Pearson r=0.7429, P-value=0.0088; HK2: Pearson r=0.6048, P-value=0.0487).

DISCUSSION

This study aimed to establish an [18F]-FDG-PET/MRI preclinical protocol based on xenograft 
models bearing gastric cancer PDX tissues. To our knowledge, this is the first study 
evaluating such a model on an [18F]-FDG-PET/MRI with different imaging protocols and PDX 
implantation methods. Our results demonstrate stable data using a fixed scanning protocol 
using 150 µCi [18F]-FDG. In heterotopic implantation, we did not distinguish between the 
SUVmax in different sized tumors with the same PDX tissues (Fig. 2B). Although several 

66https://jgc-online.org https://doi.org/10.5230/jgc.2020.20.e7

PET Protocol for Gastric Cancer PDX

MRI PET/MRI MRI PET/MRI MRI PET/MRI MRI PET/MRI MRI PET/MRI

SUVmax=0.77 SUVmax=1.62 SUVmax=1.22 SUVmax=1.26 SUVmax=0.71

NormalA Sham

Normal S-1 (Day 18) S-2 (Day 33) S-3 (Day 57) S-4 (Day 95)

B

0.5

Normal Day 57 Day 95

2.0

1.5

1.0

0
Day 33Day 18

Sham

SU
Vm

ax

Fig. 3. Inflammatory PET signal aspect for orthotopic model. (A) [18F]-FDG-PET/MRI images of normal (n=2) and sham mouse models. The green ellipsoid 
indicates the stomach. (B) Quantitative analysis of FDG uptake using SUVmax in stomach. 
[18F]-FDG-PET = 18-fluordesoxyglucose positron emission tomography; PET = positron emission tomography; MRI = magnetic resonance imaging; FDG = 
fluordesoxyglucose; SUVmax = maximal standardized uptake value.
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studies have reported a positive correlation between SUVmax and tumor size [17-19], the 
correlation in gastric cancer specifically is controversial [20-22]. Moreover, the PET signals 
of large tumors can overlap with signals from other organs. Therefore, an appropriate tumor 
size is required to acquire the best image quality in vivo. In orthotopic implantation, even in 
immunocompromised mice, a confounding inflammation signal has to be considered for a 
period of 1–2 months, however, sufficient tumor growth in this setting usually exceeds this 
period. The PET/MRI imaging protocol is summarized in Fig. 6.

In other solid cancer types, the [18F]-FDG-PET, mostly in combination CT in a preclinical 
research setting is established as a tool to investigate drug response or biological behavior 
[23,24]. Valtorta et al. [25] introduced a PDX model of non-small cell lung cancer for 
[18F]-FDG-PET/CT and demonstrated its utility in early therapy response evaluation in 9 
subcutaneous PDX tissues. The authors concluded that the imaging reflects cancer glucose 
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metabolism, which correlates with tumor aggressiveness and growth. Haldorsen et al. 
[26] introduced an orthotopic endometrial cancer cell line model and outlined the utility 
of both [18F]-FDG and [18F]-FDG-PET/MRI for tumor growth monitoring and metastasis 
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FDG = fluordesoxyglucose; GLUT1 = glucose transporter 1; HK2 = hexokinase 2; PET = positron emission tomography; IHC = immunohistochemistry; [18F]-FDG = 
18-fluordesoxyglucose; MRI = magnetic resonance imaging; SUVmax = maximal standardized uptake value. 
Pearson r=0.743, P-value <0.01 and Pearson r = 0.605, P-value <0.05 for GLUT1 and HK2, respectively.

1. Heterotopic: Tumor size dependent time of scanning
2. Orthotopic: Duration after implantation dependent time of scanning

Starvation for 12–16 hours

Tail-vein injection of 150 µCi [18F]-FDG

Scanning for 30 minutes

Fig. 6. Schematic flow chart of PET imaging protocol for gastric cancer PDX models. All procedures were 
performed under the anesthesia with 2% isoflurane and warming condition using a heating pad. 
PET = positron emission tomography; PDX = patient-derived xenograft; [18F]-FDG = 18-fluordesoxyglucose.
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detection. In preparation for this study, we found an orthotopically implanted mouse with 
peritoneal metastasis (data not shown). This result is more likely to happen, if the implanted 
tumor is not fully covered by the stomach and therefore has contact with the peritoneal 
cavity. If an orthotopic/peritoneal seeding model is desired, this modified implantation 
method might be considered for gastric cancer PDX. These abilities are important especially 
in orthotopic models, where an external control of tumor growth is often impossible. Our 
study demonstrates the [18F]-FDG-PET/MRI signals in both orthotopic and heterotopic PDX 
models. The images suggest that tumor monitoring in orthotopic gastric cancer models 
may benefit from MRI addition, thus, the several difficulties in orthotopic tumor modeling 
have to be discussed. MRI has been used in several studies for monitoring the tumor growth 
and metastasis in orthotopic models [27,28]. However, long-term follow-up with MRI for 
monitoring tumor development, growth, and metastasis in preclinical studies, especially 
with a large number of mice, is expensive and time-consuming [29]. A larger drop-out of 
cases in orthotopic models has to be expected traditionally, therefore the benefits of a more 
natural tumor environment can be achieved. In terms of inflammatory signal overlapping, our 
results suggest that the SUVmax can be increased even after a longer period (day 57) without 
tumor implantation (Fig. 3), and was found comparable to the levels in “healthy controls.” 
It is strongly recommended to always correlate the FDG signal in orthotopic models with 
histological results in order to avoid problems of false positivity. The results of the GLUT1 and 
HK2 IHC staining, therefore, suggest that a high marker expression appears in orthotopic 
model tumor tissue, which goes along with a high glucose uptake detected by PET, possibly 
reflecting the altered tumor environment in orthotopic implantation. The IHC staining results 
give a rational explanation for a high FDG avidity in orthotopic tumor modeling beyond an 
inflammatory confounder, as the relevant protein levels in tumor tissue was measured. Thus, 
the technical difficulty of tumor implantation and a more resource consuming monitoring has 
to be considered when applying an orthotopic model in a high-throughput study.

Using a PET/MRI may consume more human and financial resources than a single PET 
scanner. However, anatomical conditions might aggravate signal detection in orthotopic 
models as the left kidney signal is found close and sometimes overlapping to the stomach site 
signal. Again, for this reason, MRI provides the best possible resolution to allocate uptake 
signal to an anatomical structure.

The major limitation of our study is the small sample size of the PDX case. Further studies 
utilizing larger sample sizes of different PDXs are necessary in order to understand and describe 
the relation between glucose uptake in patients with gastric cancer and corresponding PDXs.

In summary, we have introduced a specific protocol for orthotopic and heterotopic gastric 
cancer PDX [18F]-FDG-PET/MRI. The heterotopic model has a high success rate with less 
mortality. We confirmed the correlation between common [18F]-FDG-PET related tissue 
markers and distinct tumor signals. PDX transplanted murine model can be useful for 
accessing PET activity in gastric cancer.
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