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A B S T R A C T   

Quorum sensing inhibitors (QSIs), as a kind of ideal antibiotic substitutes, have been recommended to be used in 
combination with traditional antibiotics in medical and aquaculture fields. Due to the co-existence of QSIs and 
antibiotics in environmental media, it is necessary to evaluate their joint risk. However, there is little information 
about the acute toxicity of mixtures for QSIs and antibiotics. In this study, 10 QSIs and 3 sulfonamides (SAs, as 
the representatives for traditional antibiotics) were selected as the test chemicals, and their acute toxic effects 
were determined using the bioluminescence of Aliivibrio fischeri (A. fischeri) as the endpoint. The results indicated 
that SAs and QSIs all induced S-shaped dose-responses in A. fischeri bioluminescence. Furthermore, SAs possessed 
greater acute toxicity than QSIs, and luciferase (Luc) might be the target protein of test chemicals. Based on the 
median effective concentration (EC50) for each test chemical, QSI-SA mixtures were designed according to 
equitoxic (EC50(QSI):EC50(SA) = 1:1) and non-equitoxic ratios (EC50(QSI):EC50(SA) = 1:10, 1:5, 1:0.2, and 1:0.1). It 
could be observed that with the increase of QSI proportion, the acute toxicity of QSI-SA mixtures enhanced while 
the corresponding TU values decreased. Furthermore, QSIs contributed more to the acute toxicity of test binary 
mixtures. The joint toxic actions of QSIs and SAs were synergism for 23 mixtures, antagonism for 12 mixtures, 
and addition for 1 mixture. Quantitative structure–activity relationship (QSAR) models for the acute toxicity 
QSIs, SAs, and their binary mixtures were then constructed based on the lowest CDOCKER interaction energy 
(Ebind-Luc) between Luc and each chemical and the component proportion in the mixture. These models exhibited 
good robustness and predictive ability in evaluating the toxicity data and joint toxic actions of QSIs and SAs. This 
study provides reference data and applicable QSAR models for the environmental risk assessment of QSIs, and 
gives a new perspective for exploring the joint effects of QSI-antibiotic mixtures.   

1. Introduction 

The abuse of antibiotics has contributed to the severe problem of 
bacterial resistance, which threatens the ecological environment and 
human health (Darby et al., 2023; Shao et al., 2021). Seeking ideal 
antibiotic alternatives is regarded as an effective strategy for controlling 

the wide spread of bacterial resistance. Quorum sensing inhibitors 
(QSIs), as a kind of new antibiotics, take the quorum sensing (QS) of 
bacteria as the target (Kalia, 2013; Zhou et al., 2020). They could 
interfere with biofilm formation, virulence factor production, or path-
ogenic gene expression (Carradori et al., 2020; Cui et al., 2020). Due to 
the low selection pressure on microbial growth, QSIs are considered to 
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be suitable antibiotic substitutes for protecting humans, economical 
crops, and aquatic organisms from pathogens (Díaz et al., 2020; Kalia 
et al., 2019). Furthermore, QSIs have been recommended to be used in 
combination with traditional antibiotics, which could not only enhance 
the antibacterial efficacy of QSIs but also reduce the usage of traditional 
antibiotics (Bai et al., 2022; Ning et al., 2021). Therefore, QSIs and 
antibiotics possibly enter environmental media simultaneously, and 
exist as a mixture form (Li et al., 2021). The joint effects of QSIs and 
antibiotics should be paid enough attention in the fields of toxicology 
and environmental risk assessment. 

Over the past several decades, a lot of researches have reported the 
joint effects of QSIs and antibiotics (such as sulfonamides (SAs), tetra-
cyclines, quinolones, aminoglycosides, and other β-lactams) when 
setting bacteria as the test organisms (e.g., Aliivibrio fischeri (A. fischeri), 
Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, Staphylococcus 
aureus) (Bernabè et al., 2021; Haque et al., 2021; Mangal et al., 2022; 
Odularu et al., 2022; Rezzoagli et al., 2020; Wang et al., 2016). How-
ever, these studies paid more attention to the antibacterial efficacy, and 
the corresponding toxicological evaluation was usually based on the 
chronic exposure. There is little information regarding the acute toxicity 
for the mixtures of QSIs and antibiotics. Acute toxicity could give the 
most comprehensive data of species sensitivity for chemicals or pollut-
ants, which plays a pivotal role in environmental risk assessment (Wang 
and Wang, 2021). In China, USA, EU, and some other countries, acute 
toxicity data has been used as the fundamental parameter to estimate 
chemical’s safety concentration and risk threshold when setting criteria 
about environmental protection or management (Naveira et al., 2021; 
Stubblefield et al., 2020; Yang et al., 2014). In addition, most toxico-
logical studies usually focused on the fixed ratio of QSI and antibiotic in 
the mixture (Wang et al., 2018a; Wang et al., 2016). QSIs and antibiotics 
may co-exist at different ratios in the environment. Hence, it is necessary 
to investigate the acute toxicity for the mixtures of QSIs and antibiotics 
at different ratios, which will contribute to clarifying the environmental 
risk of their mixtures. 

The luminescent bacteria A. fischeri has been widely used as the 
model organism in both acute and chronic toxicity assessments of 
chemicals (Abbas et al., 2018; Parvez et al., 2006), because its biolu-
minescence is sensitive to external changes, is convenient, and allows 
rapid evaluation (Mirjani et al., 2021). In previous studies, the hormetic 
effects of exogenous chemicals on A. fischeri bioluminescence have been 
frequently reported in chronic toxicity determination (Sun et al., 2020; 
You et al., 2016), which are characterized by low-dose stimulation and 
high-dose inhibition. These biphasic dose-responses are typically rep-
resented as J-shaped or inverted U-shaped curves (Agathokleous et al., 
2023b; Calabrese et al., 2020). The hormetic phenomenon is challenging 
the central beliefs in the toxicity evaluation and environmental risk 
assessment of pollutants, including endpoint selecting, concentration- 
range setting, exposure time optimizing, and mechanism exploring 
(Agathokleous et al., 2023a; Agathokleous et al., 2023b). Moreover, 
mechanistic exploration reveals that the hormetic phenomenon of 
A. fischeri bioluminescence possibly results from the acting of exogenous 
chemicals on the QS system of bacteria (Sun et al., 2018), and the 
variation for the modes of actions of component with the dose contrib-
utes to the heterogenous pattern of joint toxic action for pollutant 
mixtures (Sun et al., 2018). Hence, it is crucial to explore if A. fischeri 
bioluminescence demonstrates hormetic phenomena when subjected to 
acute exposures of QSIs, antibiotics, and their mixtures. In addition, 
quantitative structure–activity relationship (QSAR) is an effective tool 
for linking chemical toxicity with molecular structure, which could not 
only predict the toxic effects of chemicals or mixtures but also provide 
convincing support for corresponding mechanistic exploration (Abra-
menko et al., 2020; Chatterjee and Roy, 2021; Yang et al., 2021). 
Therefore, the QSAR models could help to reveal the critical factors for 
the acute toxicity for the mixtures of QSIs and antibiotics, and mean-
while make their toxicity and risk estimation more convenient and 
efficient. 

As typical QSIs, furanones, pyrroles, and pyrrolidones have been 
widely used in agriculture, medicine, and food industry (Husain et al., 
2019; Jeelan et al., 2022). Here, six furanones, three pyrroles, and one 
pyrrolidone were selected as the test QSIs. SAs were set as the repre-
sentatives for traditional antibiotics due to their common use in live-
stock breeding and frequent detection in the environment (Cheong et al., 
2020; Zuo and Ai-yun, 2021). The objectives of this study were: (1) to 
determine the acute toxicity of single QSIs and SAs to A. fischeri biolu-
minescence and design their mixtures at equitoxic and non-equitoxic 
ratios; (2) to test the combined toxicity of QSIs and SAs; (3) to 
construct QSAR models for the individual and combined toxicity using 
suitable structural descriptors of QSIs and SAs and the component pro-
portion in binary mixtures; and (4) to judge the joint toxic actions be-
tween QSIs and SAs at equitoxic and non-equitoxic ratios based on the 
observed values for the median effective concentration (EC50) and the 
predicted EC50 values from the QSAR models. 

2. Materials and methods 

2.1. Chemicals and organism 

10 QSIs and 3 SAs were purchased from Sigma-Aldrich co. LLC. (St. 
Louis, MO, USA). Table 1 lists their detailed information. The test 
chemicals were diluted with 2 % (w/v) NaCl solution to appropriate 
concentrations for toxicity test. DMSO was used to improve the solubi-
lity of chemicals, and the final concentration of DMSO was less than 0.1 
% (v/v) in the diluted samples. A. fischeri (ATCC7744) was bought from 
the American Type Culture Collection (Manassas, VA, USA). The freeze- 
dried bacterium was then reconstituted and maintained on agar slants at 
4 ◦C. The F3 generation was used in subsequent tests to guarantee the 
adequate cell viability and stable bioluminescence. 

2.2. Toxicity determination 

The acute toxicity of test chemicals on A. fischeri bioluminescence 
were measured using the microplate toxicity assay (Sun et al., 2020). 
Previous studies have indicated that the residual level of SAs exceed 1 
µg/L in some rivers and lakes (Kergoat et al., 2021; Kulik et al., 2023). 
With the constant application of QSIs, their environmental concentra-
tions will be at non-negligible levels (Shen et al., 2021). Based on the 
environmental residual, the application prospect, and the results from 
preliminary experiment, the test concentrations for QSIs and SAs were 
set as listed in Table S1. In each test, there were 16 concentration points 
with fixed equal log dose interval between adjacent concentrations. 
Each well contained 80 μL test chemical, 80 μL 2 % (w/v) NaCl solution, 
and 40 μL readily prepared A. fischeri. The control group was prepared 
by replacing the test chemical with 2 % (w/v) NaCl solution. All treat-
ment and control groups were conducted in quintuplicate. The non- 
transparent 96-well microplate was then incubated at 22 ◦C for 15 
min, and the relative light unit (RLU) was determined on Mithras LB 940 
microplate reader (Berthold Technologies, Germany). The inhibition of 
test chemical on A. fischeri bioluminescence was calculated as: 

Inhibition (%) =

(

1 −
It

Ic

)

× 100% (1)  

where It and Ic respectively were the average RLU values in the treat-
ment and control groups. The EC50 value for each chemical was then 
computed based on the decrease in RLU using a probit model. The binary 
mixtures of QSIs and SAs were designed according to the equitoxic ratio 
(EC50(QSI):EC50(SA) = 1:1) and non-equitoxic ratios (EC50(QSI):EC50(SA) =

1:10, 1:5, 1:0.2, and 1:0.1) of EC50 values for single chemicals (Hamid 
et al., 2020; Tian et al., 2013), and their combined toxicity was tested 
using the above method. The test concentrations for each binary mixture 
are shown in Table S2. 
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Table 1 
Detailed information on the test chemicals.  

Class Chemical name Abbreviation CAS Structure Relative molecular 
weight (g/mol) 

Mean EC50  

± SDa 

(mol/L) 

Ebind-Luc
b 

(kcal/ 
mol) 

Furanone 2,2-Dimethyl-3(2H)-furanone 22D3F 35298- 
48-7 

112.13 (6.76 ±
0.99) × 10− 4  

− 17.37 

Furanone 2(5H)-Furanone 2F 497-23-4 84.07 (4.47 ±
0.96) × 10− 3  

− 15.88 

Furanone 2-Methyltetrahydro-3- 
furanone 

2M3F 3188-00- 
9 

100.12 (1.86 ±
0.25) × 10− 3  

− 17.08 

Furanone Benzofuran-3(2H)-one B3O 7169-34- 
8 

134.13 (2.95 ±
0.36) × 10− 3  

− 15.47 

Furanone (S)-(− )-5-Hydroxymethyl-2 
(5H)-furanone 

S5H2F 78508- 
96-0 

114.10 (4.90 ±
0.73) × 10− 3  

− 19.63 

Furanone γ-Valerolactone γV 108-29-2 100.12 (3.55 ±
0.47) × 10− 3  

− 19.70 

Pyrrole 1-Pyrrolidino-1-cyclohexene 1P1C 1125-99- 
1 

151.25 (2.88 ±
0.60) × 10− 4  

− 20.12 

Pyrrole (R)-3-Pyrrolidinol R3P 2799-21- 
5 

87.12 (8.13 ±
1.12) × 10− 4  

− 19.08 

Pyrrole (S)-(+)-2-Pyrrolidinemethanol S2P 23356- 
96-9 

101.15 (1.10 ±
0.26) × 10− 3  

− 18.64 

Pyrrolidone 2-Pyrrolidone-5-carboxylic 
acid 

2P5CA 149-87-1 129.11 (7.24 ±
1.27) × 10− 4  

− 20.17 

Sulfonamide Sulfachloropyridazine SCP 80-32-0 284.72 (6.46 ±
0.92) × 10− 5  

− 27.92 

Sulfonamide Sulfisoxazole SIX 127-69-5 267.30 (2.51 ±
0.35) × 10− 5  

− 30.43 

Sulfonamide Sulfamethoxazole SMX 723-46-6 253.28 (1.10 ±
0.16) × 10− 4  

− 25.85 

aMean EC50 ± SD represents the mean of the median effective concentration (EC50) for test chemical and the corresponding standard deviation (SD) of five replicate 
experiments. 
bThe lowest CDOCKER interaction energy between test chemical and luciferase. 
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2.3. Molecular docking 

The bioluminescence of A. fischeri is derived from the bioluminescent 
reaction that catalyzed by luciferase (Luc) (Tian et al., 2022): 

FMNH2 + O2 + RCHO ̅̅̅̅̅̅ →
Luciferase FMN + RCOOH + H2O + hν (2)  

where Luc binds FMNH2 followed by molecular oxygen and RCHO to 
form an excited-state complex, which then falls into its ground-state and 
decomposes into Luc, FMN, RCOOH, water, and redundant energy 
released as light (490 nm). Therefore, the Luc enzyme was set as the 
possible target protein for test chemicals in this study. The crystal 
structure of receptor protein Luc (PDB ID: 3FGC) in A. fischeri was 
downloaded from the RCSB Protein Data Bank (https://www.rcsb.org/). 
The structures of QSIs and SAs were acquired from Chemical Book 
(https://www.chemicalbook.com/). The docking simulation was con-
ducted through Discovery Studio 3.1 (DS, Accelrys Software, San Diego, 
CA, USA) using the CDOCKER protocol with default parameters. The 
lowest CDOCKER interaction energy (Ebind-Luc) between Luc and each 
chemical was obtained to exhibit their binding affinity that corre-
sponded to the most stable conformation (Gupta et al., 2021; Pan et al., 
2021). 

2.4. QSAR model development 

QSAR models were developed for the EC50 values of single chemicals 
and binary mixtures using univariate and multiple linear regressions in 
SPSS 19.0 (SPSS Inc. Chicago, IL, USA). The obtained Ebind-Luc was set as 
the structural descriptor for each chemical. With regard to regression- 
based QSAR models, the statistical quality of the fitted equations was 
evaluated using the correlation coefficient (R2), significant level (P), 
Fischer F-ratio (F), and root mean standard error (RMSE). Meanwhile, 
internal and external validations were conducted to estimate the pre-
dictive capability and the goodness of fitness of QSAR models. The cross- 
validation was used for internal validation via leave-one-out (LOO) 
method and the corresponding metrics Q2

loo was calculated by the 
following equation (Sun et al., 2019; Wylie and Korchevskiy, 2022): 

Q2
loo = 1 -

∑
(yi − yi)

2

∑
(yi- ymean)

2 (3)  

where yi and yi refer to the actual and predicted values of dependent 
variables in the training sets, respectively; ymean represents to the 
average of all dependent variables in the training sets. The statistical 
parameter Q2

F1 was employed for external validation, which was 
calculated by the following equation (Nandi et al., 2018): 

Q2
F1 = 1 -

∑(
Yi- Yi

)2

∑
(Yi- ymean)

2 (4)  

where Yi and Yi are the actual and predicted values of dependent vari-
ables in the test sets, respectively. 

2.5. Applicability domain analysis 

According to the OECD principle 3 “a defined domain of applica-
bility”, the applicability domain (AD) was considered to define the scope 
and limitations of the developed QSAR models. The AD of a QSAR model 
is defined by the corresponding modeling descriptors, which indicates a 
definite chemical space of the training data (Chatterjee and Roy, 2021). 
Here, the structural AD of the developed QSAR models was assessed 
based on the leverage approach and Williams plot (Cao et al., 2020; Peng 
and Picchioni, 2020). First, the Hat Matrix (H) was defined as: 

H = X
(
XTX

)-1XT (5)  

where X denoted the molecular descriptors. Thus, the leverage value was 
then obtained. Second, the structural boundary line h* value was 
calculated by: 

h*
=

3(p + 1)
n

(6)  

where p presented the number of modeling descriptors, and n was the 
number of training compounds. Third, the prediction outlier was iden-
tified via the standardized residual method, and the corresponding δ 
value was calculated from: 

δ =
yobs - ypred

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑(

yobs- ypred

)2
/

(n ​ − ​ p − 1)

√ (7)  

where yobs and ypred respectively referred to the observed and predicted 
toxicity value. Fourth, the Williams plot that standardized residual 
versus leverage value was depicted, where AD was displayed with two 
horizontal lines (δ = ± 3) and one vertical line (h* value). When 
chemicals were within the AD, the corresponding predictions were 
considered to be reliable and credible. 

2.6. Joint toxic action judgment 

Toxic unit (TU) was applied to characterize the combined toxicity of 
QSIs and SAs (Shen et al., 2021; Zhu et al., 2020): 

TU =
cQSI

EC50(QSI)
+

cSA

EC50(SA)
(8)  

where cQSI and cSA respectively denoted the concentrations of QSI and 
SA in the binary mixture that provoked the median inhibition on the 
bioluminescence; EC50(QSI) and EC50(SA) were the EC50 values for single 
QSI and SA, respectively. The joint toxic action was judged: TU < 0.8 
indicated the synergistic effect between QSI and SA; 0.8 ≤ TU ≤ 1.2 
demonstrated that QSI and SA possessed the additive effect; and 1.2 <
TU showed that the joint toxic action between QSI and SA was antag-
onism. For synergistic effect (TU < 0.8), the smaller the TU value was, 
the stronger the synergism was. For antagonistic effect (1.2 < TU), the 
larger the TU value was, the stronger the antagonism was. In this study, 
the heatmap that corresponded to the TU value was delineated to reflect 
the joint toxic action between QSI and SA in all binary mixtures. The 
synergistic and antagonistic effects were displayed in contrasting colors, 
and the additive effect was expressed in white. 

3. Results and discussion 

3.1. Acute toxicity of single QSIs and SAs 

It was found that all test QSIs and SAs inhibited the bioluminescence 
of A. fischeri in 15 min exposure, and the dose-responses all exhibited S- 
shape (Fig. S1). Table 1 and Fig. 1A respectively show the EC50 and 
− logEC50 values for the acute toxicity of QSIs and SAs. The − logEC50 
values for test chemicals ranged from 2.31 to 4.60, and the corre-
sponding order was as follows: SIX > SCP > SMX > 1P1C > 22D3F >
2P5CA > R3P > S2P > 2M3F > B3O > γV > 2F > S5H2F. It was obvious 
that SAs induced greater toxic effects than QSIs. Furthermore, 1P1C and 
22D3F were respectively the most toxic chemicals among test pyrroles 
and furanones. 

The J-shaped hormetic dose-responses of QSIs and SAs to A. fischeri 
bioluminescence could be observed in chronic toxicity tests, where the 
exposure time was usually set at 24 h (Sun et al., 2020; You et al., 2016). 
As reported in previous studies, the maximum stimulation of QSIs and 
SAs could be larger than 100 % and 50 %, respectively (Sun et al., 2020; 
You et al., 2016). Comparing the acute (15 min) and chronic (24 h) 
toxicity values, it could be found that the acute toxicity of each QSI was 
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usually larger than its chronic toxicity, while the SA’s acute toxicity was 
less than its chronic toxicity (Sun et al., 2020; You et al., 2016). For 
example, − logEC50 values for B3O in acute and chronic toxicity were 
2.53 and 1.86, respectively; EC50 for SIX were respectively 2.51 × 10− 5 

mol/L and 1.32 × 10− 5 mol/L in 15 min and 24 h exposure. In chronic 
toxicity test, modified-marine photobacterium broth was added into the 
culture system to provide sufficient nutrients for the growth and meta-
bolism of A. fischeri. The continuous proliferation of A. fischeri in 24 h 

Fig. 1. (A) The acute toxicity of single QSIs and SAs to A. fischeri bioluminescence. The mean value (the black line) and the standard deviation (the upper and lower 
limits of the diamond) of − logEC50 for each chemical were calculated from 5 replicates; (B and C) the optimal docked position of 22D3F with Luc (3D) and the 
interactions with surrounding amino acids (2D); and (D and E) the optimal docked position of SIX with Luc (3D) and the interactions with surrounding amino acids 
(2D). Abbreviations: QSIs, quorum sensing inhibitors; SAs, sulfonamides; A. fischeri, Aliivibrio fischeri; EC50, median effective concentration; Luc, luciferase; 22D3F, 
2,2-Dimethyl-3(2H)-furanone; 2F, 2(5H)-Furanone; 2M3F, 2-Methyltetrahydro-3-furanone; B3O, Benzofuran-3(2H)-one; S5H2F, (S)-(− )-5-Hydroxymethyl-2(5H)- 
furanone; γV, γ-Valerolactone; 1P1C, 1-Pyrrolidino-1-cyclohexene; R3P, (R)-3-Pyrrolidinol; S2P, (S)-(+)-2-Pyrrolidinemethanol; 2P5CA, 2-Pyrrolidone-5-carboxylic 
acid; SCP, sulfachloropyridazine; SIX, sulfisoxazole; SMX, sulfamethoxazole. 
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activated the QS system, and thus QSIs and SAs could act on the QS 
signaling pathways to stimulate the bioluminescence (Sun et al., 2018). 
Because there was no additional nutrition constituent in the acute 
toxicity test, the growth of A. fischeri was limited under 15 min exposure. 
In these circumstances, QSIs and SAs could not stimulate the biolumi-
nescence by provoking the QS system and inhibit the bioluminescence 
by binding to their target proteins. Hence, significant differences were 
observed in the acute and chronic toxicity of QSIs and SAs, especially in 
the manifestation of hormesis. 

Previous studies have suggested that exogenous chemicals probably 
act on the Luc enzyme to trigger acute toxic effects on A. fischeri 
bioluminescence (Fan et al., 2020). Using the active site of Luc that 
catalyzed the bioluminescent reaction as the active pocket, the molec-
ular docking was conducted between Luc and each chemical. 22D3F and 
SIX were respectively selected as the representatives for QSIs and SAs. 
The optimal docked positions of these two chemicals with Luc (3D) and 
their interactions with surrounding amino acids (2D) are depicted in 
Fig. 1B-1E. Fig. S2 displays the docking results of rest chemicals with 
Luc. It could be observed that test chemicals bind tightly to Luc, and van 
der Waals force, hydrogen bond, and hydrophobic bond were the main 
interaction types (Table S3). Furthermore, the bound amino acids in the 
active pocket, such as CYS106, LEU42, and LEU109, have been clarified 
the pivotal role in exhibiting the catalytic activity of Luc in previous 
studies (Giuliani et al., 2021; Kim et al., 2018; Tinikul and Chaiyen, 
2016; Yao et al., 2023). Hence, it could be speculated that QSIs and SAs 
might act on the active site of Luc to induce acute toxicity to A. fischeri 
bioluminescence. 

Ebind is a key descriptor to reflect the strength of interaction between 
biomacromolecule and ligand (Wang et al., 2018b). In general, the 
smaller the Ebind is, the stronger the interaction is. Table 1 lists the Ebind- 

Luc values between test chemicals and Luc. While the Ebind-Luc values for 
QSIs ranged from − 20.17 to − 15.47 kcal/mol, the Ebind-Luc values for 
SCP, SIX, and SMX were respectively − 27.92, − 30.43, and − 25.85 kcal/ 
mol. The smaller Ebind-Luc values for SAs might result from the greater 
number of bonds, indicating the stronger interactions between SAs and 
Luc. These docking results might account for the larger acute toxicity of 
SAs than QSIs. 

3.2. QSAR model for the acute toxicity of single chemicals 

To further validate the vital role of acting on Luc in triggering acute 
toxicity to A. fischeri bioluminescence, QSAR model was constructed for 
the acute toxicity of test chemicals using Ebind-Luc as the structural 
descriptor: 

− logEC50 = 0.330 − 0.140 × Ebind− Luc (9)  

n = 10, R2 = 0.769, RMSE = 0.347, F = 30.880, P < 0.001, Q2
loo = 0.737, 

RMSEloo = 0.351, Q2
F1 = 0.768, RMSEP = 0.202. 

As shown in Equation (9), the R2 of QSAR model was 0.774 (>0.60), 
indicating high goodness-of-fit of the model (Xiao et al., 2015). 
Furthermore, Q2

loo and Q2
F1 values were greater than 0.50, which sug-

gested that the model has good robustness and predictive ability (Gol-
braikh and Tropsha, 2002; Lavado et al., 2022). Fig. 2A depicts the 
scatter plots of the experimental − logEC50 value versus the predicted 
− logEC50 value of the QSAR model. All scatters distributed near the 
trend line, suggesting the good predictive ability of the model. More-
over, the AD of QSAR model was characterized by Williams plot 
(Fig. 2B). Every absolute standard residual for the training and test sets 
was lower than 3, demonstrating that there were no outliers. The 
leverage values for both the training and test sets were all smaller than 
the warning value (h* = 2.0), indicating the robust representativeness of 
the training set (Cheng et al., 2022). Hence, the constructed QSAR 
model for the acute toxicity of test chemicals met the requirements for a 
QSAR model’s regulator application according to OECD guidelines. 
These results further verified that Luc was the target protein of the test 
chemicals when resulting in the acute inhibition on A. fischeri 
bioluminescence. 

3.3. Acute toxicity of binary mixtures for QSIs and SAs at equitoxic ratio 
and its QSAR model 

Given the co-existence of QSIs and SAs in the environment, the acute 
toxic effects of their mixtures were also determined. The binary mixtures 
of QSIs and SAs were obtained based on the equitoxic ratio of EC50 for 
each chemical, which was the common mixing method in combined 
toxicity test. Fig. S3 depict that the binary mixtures only inhibit the 
bioluminescence. Table 2 and Fig. 3A respectively display the EC50(mix) 
and − logEC50(mix) values for the acute toxicity of QSI-SA (1:1) mixtures. 
It was observed that γV-SAs and S5H2F-SAs mixtures triggered the 
lowest − logEC50(mix) values, while the binary mixtures of B3O and SAs 
could lead to the largest toxic effects on A. fischeri bioluminescence. In 
the 16 groups of binary mixtures, B3O-SIX and γV-SIX were the most and 
least toxic mixtures, respectively. It could be found from previous 
studies that the chronic toxicity (24 h) for binary mixtures of QSIs and 
SAs exhibited hormetic phenomenon, where the maximum stimulation 
was generally larger than 100 % (Sun et al., 2020; You et al., 2016). 
Furthermore, the acute toxicity for each QSI-SA mixture was usually 
larger than its chronic toxicity (Sun et al., 2020; You et al., 2016). For 
instance, EC50 values for the acute and chronic toxicity of B3O-SIX were 
7.20 × 10− 5 mol/L and 1.70 × 10− 3 mol/L, respectively. 

The prediction for the combined toxicity of chemical mixtures is a 
challenging task in environmental risk assessment (Kumari and Kumar, 
2020; Landi et al., 2022). Previous studies have usually optimized the 

Fig. 2. (A) The predicted − logEC50 values of single chemicals from the QSAR model (Equation (9)) versus the observed − logEC50 values; and (B) the Williams plot 
indicating the applicability domain of the QSAR model (Equation (9)). Abbreviations: EC50, median effective concentration; QSAR, quantitative structure–activity 
relationship. 
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used structural descriptor via some parameters to better reflect the 
contribution of component to the joint effects, which could markedly 
increase the forecast accuracy of the QSAR model for combined toxicity 
(Algamal et al., 2020; Szucs et al., 2023). For example, interaction en-
ergy between the component i and its target protein (Ebind) could be 
multiplied by the apparent concentration proportion of component i in 
the mixture (pi) to reflect the contribution of the component for com-
bined toxicity (Zou et al., 2012; Wang et al., 2018b). In this study, the 
constructed QSAR model for acute toxicity of single QSIs and SAs in 
Equation (9) indicated the reasonability of Ebind-Luc as the structural 
descriptor. Thus, the QSAR model for combined toxicity of QSIs and SAs 
at equitoxic ratio was developed using Ebind-Luc value and p value for 
each chemical: 

− logEC50(mix) = × pQSI × EQSI
bind− Luc + × pSA × ESA

bind− Luc (10)  

n = 12, R2 = 0.893, RMSE = 0.179, F = 46.763, P < 0.001, Q2
loo = 0.859, 

RMSEloo = 0.197, Q2
F1 = 0.888, RMSEP = 0.132. 

Table 2 lists the p value for QSI and SA in each mixture at equitoxic 
ratio as well as p × Ebind-Luc for each component. The statistical results of 
Equation (10) indicated that the model possessed goodness-of-fit (R2 >

0.60), good robustness and predictive ability (Q2
loo > 0.50 and Q2

F1 >

0.50). Moreover, the scatters that the experimental − logEC50(mix) value 
versus the predicted − logEC50(mix) value of QSAR model distribute near 
the trend line in Fig. 3B. According to the AD of the model (Fig. 3C), 
there were no outlier data for the absolute values of standardized re-
siduals, and none of the tested mixtures was particularly influential in 
the model space. These findings also manifested the good predictive 
ability for the model and the good representativeness for the data set. As 
shown in Table 2, QSIs had the larger apparent concentration pro-
portions (pQSI: from 0.629 to 0.999) than SAs (pSA: from 0.001 to 0.371) 
in binary mixtures. In combination with the coefficients for QSI (0.329) 
and SA (0.128) from the QSAR model, it could be obtained that QSIs 
were more involved in the interaction with Luc than SAs. In addition, 
pQSI × EQSI

bind-Luc values (from − 19.682 to − 10.748) were significantly 
smaller than pSA × ESA

bind-Luc values (from − 9.582 to − 0.022). Hence, QSIs 
possibly contributed more to the acute toxicity of binary mixtures for 
QSIs and SAs at equitoxic ratio. 

3.4. Influence of QSI proportion on the acute toxicity of QSI-SA mixtures 

When QSIs and SAs enter the environment, they may co-exist at 

Table 2 
The acute toxicity for the binary mixtures of QSIs and SAs to A. fischeri bioluminescence and the parameters in corresponding QSAR models.  

Binary mixture 
(QSI:SA) 

Toxicity ratio 
(EC50(QSI):EC50(SA)) 

Mean EC50(mix) ± SDa 

(mol/L) 
pQSI

b pSA
c cQSI

d 

(mol/L) 
cSA

e 

(mol/L) 
pQSI £ EQSI

bind-Luc
f 

(kcal/mol) 
pSA £ ESA

bind-Luc
g 

(kcal/mol) 

22D3F:SIX 1:1 (1.38 ± 0.11) × 10− 4  0.964  0.036 1.33 × 10− 4 4.94 × 10− 6  − 16.743  − 1.090 
22D3F:SMX 1:1 (3.02 ± 0.19) × 10− 4  0.860  0.140 2.60 × 10− 4 4.21 × 10− 5  − 14.942  − 3.608 
2F:SIX 1:1 (1.35 ± 0.10) × 10− 4  0.994  0.006 1.34 × 10− 4 7.54 × 10− 7  − 15.788  − 0.170 
2F:SMX 1:1 (1.32 ± 0.08) × 10− 4  0.976  0.024 1.29 × 10− 4 3.16 × 10− 6  − 15.497  − 0.619 
S5H2F:SIX 1:1 (3.47 ± 0.29) × 10− 3  0.995  0.005 3.45 × 10− 3 1.77 × 10− 5  − 19.530  − 0.155 
S5H2F:SMX 1:1 (1.86 ± 0.13) × 10− 3  0.978  0.022 1.82 × 10− 3 4.08 × 10− 5  − 19.201  − 0.566 
γV:SMX 1:1 (2.24 ± 0.16) × 10− 3  0.970  0.030 2.17 × 10− 3 6.71 × 10− 5  − 19.106  − 0.775 
1P1C:SMX 1:1 (3.72 ± 0.34) × 10− 4  0.725  0.275 2.69 × 10− 4 1.02 × 10− 4  − 14.580  − 7.122 
R3P:SIX 1:1 (5.89 ± 0.30) × 10− 4  0.970  0.030 5.71 × 10− 4 1.77 × 10− 5  − 18.507  − 0.912 
S2P:SIX 1:1 (8.32 ± 0.30) × 10− 4  0.978  0.022 8.13 × 10− 4 1.86 × 10− 5  − 18.221  − 0.682 
2P5CA:SMX 1:1 (9.12 ± 0.45) × 10− 4  0.869  0.131 7.92 × 10− 4 1.20 × 10− 4  − 17.522  − 3.399 
2M3F:SIX 1:10 (3.02 ± 0.36) × 10− 4  0.881  0.119 2.66 × 10− 4 3.59 × 10− 5  − 15.048  − 3.617  

1:5 (2.57 ± 0.22) × 10− 4  0.937  0.063 2.41 × 10− 4 1.62 × 10− 5  − 15.998  − 1.923  
1:1 (2.45 ± 0.33) × 10− 4  0.987  0.013 2.42 × 10− 4 3.27 × 10− 6  − 16.850  − 0.405  
1:0.2 (2.20 ± 0.29) × 10− 4  0.997  0.003 2.18 × 10− 4 5.89 × 10− 7  − 17.032  − 0.082  
1:0.1 (1.74 ± 0.15) × 10− 4  0.999  0.001 1.74 × 10− 4 2.34 × 10− 7  − 17.054  − 0.041 

2M3F:SMX 1:10 (2.09 ± 0.12) × 10− 4  0.629  0.371 1.31 × 10− 4 7.74 × 10− 5  − 10.748  − 9.582  
1:5 (1.95 ± 0.14) × 10− 4  0.773  0.227 1.51 × 10− 4 4.44 × 10− 5  − 13.193  − 5.881  
1:1 (1.91 ± 0.15) × 10− 4  0.944  0.056 1.80 × 10− 4 1.06 × 10− 5  − 16.128  − 1.438  
1:0.2 (1.86 ± 0.14) × 10− 4  0.988  0.012 1.84 × 10− 4 2.17 × 10− 6  − 16.879  − 0.301  
1:0.1 (1.78 ± 0.13) × 10− 4  0.994  0.006 1.77 × 10− 4 1.04 × 10− 6  − 16.978  − 0.151 

B3O:SCP 1:10 (1.91 ± 0.17) × 10− 4  0.820  0.180 1.56 × 10− 4 3.42 × 10− 5  − 12.690  − 5.012  
1:5 (1.32 ± 0.09) × 10− 4  0.901  0.099 1.19 × 10− 4 1.30 × 10− 5  − 13.941  − 2.753  
1:1 (7.79 ± 0.66) × 10− 5  0.979  0.021 7.60 × 10− 5 1.66 × 10− 6  − 15.135  − 0.598  
1:0.2 (7.43 ± 0.56) × 10− 5  0.996  0.004 7.38 × 10− 5 3.23 × 10− 7  − 15.398  − 0.122  
1:0.1 (6.78 ± 0.55) × 10− 5  0.998  0.002 6.75 × 10− 5 1.48 × 10− 7  − 15.432  − 0.061 

B3O:SIX 1:10 (1.10 ± 0.07) × 10− 4  0.922  0.078 1.01 × 10− 4 8.60 × 10− 6  − 14.253  − 2.387  
1:5 (9.80 ± 0.83) × 10− 5  0.959  0.041 9.37 × 10− 5 3.99 × 10− 6  − 14.834  − 1.242  
1:1 (7.26 ± 0.57) × 10− 5  0.992  0.008 7.18 × 10− 5 6.11 × 10− 7  − 15.335  − 0.257  
1:0.2 (6.95 ± 0.72) × 10− 5  0.998  0.002 6.91 × 10− 5 1.18 × 10− 7  − 15.440  − 0.052  
1:0.1 (6.19 ± 0.55) × 10− 5  0.999  0.001 6.16 × 10− 5 5.24 × 10− 8  − 15.453  − 0.026 

γV:SIX 1:10 (5.13 ± 0.40) × 10− 3  0.934  0.066 4.79 × 10− 3 3.39 × 10− 4  − 18.394  − 2.012 
1:5 (4.79 ± 0.46) × 10− 3  0.966  0.034 4.62 × 10− 3 1.64 × 10− 4  − 19.023  − 1.040 
1:1 (4.47 ± 0.50) × 10− 3  0.993  0.007 4.44 × 10− 3 3.14 × 10− 5  − 19.558  − 0.214 
1:0.2 (4.17 ± 0.49) × 10− 3  0.999  0.001 4.16 × 10− 3 5.89 × 10− 6  − 19.668  − 0.043 
1:0.1 (4.07 ± 0.46) × 10− 3  0.999  0.001 4.07 × 10− 3 2.88 × 10− 6  − 19.682  − 0.022 

aThe Mean EC50(mix) ± SD represent the mean of the median effective concentration (EC50(mix)) for binary mixtures and the corresponding standard deviation (SD) of 
five replicate experiments. 
bThe apparent concentration proportion of QSI in each binary mixture. 
cThe apparent concentration proportion of SA in each binary mixture. 
dThe QSI concentration in each binary mixture that provoked the median inhibition. 
eThe SA concentration in each binary mixture that provoked the median inhibition. 
fThe structural descriptor of the QSI in corresponding QSAR models of the binary mixtures, and the EQSI

bind-Luc represent the lowest CDOCKER interaction energy between 
QSI and luciferase. 
gThe structural descriptor of the SA in corresponding QSAR models of the binary mixtures, and the ESA

bind-Luc represent the lowest CDOCKER interaction energy between 
QSI and luciferase. 
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various ratios. Thus, it is also necessary to evaluate the influence of 
component concentration on the acute toxicity of QSI-SA mixtures. 
Here, 2M3F-SIX, 2M3F-SMX, B3O-SCP, B3O-SIX, and γV-SIX were 
selected as the representative pairs, and their binary mixtures were 
designed via setting the ratios of EC50(QSI) to EC50(SA) at 1:10, 1:5, 1:0.2, 
and 1:0.1. As displayed in Fig. 3A and Table 2, with the increase of the 

proportion for QSI component, the − logEC50(mix) values (or EC50(mix) 
values) were enlarged (or decreased) for 2M3F-SIX, 2M3F-SMX, B3O- 
SCP, B3O-SIX, and γV-SIX mixtures. For instance, the EC50(mix) of B3O- 
SCP (1:10) was 1.91 × 10− 4 mol/L, which was reduced to 6.78 ×
10− 5 mol/L when the proportion of B3O increased to 99.8 % in the 
mixture. These results manifested that the increase of QSI proportion 

Fig. 3. (A) The acute toxicity of binary mixtures for QSIs and SAs to A. fischeri bioluminescence. The mean value (the black line) and the standard deviation (the 
upper and lower limits of the box) of − logEC50(mix) for each mixture were calculated from 5 replicates; (B) the predicted − logEC50(mix) values of binary mixtures from 
the QSAR model (Equation (10)) versus the observed − logEC50(mix) values; (C) the Williams plot indicating the applicability domain of the QSAR model (Equation 
(10)); (D) the predicted − logEC50(mix) values of all binary mixtures from the QSAR model (Equation (11)) versus the observed − logEC50(mix) values; and (E) the 
Williams plot indicating the applicability domain of the QSAR model (Equation (11)).1:1, 1:10, 1:5, 1:0.2, and 1:0.1 indicate the ratios of EC50(QSI) and EC50(SA), 
which are used to design the binary mixtures. Abbreviations: QSIs, quorum sensing inhibitors; SAs, sulfonamides; A. fischeri, Aliivibrio fischeri; EC50, median effective 
concentration; QSAR, quantitative structure–activity relationship; 22D3F, 2,2-Dimethyl-3(2H)-furanone; 2F, 2(5H)-Furanone; 2M3F, 2-Methyltetrahydro-3-furanone; 
B3O, Benzofuran-3(2H)-one; S5H2F, (S)-(− )-5-Hydroxymethyl-2(5H)-furanone; γV, γ-Valerolactone; 1P1C, 1-Pyrrolidino-1-cyclohexene; R3P, (R)-3-Pyrrolidinol; 
S2P, (S)-(+)-2-Pyrrolidinemethanol; 2P5CA, 2-Pyrrolidone-5-carboxylic acid; SCP, sulfachloropyridazine; SIX, sulfisoxazole; SMX, sulfamethoxazole. 
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could enhance the acute toxicity of QSI-SA mixtures, which supported 
the above speculation for the more contribution of QSIs in the combined 
toxicity. 

3.5. QSAR model for the acute toxicity of QSI-SA mixtures 

Could we forecast the acute toxicity of the binary mixtures for QSIs 
and SAs at different ratios? This issue is significant for comprehensively 
assessing the environmental risk of QSI-SA mixtures. The practicable 
QSAR model in Equation (10) used the component proportion (p) to 
describe the feature for the mixed exposure of QSIs and SAs, which 
realized the accurate prediction for combined toxicity of QSI-SA mix-
tures at equitoxic ratios. Thus, the p parameter could also reflect the 
component information in the binary mixtures of QSIs and SAs at 
different ratios. Table 2 lists the p value for each component in 2M3F- 
SIX, 2M3F-SMX, B3O-SCP, B3O-SIX, and γV-SIX mixtures where the 
ratios of EC50(QSI) to EC50(SA) were respectively 1:10, 1:5, 1:0.2, and 
1:0.1. Here, the QSAR model that taken the acute toxicity of all binary 
mixtures of QSIs and SAs at equitoxic and non-equitoxic ratios into ac-
count was constructed using p and Ebind-Luc parameters: 

− logEC50(mix) = 9.627 + 0.356 × pQSI × EQSI
bind - Luc + 0.196 × pSA

× ESA
bind - Luc

(11)  

n = 28, R2 = 0.880, RMSE = 0.217, F = 100.046, P < 0.001, Q2
loo =

0.846, RMSEloo = 0.242, Q2
F1 = 0.878, RMSEP = 0.113. 

R2 > 0.60, Q2
loo > 0.50, and Q2

F1 > 0.50 suggested this QSAR model 
had goodness-of-fit, good robustness, and predictive ability. Fig. 3D 
exhibits a satisfactory agreement between the experimental and pre-
dicted − logEC50(mix) values, which also demonstrates the good predic-
tive ability of QSAR model. Furthermore, Fig. 3E indicates that the 
training and test sets were all within the AD of the QSAR model, indi-
cating that the prediction results were reliable and credible. Compared 
with the model in Equation (10), this QSAR model included the com-
bined toxicity results of QSIs and SAs at both equitoxic and non- 
equitoxic ratios, which possessed a wider application in environmental 
risk assessment of QSI-SA mixtures. The larger coefficient and p × Ebind- 

Luc values for QSI indicated that more QSIs bind with Luc than SA, and 
QSI was always the major contributor in the combined toxicity of QSIs 
and SAs even though the QSI proportion varied. In addition, the favor-
able QSAR model in Equation (11) illustrated that as long as the pro-
portion information of component and the corresponding Ebind-Luc value 
were provided, the acute toxicity for QSI-SA mixtures could be effec-
tively predicted. 

3.6. Joint toxic actions of QSIs and SAs in acute toxicity 

Besides the toxicity value, the joint toxic action is also a crucial in-
dicator in the environmental risk assessment of the mixture (Tang et al., 
2022). The observed TU values for the binary mixture of QSIs and SAs 
are listed in Table S4. The heatmap that corresponded to the TU value is 
displayed in Fig. 4 to visualize the variation of joint toxic action. In 36 
groups of binary mixtures, 23 mixtures exhibited synergistic effects, 12 
mixtures possessed antagonistic effects, and only 2M3F-SIX mixture 
(EC50(2M3F):EC50(SIX) = 1:5) had additive effect (TU = 0.81). While B3O- 
SIX mixture (EC50(B3O):EC50(SIX) = 1:0.1) triggered the maximum syn-
ergism (TU = 0.02), the maximum antagonism (TU = 14.85) was 
observed for γV-SIX mixture (EC50(γV):EC50(SIX) = 1:10). Furthermore, it 
could be obtained that the TU values decreased with the increase of QSI 
proportion in the mixture. For example, when the ratio of EC50(2M3F) to 
EC50(SIX) changed from 1:10 to 1:0.1, the TU value for 2M3F-SIX mixture 
varied from 1.57 to 0.10. It should be noted that 2M3F-SMX, B3O-SCP, 
and B3O-SIX mixtures all exhibited synergism at all ratios of QSI to SA, 
and the synergistic effect all enhanced with QSI proportion. However, 
the joint toxic actions between γV and SIX were antagonism in all 
mixtures, the intensity of which reduced with the increase of γV pro-
portion. Since the acute toxicity of test chemicals to A. fischeri biolu-
minescence resulted from affecting on the active site of Luc, it could be 
speculated that the synergistic effect between QSI and SA might origi-
nate from their cooperation on inhibiting the catalytic activity of Luc. 
Moreover, the binding of SA to Luc might prevent the interaction of QSI 
on the same site in some mixtures, resulting in the antagonism between 
QSI and SA. 

Whether the joint toxic action of the mixture could be judged via the 
structural descriptor and proportion information for each component? 
This task will save a lot of manpower and material resources for envi-
ronmental risk assessment, and provide new insights into the evaluation 
of joint effects for the mixed pollutants. In this study, the joint toxic 
action was tried to predict based on the QSAR models for the acute 
toxicity of QSIs and SAs (Equation (9)) as well as QSI-SA mixtures 
(Equation (11)). First, the EC50 values of single QSIs and SAs were 
predicted via Equation (9). Using these EC50 values, the ratio of QSI to 
SA in the binary mixture could be determined. Based on the predicted 
EC50(mix) value for the mixture from Equation (11), the concentrations of 
QSI and SA in the binary mixtures were calculated. At last, the predicted 
TU value of the mixture was obtained via Equation (8). Table S4 lists the 
calculation results for the above parameters and predicted TU values. As 
shown in Fig. 5, the predicted joint toxic actions between QSIs and SAs 
exhibited high consistency with the observed results, although there 
were differences between the predicted and observed TU values. In the 

Fig. 4. The heatmaps of TU values for the binary mixtures of QSIs and SAs. TU < 0.8, 0.8 ≤ TU ≤ 1.2, and TU < 1.2 represent synergism (Syn), addition (Add) and 
antagonism (Ant), respectively. TU value corresponds to each color gradation. 1:1, 1:10, 1:5, 1:0.2, and 1:0.1 indicate the ratios of EC50(QSI) and EC50(SA), which are 
used to design the binary mixtures. Abbreviations: TU, toxic unit; QSIs, quorum sensing inhibitors; SAs, sulfonamides; EC50, median effective concentration; 22D3F, 
2,2-Dimethyl-3(2H)-furanone; 2F, 2(5H)-Furanone; 2M3F, 2-Methyltetrahydro-3-furanone; B3O, Benzofuran-3(2H)-one; S5H2F, (S)-(− )-5-Hydroxymethyl-2(5H)- 
furanone; γV, γ-Valerolactone; 1P1C, 1-Pyrrolidino-1-cyclohexene; R3P, (R)-3-Pyrrolidinol; S2P, (S)-(+)-2-Pyrrolidinemethanol; 2P5CA, 2-Pyrrolidone-5-carboxylic 
acid; SCP, sulfachloropyridazine; SIX, sulfisoxazole; SMX, sulfamethoxazole. 
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test binary mixtures of QSIs and SAs (36 groups), our proposed method 
could accurately forecast the joint toxic actions of 35 mixtures, only 
failure for S5H2F-SMX (at equitoxic ratio). These results not only further 
proved the applicability and accuracy of the constructed QSAR models, 
but also given a novel approach for exploring the joint effects of 
mixtures. 

4. Conclusion 

In this study, the acute toxicity of QSIs, SAs, and their binary mix-
tures was tested using A. fischeri bioluminescence as the endpoint. There 
was no hormetic phenomenon in 15 min exposure of each chemical and 
mixture, and all dose–response relationships exhibited S-shape. 
Although SAs induced greater toxic effects than QSIs in individual 

exposure, QSIs contributed more to the acute toxicity of QSI-SA mixtures 
at both equitoxic and non-equitoxic ratios. Furthermore, the increase of 
QSI proportion in the mixture enhanced the combined toxicity of QSIs 
and SAs, but decreased the corresponding TU values. The synergism was 
the main joint toxic action between QSI and SA. Molecular docking re-
sults indicated that QSIs and SAs might interacted with Luc to reduce its 
catalytic activity, thus inducing inhibition on the bioluminescence. 
Using Ebind as the structural descriptor and component proportion as the 
key parameter, the QSAR models for the acute toxicity of QSIs, SAs, and 
their mixtures were both developed, which exhibited good robustness 
and predictive ability. In addition, the joint toxic actions between QSIs 
and SAs could be successfully forecasted using the constructed QSAR 
models. This study provides the reference data for the acute toxicity for 
QSIs and QSI-SA mixtures, and develops the QSAR models for predicting 

Fig. 5. Dumbbell plot of the differences between the observed and predicted TU values, and the corresponding judgments of joint toxic actions for QSIs and SAs. Syn, 
Add and Ant represent synergistic, additive, and antagonistic effects, respectively. The green line linking the observed and predicted TU values indicate the same 
judgment of joint toxic action via the observed and predicted TU values, and the red line indicate the different judgments of joint toxic action via the observed and 
predicted TU values. Abbreviations: TU, toxic unit; QSIs, quorum sensing inhibitors; SAs, sulfonamides; 22D3F, 2,2-Dimethyl-3(2H)-furanone; 2F, 2(5H)-Furanone; 
2M3F, 2-Methyltetrahydro-3-furanone; B3O, Benzofuran-3(2H)-one; S5H2F, (S)-(− )-5-Hydroxymethyl-2(5H)-furanone; γV, γ-Valerolactone; 1P1C, 1-Pyrrolidino-1- 
cyclohexene; R3P, (R)-3-Pyrrolidinol; S2P, (S)-(+)-2-Pyrrolidinemethanol; 2P5CA, 2-Pyrrolidone-5-carboxylic acid; SCP, sulfachloropyridazine; SIX, sulfisoxazole; 
SMX, sulfamethoxazole. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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their toxicity value and joint toxic action, which will benefit the envi-
ronmental risk assessment of QSIs. 
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