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Abstract: Mature B-cell lymphoma is a clinically and biologically highly diverse disease. 
Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse 
regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We 
here present an integrative analysis of DNA methylation and gene expression data of several 
lymphoma subtypes. Our study confirms previous results about the role of stemness genes 
during development and maturation of B-cells and their dysfunction in lymphoma locking 
in more proliferative or immune-reactive states referring to B-cell functionalities in the dark 
and light zone of the germinal center and also in plasma cells. These dysfunctions are governed 
by widespread epigenetic effects altering the promoter methylation of the involved genes, 
their activity status as moderated by histone modifications and also by chromatin remodeling. 
We identified four groups of genes showing characteristic expression and methylation 
signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma 
and multiple myeloma. These signatures are associated with epigenetic effects such as 
remodeling from transcriptionally inactive into active chromatin states, differential promoter 
methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12. 

Keywords: germinal center; epigenetic reprogramming; stemness; promoter methylation; 
gene expression; machine learning; high dimensional data portraying 
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1. Introduction 

B-cells are lymphocytes that are an essential component of the adaptive immune system. Immature 
“naïve” B-cells are produced in the bone marrow which then migrate to germinal centers (GC) where 
they differentiate into mature B-lymphocytes (Figure 1). These GC are central to the formation of  
B-cell-mediated immunity: B-cells undergo immunoglobulin somatic hypermutation and clonal expansion 
via intense proliferation in the dark zone and subsequent antigen exposure and selection in the light zone 
of the GC to generate ultimately long-lived memory B-cells and terminally differentiated plasma cells 
expressing high-affinity antibodies. B-cell development is a multistep process sustained by a highly 
coordinated transcriptional network modulated by epigenetic mechanisms, including DNA methylation 
and histone modifications to promote lineage commitment, to define and sustain cell identity and establish 
heritable cell-type- and stage-specific gene expression profiles [1]. 

Dysfunction of epigenetic regulation represents a common and important feature of B-cell lymphomas. 
Available evidence suggests that different diseases arise from oncogenic B-cell clones at a distinct stage 
of differentiation, ranging from naïve B (NB) cells to plasma cells. These tumors of the lymphoid tissues 
represent one of the most heterogeneous malignancies owing to the wide spectrum of types of B-cells 
from which they can arise and also due to the heterogeneous microenvironment in the lymphatic organs 
providing a multitude of different niches for tumor progression. Many B-cell malignancies derive from 
germinal center B-cells, most likely because of the high proliferation rate of these cells and the high 
activity of mutagenic processes. This category includes diffuse large B-cell lymphomas (DLBCL), follicular 
lymphomas (FL), Burkitt lymphomas (BL) and mantle cell lymphoma (MCL). Mature B-cell malignancies 
in addition include leukemias derived from B-cells that have passed through the GC such as B-cell chronic 
lymphocytic leukemia (B-CLL) which is a stage of small lymphocytic lymphoma. Multiple myeloma 
(MM) is an incurable B-cell neoplasia arising from malignant plasma cells which originates in illegitimate 
immunoglobulin heavy chain (IgH) switch recombinations. 

Morphologic features of lymphomas resemble lymphocytes at distinct differentiation stages serving 
as basis for their histological classification. Alternatively, the rapidly emerging information obtained 
from molecular high-throughput gene expression studies created a series of expression-based classification 
schemes [1–5] which distinguish, for example, molecular Burkitt lymphoma (mBL), non-mBL, intermediate 
lymphoma (IntL) with an intermediate signature between mBL and non-mBL, and B cell-like lymphoma 
(BCL) resembling pre- and post-GCB cells [5,6]. Many details of the molecular mechanisms underlying 
genesis, progression and also mutual transformations across the subtypes are not clear. Changing gene 
expression signatures are strongly linked to perturbations of epigenetic mechanisms. Understanding 
molecular mechanisms of lymphoma thus requires a combined view including gene expression, epigenetics 
and also genetic factors affecting B-cell biology. 

B-cells employ epigenetic mechanisms to generate effective memory responses resembling epigenetic 
reprogramming of stem cells upon cell fate decisions and differentiation. Particularly, the transition from 
naïve B-cells permits GCB cells to generate the differential response to antigenic challenges and to 
differentiate toward plasma cell fates. Deregulation of the underlying epigenetic determinants such as 
DNA methylation [7] and/or chromatin activity states potentially disturbs or even prevents the differentiation 
of B-cells leading to lymphomas. Altered epigenetic regulation represents a common and important 
feature of B-cell disorders. For example, GCB cells are prone to instability in their cytosine DNA methylation 
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patterns leading to aberrant methylation patterns in lymphoma, which display variable degrees of epigenetic 
heterogeneity [2,8,9]. Moreover, polycomb group (PcG) proteins, a subset of histone-modifying enzymes 
known to be crucial for B-cell maturation and differentiation, play a central role in malignant transformation 
of B-cells [10]. Genes de novo methylated in all lymphoma enrich in polycomb targets and share a 
similar stem cell-like epigenetic pattern [9]. 

 

Figure 1. Developmental and maturation stages of B-cells provide a wide spectrum  
of cell-of-origin- and micro-environmental conditions for different histological classes of  
B-cell lymphoma. In this study, we focus on germinal center derived B-cell lymphoma and 
multiple myeloma. Molecular gene expression subtypes were taken from [4–6]. Their 
relation to the histological classes is partly unclear mainly due to the absence of clear-cut 
borderlines between the molecular and histological signatures and because of transformations 
between the classes. Incidence rates in percentage of all B-cell lymphoma were taken from 
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/nhl [11]. 

Our study aims to shed light into the epigenetic mechanisms driving lymphomagenesis and particularly 
the possible role of chromatin remodeling in the transformations from healthy to malignant B-cells.  
To this aim, we present an integrative study of gene expression and of DNA methylation data measured 
in lymphoma cohorts stratified into different lymphoma classes. We previously demonstrated that 
machine learning using self-organizing maps (SOM) well resolves the molecular landscapes of different 
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cancer types [5,12–14]. Our high-dimensional data portraying method is applied here for the first time 
in an integrative way that combines expression and methylation data. 

2. Data and Methods 

2.1. Methylation Data 

Microarray-derived DNA methylation data (GoldenGate Methylation Cancer Panel I; Illumina,  
San Diego, CA) of in total 133 samples obtained from hematological neoplasms and reference systems 
were taken from [15] in terms of beta values of 1410 CpG’s located in the range of �1500 bp to  
+500 bp around the transcription start site of 768 genes thus serving as markers for their promoter 
methylation. The lymphoma samples were classified as diffuse large B-cell lymphoma (DLBCL,  
54 samples), molecular Burkitt’s lymphoma (mBL, 18), intermediate lymphoma (IntL, 16), follicular 
lymphoma (FL, 14) and mantle cell lymphoma (MCL, 10). The data set further contains multiple 
myeloma (MM, 14), healthy B-cells (5) and germinal center B cells (GCB, 2) as reference. For details 
of the methylation experiments, the array platform, primary data analysis, sample selection and 
classification see [15]. Methylation data was given in units of beta values estimating the level of 
methylation between values of zero (no methylation) and unity (full methylation) for each promoter. 
Differential methylation defines the difference between beta values of two states, e.g., between 
lymphoma and healthy B-cells, where hyper- and hypomethylation assigns positive and negative 
differences (delta beta values), respectively. Integral differential methylation was calculated as mean 
differential methylation separately averaged over all positive and negative delta beta values. Please take 
into account that for SOM analysis of differential methylation (DmetSOM, see below) we used 
centralized methylation data, which are calculated as the difference between the beta value of a given 
promoter in a given sample and its mean value averaged over all samples studied. 

2.2. Gene Expression Data 

Expression data were taken from the MMML (molecular mechanisms of malignant lymphoma) cohort 
described in [4] comprising 936 samples. Lymphoma samples were classified into five molecular 
subtypes as described in [5,6]: molecular BL (mBL, 85 samples), non-molecular Burkitts (non-mBL, 
287), intermediate lymphoma (IntL, 307), follicular lymphoma (FL, 121) and B cell like lymphoma 
(BCL, 64). According to pathological diagnosis, the molecular subtypes refer predominantly to BL 
(mBL), DLBCL (non-mBL) and MM (BCL). Further, the cohort contains B-cells (17), GCB cells (13), 
a lymphoma cell line (32) and tonsils (10) as reference. The microarray expression data (Affymetrix 
HG-U133a) were processed as described previously [5]. The B-cells subsume naïve pre- and mature 
post-GCB cells which show virtually indistinguishable gene expression patterns. The GCB cells are 
centroblasts with strongly activated proliferative cellular programs. 

2.3. High-Dimensional Data Portraying 

Preprocessed gene-centric expression and methylation data were clustered using self-organizing map 
(SOM) machine learning. This method translates the gene data matrix into metagene data of reduced 
dimensionality. Each metagene (methylation or expression) data were visualized in a sample-specific 
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fashion by arranging the metagenes in a two-dimensional quadratic 50 × 50 grid and by appropriately 
color coding of the data values. The mosaic images obtained serve as fingerprint portraits of the 
expression and methylation landscapes of each sample. Class-specific mean portraits were generated by 
averaging the metagene landscapes of all cases belonging to one class. SOM size and topology was 
chosen to allow robust identification of expression modules inherent in the data in terms of so-called 
spot clusters as described in our previous publications [16,17]. Overview spot maps were generated by 
collecting all hypermethylation or overexpression spots of individual portraits into one map. Three 
different SOMs were trained using (i) methylation beta values (MetSOM); (ii) centralized beta values 
with respect to the mean beta of a gene averaged over all samples (DmetSOM); and (iii) centralized  
log-expression data (DexSOM). Note that genes are arranged differently in each of the SOM trainings. 
For comparison, we mapped groups of selected genes in each of the SOM maps as described below. For 
SOM analyses, we used the R-package “oposSOM” which is publically available from the Bioconductor 
repository [18]. 

2.4. Downstream Bioinformatics Analyses 

Downstream analyses comprise the detection of clusters of differentially expressed or methylated 
genes (so-called spot-cluster detection), significance analysis and diversity analysis by means of correlation 
nets, which reveal similarity relationships between the samples. For the interpretation of the functional 
context of groups of genes, we applied gene set enrichment analysis using the gene set enrichment score 
(GSZ) [19]. The GSZ estimates the degree of reliability that a gene set with reference to a certain 
biological functionality is related to a collection of genes with unknown functional impact, e.g., derived 
from differential expression analysis. All downstream methods were described in [16,17], illustrated in 
a pilot application [12] and implemented in “oposSOM” [18]. 

3. Results 

3.1. DNA Methylation of Lymphoma 

We re-analyzed microarray DNA methylation data published in a previous study on a large number 
of hematological neoplasms [15] to answer the question, whether DNA methylation differs between B-cells 
and different histological lymphoma classes. For B-cells we found a bimodal shape of the frequency 
distribution of beta values among the genes studied with maxima near zero (completely de-methylated 
CpG sites) and unity (completely methylated, see Figure 2a). The respective distributions of beta values 
in lymphoma are characterized by a wide loss of this bimodality where especially the fraction of highly 
methylated genes with beta values near unity markedly decreases. Accordingly, the distributions of beta 
value alterations of the genes in the different systems compared with their methylation in B-cells were 
tailed to both, positive and negative values reflecting hypo- and hypermethylation of the respective genes 
(Figure 2b). The integral hyper- and hypomethylation of all genes considered reveals the progressively 
increasing disturbance of DNA methylation in lymphoma being largest in DLBCL and IntL, but being 
relatively small in MM, FL, MCL and also mBL (Figure 2c). This trend agrees with the results of previous 
studies reporting the gain of epigenetic heterogeneity (in terms of differential methylation with respect 
to the reference state of healthy B-cells) with progressive aggressiveness of lymphoma being largest in 
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DLBCL [20,21]. Except for MCL, we find a global hypermethylation of the genes in lymphoma compared 
with B-cells (Figure 2d). On the other hand, the variance of beta values in each of the samples strongly 
decreases in lymphoma mainly due to the decrease or even loss of bimodality reported above (Figure 2e). 

In summary, methylation changes in lymphoma comprise both, hyper- and hypomethylation effects 
leading to a loss of bimodality of promoter methylation with maxima at low and high beta values and to 
more balanced methylation landscapes where promoter regions tend to become methylated on 
intermediate beta-levels. 

 

Figure 2. DNA methylation summary characteristics of lymphoma and of healthy B and 
GCB cells. (a) The frequency distribution of the promoter methylation beta values of  
B-cells shows two maxima referring to almost not- and completely methylated promoters, 
respectively; The distributions of beta values loose this bimodality to a large degree in 
lymphoma where weakly and intermediately methylated genes become hyper-methylated 
and highly methylated genes become hypo-methylated compared with healthy B-cells  
(b + c); (d) The total methylation level increases and (e) the variability of methylation among 
the genes in each of the samples decreases. 
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Figure 3. SOM portraying of the DNA methylation landscape of lymphoma (MetSOM).  
(a) SOM portraits of histological lymphoma classes and of controls. Red and blue colors 
assign regions containing genes with high and low methylation levels, respectively; (b) the 
methylation overview map summarizes regions hypermethylated in any of the classes compared 
with any other one in red. The methylation variance map identifies regions of highly variable 
(red) and almost invariant (blue) beta values; (c) The methylation profiles show the mean 
methylation level among the samples of genes taken from the “spot” regions 1–6 assigned 
in the methylation overview map. Horizontal dashed lines serve as guide for the eye showing 
the mean methylation level of the respective spot averaged over all samples. Assignments as 
“hyper-” or “hypomethylated” refer to relative methylations compared with B-cells. Lists of 
genes in these regions are given in Table S1. 

3.2. DNA Methylation Portraying 

In the next step, SOM data portraying was applied to the methylation data including all lymphoma 
samples and that of the B and GCB cells serving as reference. The method “projects” the methylation 
data onto a two-dimensional grid of 50 × 50 pixels. Appropriate color-coding then visualized the 
methylation landscapes of each sample in terms of its individual methylation portrait shown in Figure S1. 
We averaged theses portraits taking into account all samples of each class to identify class-specific 
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methylation signatures. Figure 3a shows the gallery of these mean portraits for all classes studied. Red 
and blue regions in the images refer to genes with high and low methylation levels of the probed CpG 
regions with beta values near one and zero, respectively. The map can be segmented into regions containing 
genes hyper- and hypomethylated in lymphoma and a region with almost invariantly methylated genes 
in between (Figure 3b,c). Note that the SOM algorithm clusters genes with similar methylation profiles 
among the samples together into the spot-like areas appearing in the methylation maps. Accordingly, 
groups of signature genes with characteristic methylation profiles can be extracted from these spots assigned 
using Arabic numbers (Figure 3c). The methylation maps thus provide genes hyper- and hypomethylated 
in lymphoma compared with B-cells and also genes with almost invariant methylation levels. For 
example, genes in region 5 are clearly on high methylation level in B-cells and on lower level and thus 
hypomethylated in lymphoma. 

3.3. Portraying of Differential Methylation Better Resolves Differences between the Lymphoma Classes 

In our previous work, we showed that the analysis of centralized values better resolves subtle differences 
between the samples [22]. We therefore calculated a second SOM using centralized methylation values 
(DmetSOM), where the mean beta value of each gene averaged over all samples was subtracted from its 
actual beta-value. Centralization rather focuses the view on methylation changes between the samples 
independent of the absolute methylation level of the genes. In the obtained DmetSOM portraits, we 
identified five spot-clusters numbered i–v, which provide differential methylation profiles reflecting 
specific hyper- and hypomethylation of selected lymphoma classes compared with B-cells. (Figure 4a–c). 
Invariantly methylated genes accumulate in the center of the map, whereas the variable genes occupy 
different regions near the border in a profile-specific manner. Mapping of the methylation clusters 1–6 
obtained from the MetSOM (previous subsection) into the DmetSOM reveals mostly a one-to-one 
relationship (Figure 4d). For example, spot v referring to genes specifically hypomethylated in B-cell, 
mBL and MCL compared to DLBCL distributes over spots 1 and, to a less degree spot 2. This result 
simply means that most of the genes undergoing hypo- or hypermethylation between the different sample 
classes show predominantly an initially high or low methylation level, respectively. We therefore restrict 
our further analysis to the clusters i–v in the MetSOM. 

Gene set enrichment analysis provides first ideas about the functional context of the genes in the spot 
modules (Table 1). Spots i and v hypermethylated in DLBCL and IntL enrich genes related to the 
formation of the polycomb repressive complex (PRC2), which controls cellular development and 
differentiation [23]. Interestingly, genes from these spots are hypermethylated also in other cancers such 
as colorectal cancer (CRC) and high and low grade glioma. Vice versa, hypomethylated genes in DLBCL 
and IntL (spot iii) are also consistently hypomethylated in CRC and glioma suggesting parallels in 
epigenetic regulation between different cancer types. Genes hypermethylated in B-cells and MM (spot iv) 
are associated with immune processes, whereas genes hypermethylated in mBL and MCL (spot ii) enrich 
processes related to cell proliferation and cell cycle activity. 

Next, we investigate the diversity landscape of the methylation portraits of the lymphoma and 
reference samples. The calculated similarity network reveals two main clusters, which can be assigned 
to samples methylated either similarly to B-cells or to DLBCL (Figure 5). The essentially two main spot 
patterns of the mean DmetSOM portraits shown in Figure 4a directly reflect the separation between two 
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main sample clusters seen in Figure 5: The samples with DLBCL-like methylation patterns preferentially 
show red hypermethylation spots in the left part of the portraits (spots i and v, see also Table 1), whereas 
the B-cell-like methylation patterns is characterized by red hypermethylation spots in the right part of 
the map (spots ii to iv). These patterns are strongly anti-correlated (see Figure S2), i.e., hypermethylation 
is opposed by hypomethylation for many genes when compared with mean methylation level averaged 
over all samples. 

 

Figure 4. Differential methylation portraying of lymphoma and controls (DmetSOM; see 
legend of Figure 3 for a detailed description of the panels (a–c)). The DmetSOM better 
resolves differential methylation between the lymphoma classes (compare with the MetSOM 
in Figure 3). In part d genes from methylation spots 1–6 of the MetSOM are mapped into 
the DmetSOM (each dot marks a metagene occupied by at least one gene from each of the 
spots 1–6, respectively). One finds almost a 1:1 relationship between the spots except for 
spot 6 which “hides” spot ii. Lists of genes from the regions i–v are given in Table S2. 
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Table 1. Functional context of the differentially methylated gene clusters. 

Spots  Regulated Classes Functional Context 
Dmet-Spot Met-Spot Mean Met-Level Dmet up 1 Dmet down 1 Enriched Gene Sets 2 

i 2,3 intermediate DLBCL, IntL B-cell, GCB, FL, MM 
CIMP high-vs-low hypermethylated; hypermethylated-in-CRC [24]; Suz12-,  
Nanog- and Eed-targets [Wang]; Hypermethylated_in-cancer-and-ageing [25]; 
hypermethylated in primary glioblastoma [26] 

ii 6 low BL, MCL DLBCL, FL Myc-targets [27]; GO_BP: G1/S-transition in mitotic cell cycle; GO_BP: cell cycle 

iii 5 high 
B-cell, GCB, mBL, 
FL, MCL, MM 

DLBCL, IntL 
Hypomethylated in CRC; CIMP high-vs-low hypomethylated [24]; Hypermethylated 
in adult brain [28]; Hypomethylated in secondary glioblastoma [26] 

iv   B-cell, MM DLBCL, IntL, mBL 
GO_BP: immune response; hypomethylated in glioma [26]; GO_CC: nuclear 
chromatin; NKF-beta down in mBL [2]; IL21 targets down [29] 

v 1,2 low, intermediate DLBCL, IntL 
B-cell, GCB, mBL, 
FL, MCL, MM 

Suz12 targets [30]; hypermethylated in grade 3 astrocytoma and grade 2 
oligodendroglioma [26]; hypermethylated in low grade glioma [31];  
hypermethylated in CRC [24]; low expression TF [32] 

1 sample classes showing high (Dmet up) or low (Dmet down) methylation levels, respectively; 2 enrichment of predefined gene sets in the spot-lists of genes (Dmet-spot 
and/or Met-spots) was calculated as described in [17]. Gene sets were taken from literature or from gene ontology (GO) categories biological process (BP) or cellular 
component (CC). 

 



Genes 2015, 6 822 
 

 

 

Figure 5. Similarity network of the methylation landscapes of the lymphoma samples 
studied. Each circle refers to one sample colored according to its class assignment. Samples 
with strong correlations between their methylation landscapes were connected by lines (r > 0.5, 
see [5] for methodical details). Two main cluster can be distinguished, which include samples 
of B-cell-like and DLBCL-like methylation. 

The DLBCL-like methylation cluster contains most of the DLBCL (69%) and IntL (81%) samples but 
also a certain number of FL (14%), mBL (28%) and MM (14%). On the other hand, also the second 
cluster of B-cell-like methylation contains 25% of the DLBCL and 19% of the IntL samples. Hence, 
methylation of the lymphoma classes is characterized by a certain degree of fuzziness. The gallery of 
individual DmetSOM portraits shown in Figure S1 indicates that, e.g., two of the FL samples show 
clearly a DLBCL-like methylation characteristics, whereas the majority of the FL are compatible with 
B cell like methylation patterns. Note also that the B-cell-like methylation cluster reveals a fine structure 
which separates MM and B-cells on one hand and mBL, GCB cells and MCL on the other hand. This 
fine structure is related to subtle methylation differences between hypermethylation spots ii–iv (Figure 4 
and Table 1). Finally note that similarity analysis is based on a relatively small selection of less than 800 
genes only, which might distort similarity relationships if relevant groups of genes are under- or  
over-represented. 

3.4. Gene Expression Portraying 

We previously characterized the heterogeneity of gene expression landscapes of lymphoma in detail 
using SOM in an analogous approach as used above for differential methylation data [5,6]. Figure 6 
summarizes the main results of this DexSOM analysis showing the mean SOM expression portraits of 
lymphoma subtypes and controls, the spot summary and variance maps and the respective spot profiles. 
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Most of the spot modules detected can be clearly assigned to distinct lymphoma classes providing lists 
of signature genes which are up-regulated in the respective sample classes and which are associated with 
distinct biological functions. For example, mBL (spots A–D) and DLBCL (spot E) are related first of all 
to genes promoting proliferation and immune response, respectively. 

 

Figure 6. SOM portraying of the expression landscape of lymphoma (DexSOM; see caption 
of Figure 2). Expression classes were color-coded such that their color agrees with the 
respective histological class in the methylation data set. 

3.5. Mutual Mapping of Expression and Methylation Modules 

After separate SOM mapping of DNA methylation and gene expression data we linked both types of 
analyses in the next step to detect mutual relationships between promoter methylation and gene 
expression. In a first attempt, we mapped the approximately 800 genes considered on the methylation 
arrays into the gene expression landscape of lymphoma (DexSOM) and color-coded their methylation 
level (Figure S3). No densely populated areas of uniquely methylated genes were found indicating a 
fuzzy relationship between co-methylated and co-expressed genes. Possibly, this mutual mapping on 
gene level provides a suitable approach if the methylation assay probes all genes, which are also 
considered in the expression assay. 
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In the next step, we considered groups of co-methylated genes separately: genes of the Dmet-spots i–v 
(see Figure 4 and red circles in Figure 7a) were mapped into the MetSOM and DexSOM where they 
clearly accumulate in distinct regions as indicated by the dotted red rectangles in Figure 7a. This result 
reflects the fact that groups of co-methylated genes are also co-expressed in a class-specific fashion as 
confirmed also by the respective methylation and expression profiles shown in the right part of Figure 7a. 
To better resolve the mutual relationships, we correlate class-averaged mean methylation and expression 
levels of the gene groups taken from each of the methylation spots i–v in panel b of Figure 7. Spots i and 
v are characterized by a positive correlation: i.e., hypermethylation in DLBCL with respect to B- and 
GCB cells is accompanied by overexpression in DLBCL with respect to the healthy cell controls. MM and 
partly FL show concerted coexpression with DLBCL but still similar methylation compared with B and 
GCB cells. The other lymphoma classes behave similarly however with smaller effects. Genes from spot 
iii show a negative correlation where differential methylation changes sign compared with spots i and v 
but differential expression does not. In other words, overexpression in DLBCL is associated with  
hyper- (spots i and v) and hypo- (spot iii) methylation as well. Recall that all three spots i, iii and v are also 
functionally related: They enrich genes differentially methylated in other cancer types and related to PRC2 
formation. Spot ii (related to proliferation, see Table 1) collects genes weakly responding to methylation 
but strongly to differential expression for most of the lymphoma classes. Note that in mBL hypermethylation 
of spot ii genes associates with underexpression of the respective genes. In contrast, spot iv (related to 
immune response) weakly responds to expression changes but strongly to differential methylation. 

In Figure S5 we mapped genes differentially methylated in the histological lymphoma classes with 
respect to B-cells as determined in ref. [15] into our SOMs. Most of the genes hyper- or hypomethylated 
in lymphoma accumulate in spot i or iii (and iv), respectively, showing similar correlations with 
expression data as discussed above. We also studied genes specifically hypermethylated in classical 
Hodgkin lymphoma compared with B cells determined in ref. [8] (Figure S6). Interestingly these genes 
accumulate in expression spots A, H and MM which mostly associate with healthy GCB-cell functions 
but lack differential methylation in our data presumably because of the absence of Hodgkin lymphoma 
cases in our data. 

We also mapped the spot-clusters of co-expressed genes extracted from the expression SOM into the 
methylation SOM to assess mutual correlations (see supplementary Figure S4). Most of the effects 
observed are weaker than for the co-methylated gene clusters i–v presumably due to causal relationships 
between promoter methylation and gene expression leading to the dilution of correlations in the opposite 
direction. On the other hand, the data clearly reveal expression changes between lymphoma and the 
reference B and GCB cells, which are accompanied by marked differential methylation effects in both 
positive and negative directions as well. 

Hence, we observe positive and negative correlations between expression and methylation changes 
by mapping clusters of co-methylated genes into expression space and vice versa. The most pronounced 
effects are observed between B/GCB cells and DLBCL in correspondence with the sample diversity 
analysis (Figure 5), but also the other lymphoma subtypes show gradual and specific effects roughly in 
the same order as illustrated in Figure 2c. 
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Figure 7. Mapping of differentially methylated genes into the expression SOM: (a) The 
Dmet-gene clusters i–v (red circles) were mapped into the Met- and Dex-SOM where they 
accumulate in specific areas (red rectangles). The red arrows illustrate the mapping direction; 
The Dmet- and Dex-profiles reveal class-specific correlations between methylation and 
expression data which are plotted in panel (b) for genes taken from each of the Dmet-spots 
i–v. The class-averaged mean methylation and expression levels of the gene groups were 
plotted in x and y directions, respectively, each class represented by a colored dot. The error 
bars indicate the standard deviation of the sample data of each class. The dotted arrows point 
from the GCB cell to the DLBCL dots thus serving as indicator for the slope of the mutual 
association between the methylation and expression data. Note that the clockwise arrangement 
of the spots i–v in the DmetSOM transforms into counter-clockwise arrangement of the data 
cloud in the correlation plots (see Discussion section). 
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3.6. Mapping of Functional Gene Sets Indicates a Distinguished Role of PRC2 Genes 

Next, we analyzed a series of functional gene sets in an analogous fashion as the spot modules in  
the previous subsection (Figure 8). The obtained characteristics can be grouped into different patterns. 
MYC targets [33] and transcription factors (TF) associated with high gene expression levels [32] give 
rise to large expression differences between the lymphoma classes but almost negligible methylation 
effects. TFs associated with low expression levels and G-protein receptors show a similar relationship 
between expression and methylation changes where the expression levels of the lymphoma classes 
however swap their order in the correlation plot. The latter effect can be directly extracted from the areas 
of highest population densities of the genes in the DexSOM: The “high expression” genes enrich the 
lower part of the DexSOM whereas the “low expression genes” preferentially occupy areas near the left 
and right upper corners of the map (see the dotted red rectangles in Figure 8). The third group of  
PRC2-related genes gives rise to marked class-specific expression and methylation changes. Interestingly, 
the expression characteristics of the PRC2-group and of the “low expression” group are almost identical 
whereas their methylation characteristics differ largely in amplitude. It seems that the PRC2-related gene 
sets specifically select genes which change expression and methylation in a lymphoma-specific fashion 
whereas the low expression gene sets contain genes which show main effects in the expression domain 
only. This difference can be rationalized by the fact that a large fraction of these genes is affected 
“indirectly” by downstream co-regulation of gene expression without alterations of promoter methylation. 

The next group of “age related genes” can be interpreted as a subgroup of the PRC2-related and low 
expression genes which occupies essentially only the right upper region of the DexSOM. In the 
correlation plot, one sees that this restriction strongly reduces the variance of the expression values 
between the lymphoma classes whereas the alterations of methylation are similar to the PRC2-related 
gene sets. This result implies that PRC2-related genes are governed by more diverse regulation 
mechanisms of gene expression than the age-related genes. Note however that the gene set “developmental 
regulators” being part of the “age-related” group also collects genes referring to the formation of the 
polycomb complex [34]. These genes were obtained from gene expression measurements whereas the 
“ageing-associated hypermethylated genes” [35] are extracted from DNA methylation studies which 
explains the larger response of the latter ones in the methylation dimension. 

The last “CIMP”-group genes accumulate in the top left region of the DexSOM. They consequently 
share similarities with the groups of “PCR2-related” and “low expression genes” whose genes also 
accumulate in this region of the map. The methylation effect of the gene sets’ “inflammatory response” is 
small but more pronounced for the GCIMP-gene set extracted from glioma data [36]. Other CIMP- and 
GCIMP-related gene sets obtained in colorectal and in brain cancer studies, respectively, also respond 
in the methylation dimension (see Table 1). 

In summary, we found two main combined methylation/expression patterns exemplified by the  
“high-expression” and “PCR2-related” groups where only the latter is characterized by both expression 
and methylation changes. The latter group can be further split into CIMP-like and “age” related genes. 
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Figure 8. Mapping of selected functional gene sets into the methylation and expression SOM 
(see legend of Figure 7 for assignments). Gene sets were taken from [30,32–38]. The combined 
methylation-expression data group into five different patterns as indicated by the brackets 
and the designations given at the left part of the figure. An enlarged version of the correlation 
plots for selected gene sets is given in Figure S7. 
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3.7. EZH2 Targets Strongly Deregulate in Lymphoma 

EZH2 is the catalytic subunit of the PRC2 and mediates transcriptional repression through its histone 
methyltransferase activity that trimethylates H3K27 [39,40]. EZH2 is upregulated in normal GCB cells 
and it is implicated in lymphomagenesis. Its targets overlapped extensively between GCB cells and 
embryonic stem cells [39] and are preferentially trimethylated lysine 27 on histone H3- (H3K27me3, 
about 70%) and thus transcriptional inactive. EZH2 in normal GCB cells favors cellular proliferation by 
directly repressing several tumor suppressor genes, creates a repression state similar to that found in 
stem cells that might foster self-renewal and prevent premature differentiation, and maintains and 
stabilizes a transcriptional repression program already in place in naïve B-cells [37]. 

We analyzed EZH2 targets and H3K27me3-marked genes determined in hESC, (naïve) B and GCB 
(centroblasts) cells obtained by means of ChIP-chip experiments [39]. The respective sets of genes were 
mapped into our different SOMs (Figure S8). The methylation and expression characteristics of both 
EZH2 target and H3K27me3-marked genes in hESC, B and GCB cells among the systems studied here 
are very similar and closely resemble those of the PRC2-related genes (compare Figure S8 with Figure 8). 
These genes show both low expression and methylation in mBL, B and GCB cells and increased 
expression in DLBCL, IntL, FL and MM. This result suggests that transcription is repressed in 
H3K27me3-marked EZH2 targets in healthy B and GCB cells, and that repression of these targets is 
mostly maintained in mBL but at least partly turned into activation in DLBCL, IntL, FL and MM. These 
expression changes are paralleled by hypomethylation in B and GCB cells and in MM on one hand and 
hypermethylation in DLBCL and IntL on the other hand. Stratification of genes with respect to  
anti-correlation between expression of EZH2 and that of its targets [39] specifically selects genes from 
DexSOM spots E and F supporting this view because EZH2-mediated trimethylation of H3K27 is 
expected to inactivate the expression of the EZH2 target genes. Interestingly, de-novo EZH2 targets in 
centroblasts compared with naïve B-cells (NB) reverses expression levels and to a less degree also 
methylation levels in MM, B and GCB cells. It was suggested that EZH2 upregulation during the 
transition from NB cells to centroblasts reactivates a stem cell-like repression program, which is not 
present in NB cells and possibly featuring increased self-renewal and proliferative potential [39]. 

Velichutina et al. [39] also compared absolute expression levels between EZH2 targets and non-targets 
serving as reference. We found similar results, particularly a reduced mean gene expression of EZH2 
targets in all sample classes studied if one considers all EZH2 targets identified in B-cells (Figure S9). 
The difference of expression levels between targets and non-targets however largely reduces if one 
considers only EZH2 targets showing negative correlation of their expression levels with expression of 
the EZH2 gene. This difference even changes sign for targets showing positive correlations with the 
EZH2 gene expression. This result shows that total gene expression markedly varies between different 
groups of genes where the origin of this effect is not clear. The total gene expression level of EZH2 
targets changing in concert with EZH2 is the largest, for anticorrelated targets it is intermediate, and for 
targets with low correlation it is at the lowest level. Transcriptome-wide MYC hyperactivation of the 
first group, and chromatin reorganization and promoter methylation of the second and third groups, are 
potential and mutually overlapping factors that modulate total expression (see below). 
  



Genes 2015, 6 829 
 

 

3.8. Chromatin States and Their Remodeling 

Higher-order chromatin structure is emerging as an important regulator of gene expression. Alterations of 
gene expression programs can be induced by the remodeling of chromatin states which, for example, 
facilitate transcription in open regions of euchromatin, but prevent gene expression in dense packed 
regions of heterochromatin. These different states of chromatin conformation are governed by the 
arrangement of nucleosomes being the central structural elements of DNA packing in the nucleus. In 
turn, the arrangement of nucleosomes is modulated by chemical modifications of distinct amino acids in 
the side chains of the histone units forming the nucleosomes. A whole battery of such modifications and 
their combinatorial patterns are able to tune the transcriptional activity of the affected genes by influencing 
the functional state of gene’s structural elements such as enhancers and promoters, and also stages of the 
transcriptional process such as transcriptional elongation, transition, activation and repression [41]. 

To get insight into the possible mechanism of chromatin remodeling in lymphoma, we make use of 
the chromatin states identified in GM12878 lymphoblastoid cells (LBC) which imitate immature 
lymphocytes [38]. The chromatin states were calculated from ChIP-Seq data of a series of histone 
modifications using a hidden Markov model [42]. We mapped the respective chromatin regions of each 
state on the human genome and collected the genes included in each of the 11 chromatin states into one 
gene set, and then mapped them into the lymphoma methylation and expression SOMs to assess their 
methylation and expression characteristics as described above (Figure S10). 

We found close correspondence between the methylation/expression properties of groups of chromatin 
states and the groups of functional gene sets identified above: Genes with chromatin states strongly 
promoting transcription (active Txn-states), namely the states “active promoters”, “transcriptional 
elongation” and “transcriptional transition”, “weak transcription” and also the state “weak promoter” 
closely resemble the characteristics of the “high expression” gene sets shown in Figure 8. Contrarily, 
transcriptionally inactive states (“poised promoters” and “repressed promoters”) share close similarity 
with the PCR2-related gene sets. The state “heterochromatin” resembles the “low expression” gene sets. 
Note that the Txn-inactive states and “heterochromatin” show a nearly mirror symmetrical profile of 
gene expression compared with the Txn-active states with low expression levels in mBL and IntL and 
high levels in BCL (MM), non-mBL and FL. The state “strong enhancers” forms a separate group which 
differs from the functional gene sets considered. Its methylation and expression profiles virtually agree 
with that of the active Txn-states except for the expression level in mBL which turns from high activity 
in the latter states into low activity in the former one and vice versa for FL. 

Interestingly, the transcriptional inactive chromatin states (and also PRC2-related genes) show the 
largest variability of DNA methylation between the classes with lowest levels in healthy GCB and  
B-cells, intermediate levels in MM, FL and mBL, and high levels in DLBCL and IntL. Thus, they 
resemble the order of overall methylation variability shown in Figure 2. These methylation changes were 
paralleled by positively correlated alterations of gene expression. Genes located in heterochromatin 
show virtually the same class-dependence of gene expression but almost no variation in methylation. 
Hence, genes becoming activated in heterochromatin are obviously affected by other mechanisms not 
associated with methylation changes of their promoters. 

Note that the assignment of chromatin states refers to the lymphoblastoid cell line but not to the 
lymphoma classes studied here. Generally, one expects that Txn-active states show higher gene expression 
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levels than Txn-inactive states and heterochromatin. This trivial relationship implies using the mean 
transcriptional activity of the chromatin states in lymphoma as a measure to estimate the correspondence 
between the nominal chromatin state referring to lymphoblastoid cells and the real one in lymphoma. 
For an overview, we stratified the expression levels of the chromatin states in the different lymphoma 
classes into high, moderate and low levels based on the GSZ-profiles shown in Figure S10 and visualized 
them in Figure 9a: The expression level observed in GCB cells, mBL and IntL is indeed high in  
Txn-active chromatin states and low in Txn-inactive chromatin states. Thus, the real expression levels 
agree with the nominal ones suggesting global correspondence between the chromatin states in the 
reference cells and that in mBL and IntL. Contrarily, the expression levels in BCL, FL and non-mBL 
disagree with the expression levels expected for the nominal chromatin states: High expression levels in 
the lymphoma subtypes were observed for genes assigned to inactive states in the reference cells and 
reduced expression levels were observed for genes in states of high transcriptional activity of the 
lymphoblastoid cells. Hence, the expression levels observed in mBL and IntL, in GCB cells and the 
cancer cell line are in correspondence with the chromatin states in lymphoblastoid cells, whereas the 
expression levels observed in B-cells, BCL, FL, non-mBL and also tonsils contradict them. This 
switching of gene activity between these two groups of samples suggests remodeling of chromatin in 
BCL, FL and also non-mBL compared with lymphoblastoid cells and thus also with mBL, IntL and GCB 
cells. Note also that the activity patterns of B-cells, tonsils and also of BCL differs from that of GCB 
cells suggesting remodeling of chromatin between healthy (pre- and post-GC) B-cells and GCB cells. 
Moreover, the similar expression patterns of B-cells and of BCL supports the plasma cell characteristics 
of BCL differing from the characteristics of the GC-derived lymphoma subtypes. 

To assess the relationship between DNA hypermethylation in lymphoma and the chromatin states, 
we calculated the percentage of overlap-genes from the different chromatin states also found in the set 
“hypermethylated in DLBCL” taken from [15]. The overlap of hypermethylated genes is only about 10% 
for transcriptional active states but much higher (50%–90%) for transcriptional inactive states. Hence, 
activation of the latter states in DLBCL/non-mBL and FL seems to be accompanied by hyper-methylation 
of a large fraction of genes being inactive in lymphoblastoid cells, mBL and IntL. 

Finally, we transferred the expression levels of selected gene sets discussed above into the tabular 
form for direct comparison with that of the chromatin states (Figure 9b). MYC target genes are expressed 
in parallel with Txn-active states among the systems studied. This agreement suggests that the MYC 
targets are found predominantly in chromatin regions active in mBL, IntL, GCB cells, the cancer cell 
line and lymphoblastoid cells (95% overlap between MYC targets and active promoters). In contrast, 
gene sets related to inflammation and G-protein receptor activity both hypermethylated in DLBCL 
accumulate in chromatin states inactive in the reference system but activated in DLBCL, IntL, FL and 
also BCL. 

In summary, gene sets referring to distinct chromatin states in the reference cells show well 
distinguished expression and DNA methylation characteristics either agreeing or disagreeing with the 
expression level expected in the nominal chromatin states. Disagreement indicates chromatin remodeling 
in IntL and non-mBL and especially in B-cells and BCL compared with mBL and GCB cells. Hence, 
one can distinguish three groups of samples showing characteristic expression patterns of genes assigned 
to different chromatin states. They comprise (i) mBL, GCB cells and cancer cell lines; (ii) BCL, MM 
and (pre- and post-GC) B cells and (iii) IntL, DLBCL and FL. 
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Figure 9. Mean gene expression level of selected chromatin states in the lymphoma and 
reference systems (part a) and of selected gene sets (part b). Gene expression was stratified 
into high (red), moderate (green) and low (blue) levels using the respective GSZ-profiles.  
1 Chromatin states were defined in [42] with respect to the associated histone marks  
(see, e.g., Figure 1b in [42]). The most characteristic marks are in active states (e.g., active 
promoters): H3K4me3/me2, H3K27ac, H3K9ac; weak promoter: H3K4me3/me2; strong 
enhancer: H3K4me1/me2, H3K27ac, H3K9ac; weak enhancer: H3K4me1/me2; inactive states 
(e.g., inactive and poised promoters): H3K27me3, H3K4me2; heterochromatin: no mark; 
repetitive CNV: all marks; 2 gene expression levels of the chromatin states (Figure S10) and 
functional gene sets (Figure 8); 3 assignment of lymphoma classes refers to the expression 
classes introduced in Figure 6; 4 Gene sets were taken from [33] (MYC), [34] (PRC 
developmental regulators), [35] (Hypermethylated upon ageing and cancer), [15] 
(hypermethylated in DLBCL, [3,43] (inflammation and stroma) and GO (G-protein coupled 
receptor activity and signaling pathway); see also Figure 8. 
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4. Discussion 

4.1. Integrative SOM Portraying Resolves Differently Methylated and Expressed Genes and Their 
Functional Context 

Epigenetics challenges bioinformatics as it requires integration of data of different omics realms to 
resolve the interplay between regulatory mechanisms on genomic, epigenomic, methylomic, transcriptional 
and translational levels. Our study focused on gene expression and DNA methylation data stratified with 
respect to different histological and molecular subtypes of lymphoma and healthy controls to discover 
epigenetic mechanisms of tumor genesis and progression. We applied SOM machine learning to the 
data, a powerful technique to “organize” complex, multivariate data. Using centralized methylation and 
expression data we identified clusters of co-methylated and of co-expressed genes among the samples 
studied, which we call “spot-modules” because of their spot-like appearance in the SOM-portraits. 

Mutual correlation plots between the mean expression and methylation levels of the genes of each of 
the spot-modules revealed different patterns with impact for underlying epigenetic mechanisms of 
genomic regulation (Figure 10). We identified groups of genes mostly affected by methylation with only 
tiny expression changes (e.g., DmetSOM-spots iii and iv and DexSOM-spot G), vice versa, groups of 
genes with almost invariant methylation levels but strongly varied expression (e.g., DmetSOM-spots ii 
and DexSOM-spots D and E), and groups with strong positive (spots i, v and H and J) and negative (e.g., 
spots iii, A and I) correlations between expression and methylation levels in the different sample classes. 
Moreover, the Dmet- and DexSOM disentangle genes systematically hyper- and hypomethylated and/or 
over- and underexpressed in lymphoma compared with healthy B and GCB cells (see Figure 10). Hence, 
SOM portraying served as an effective sorting machine to extract different modes of co-regulation 
between expression and methylation mechanisms specifically characterizing lymphoma and differentiating 
also between the lymphoma subtypes. 

 

Figure 10. Cont. 
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Figure 10. Integrative view on differential methylation and gene expression in lymphoma 
and on the related functional context. Spot modules of co-methylated genes were extracted 
from the DmetSOM (part a) and spot modules of co-expressed genes from the DexSOM (b). 
The class-specific correlation plots for each spot reveal systematic methylation and expression 
changes in both maps many of them being associated with functional gene sets. Especially, 
differential methylation and expression with respect to healthy controls (B-cells and GCB 
cells, see red dotted circles) as well as systematic differences between lymphoma subtypes 
(e.g., mBL, DLBCL and MM) were sorted in a systematic fashion in both SOM maps. 

To assign the functional meaning to the spot modules, especially in the context of underlying 
epigenetic mechanisms, we applied enrichment analysis using a multitude of pre-defined gene sets 
related to categories such as biological function (e.g., inflammation, cell development and ageing), 
targets of different transcription factors (e.g., MYC, high and low expression TFs) and epigenetic 
modulators (e.g., EZH2, SUZ12; PRC2), different chromatin states in reference lymphoblastoid cells and 
also genes differently expressed and methylated in other cancers (e.g., CIMP and GCIMP genes in 
colorectal cancer and glioma, respectively). Interestingly, we found pronounced similarities of the 
expression and methylation signatures of gene sets from different categories in the lymphoma data which 
indicate there are mutual relationships between them. Particularly, the spot-modules can be sorted 
roughly into four main groups (see Figure 10): 

• Group 1 is enriched in PRC2 and EZH2 targets, related to transcriptionally inactive states in LBC 
and shows strong variation in expression and methylation levels being hypermethylated and 
overexpressed in lymphoma compared with the controls; 
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• Group 2 comprises transcriptionally active chromatin states, TFs related to highly expressed genes 
and MYC targets. It promotes cell proliferation and shows strong expression changes especially 
between mBL on high and the controls on low levels, but virtually no differential methylation; 

• Group 3 accumulates mostly in the top right part of DexSOM and contains ageing and developmental 
genes, and low expression TF genes. It overlaps with group 1 with respect to the enriched chromatin 
states and part of the PRC2 and EZH2 targets. Expression of these genes is down regulated in 
lymphoma compared with the controls but the methylation can differ in both directions; 

• Group 4 accumulates in the top left part of the DexSOM and contains CIMP/GCIMP genes, genes 
related to inflammation and stroma, SMARCA4 targets and another part of the PRC2 and EZH2 
targets. These genes are strongly upregulated in DLBCL, IntL and partly FL, and downregulated 
in the controls and BL. They show moderate methylation changes being slightly hypermethylated 
in lymphoma. 

4.2. Dynamic Regulation of Epigenetic Landscapes in Lymphoma and during B-Cell Development 

Figure 11 schematically illustrates and summarizes our results in the light of B-cell and lymphoma 
biology. Healthy B-cells pass essentially three relevant compartments, the dark and light zone of  
the GC and “outside-of-the-GC” which subsumes plasma, lymph node and also bone marrow (see also 
Figure 1). The associated types of B-cells can transform into the different lymphoma classes as illustrated 
by the red arrows in Figure 11a. The triangular shape of the scheme is motivated by the three different 
types of lymphoma classes which point to similarities with GC dark zone (DZ) B-cells in terms of 
proliferative activity, GC light zone (LZ) B-cells in terms of inflammatory signatures, and pre- and  
post-GCB cells in terms of (healthy) B-cell signatures (see also [5,6]). 

The colored “ramps” code for alterations in gene expression and/or methylation between the lymphoma 
classes which associate with the groups of genes defined in the previous subsection and which were 
specified with respect to changing chromatin states (Figure 11b). Group 1 genes give rise to increasing 
differential expression and methylation between lymphoma and healthy B-cells with the largest effect 
in DLBCL. We suggest that the strong alterations in gene expression manifest chromatin remodeling 
from PRC-repressed and poised chromatin states into active ones associated with hypermethylation in 
lymphoma. Hence, group 1 genes are obviously of central importance for a mechanism of lymphomagenesis 
transforming healthy GCB cells into malignant ones. Recall that the largest differential effect of these 
genes in gene expression and methylation is observed for DLBCL. Along the axis linking mBL and 
DLBCL the expression changes are counterbalanced by group 2 genes which strongly upregulate in mBL 
compared with DLBCL almost without methylation changes. Presumably this trend is mainly caused by 
the activation of MYC in mBL (and also selected MYC-positive IntL cases) which, in turn, amplifies the 
expression of already transcribed genes giving rise to a sort of hyperactivation of the transcriptional state 
without strong DNA-methylation effects and chromatin remodeling. Group 3 and 4 genes mainly 
differentiate between DLBCL and MM, however, in opposite directions. Both groups show alterations 
in gene expression and methylation as well, and thus partly resembling group 1 genes in their molecular 
determinants. Particularly, group 1, 3 and 4 genes contain PRC2 and EZH2 targets showing that 
repressed and poised promoter states play a pivotal role in cell fate decisions of GCB cells and in their 
transformation into cancerogenic states. 
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Figure 11. Scheme illustrating lymphoma heterogeneity with respect to their cell of origin 
and groups of affected genes (part (a)). Different lymphoma subtypes can originate from 
GCB cells located in the dark zone of the germinal centre (centroblasts), from its light zone 
(centrocytes) or from maturated plasma B cells as indicated by the dotted red arrows;  
Part (b) illustrates the associated chromatin states and their remodeling due to altering 
histone modifications affecting transcription. The green ramp codes increasing expression 
and methylation associated with chromatin remodeling from inactive and poised to active 
states. The light red ramp codes increasing expression without methylation changes either 
due to chromatin remodeling from hetero- to euchromatin or due to MYC hyperactivation. 
Gene groups are specified in Figure 10. 
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B-cells employ epigenetic mechanisms to generate effective memory responses resembling epigenetic 
reprogramming of stem cells upon cell fate decisions. Particularly, the transition from naïve B-cells 
permits GCB cells to generate the differential response to antigenic challenges and to differentiate toward 
plasma cell fates. Deregulation of the underlying epigenetic determinants such as DNA methylation [7] 
and/or chromatin activity states can be assumed to potentially disturb or even to prevent normal 
differentiation of B-cells leading to malignant lymphomas. 

Note that not only the transition between naïve B and GCB cells requires alterations of the cellular 
programs but also the polarization of transcriptional programs between LZ and DZ in normal GCB cells 
suggests that environmental cues encountered by B-cells when moving between GC compartments 
determine their phenotype [44–46]. Normal LZ and DZ GCB cells represent alternating states of the 
same cell population. Hence, the transition between naïve B-cells and GCB cells and between DZ and 
LZ and vice versa requires a certain degree of plasticity of the underlying transcriptional programs to 
switch between the underlying more proliferative centroblastic and the more inflammatory centrocytic 
B-cell phenotypes. 

Many promoters in embryonic stem cells harbor a distinctive histone modification signature that 
combines the activating histone H3 lysine 4 trimethylation (H3K4me3) mark and the repressive 
H3K27me3 mark. These bivalent domains are considered to poise expression of developmental genes, 
allowing timely activation while remaining repressed in the absence of differentiation signals [47]. 
Hence, bivalent domains and associated chromatin-modifying complexes safeguard proper and robust 
differentiation. In view of this basal mechanism, it appears not surprisingly that bivalent chromatin states 
in the reference lymphoblastoid cells are strongly affected by expression and methylation changes 
observed in group 1, 3 and 4 genes. These bivalent promoters possibly ensure the plasticity of the genome 
to switch between the functional requirements in the different compartments of the GC. Moreover, it 
was previously shown that genes de novo methylated in lymphoma subtypes are enriched for PCR2 
targets in embryonic stem cells showing that lymphoma share a similar stem cell-like epigenetic pattern 
either because lymphoma originate from cells with stem cell features or because stemness is acquired 
during lymphomagenesis by epigenetic remodeling [8]. 

Recent studies suggest that EZH2 upregulation during the transition of naïve B-cell to proliferating 
GCB cell (centroblast) reactivates this stem cell-like repression program not present in naïve B-cells and 
possibly featuring increased self-renewal and proliferative potential. This program accomplishes a 
proliferative function in GCB cells which makes them prone for malignant transformation into 
lymphoma [39]. Moreover, PCR2-mediated repression seems to be almost independent of DNA 
methylation in normal B-cells (including proliferating centroblasts). However, in lymphoma, DNA 
methylation of these genes clearly changes, where many hypermethylated genes are targeted by PCR2 
also found in stem cells [8] and centroblasts [39]. The authors of the latter paper hypothesize that 
lymphoma cells may have achieved a selective advantage by recruiting DNA methyltransferases to 
PCR2-bound or/and H3K27me3-marked promoters and that increased promoter DNA methylation may 
consolidate and stabilize PCR2-mediated repression of one or several of the tumor suppressors targeted 
by PCR2 or make them less capable of responding to anti-oncogenic signals [37]. However, methylation 
in the promoters of PCR2 genes can also associate with the opposite effect by destabilizing inactive 
chromatin states and thus promoting their remodeling into active ones, e.g., in group 3 genes in DLBCL. 
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Our analysis suggests also the parallel remodeling of heterochromatin into transcriptionally active 
euchromatin without clear alterations of the methylation of the promoters of the involved genes. 

5. Conclusions 

From a methodical viewpoint our study shows, that combined SOM portraying of expression and 
methylation data together with function mining using a battery of gene sets provides detailed insights 
into the regulatory landscape affecting the transcriptome and methylome and delivers a hypothesis for 
epigenetic mechanisms of lymphomagenesis. Our analysis is based on unmatched data sets with respect 
to the cancer cases used. We expect considerable improvement of the method for matched data sets. 

Our study confirms previous results about the role of stemness genes during development and maturation 
of B-cells and the dysfunction of these regulatory programs in lymphoma presumably locking them in 
more proliferative or more immune-reactive states referring to GCB cell functionalities in the dark and 
light zone of the GC. These dysfunctions are governed by epigenetic effects altering the promoter 
methylation of the involved genes, their activity status as moderated by histone modifications and also 
by higher-order chromatin structures which emerge as an important regulator of gene expression. 
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