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Skin Cancer (SC) is among the most common type of cancers worldwide. The search for SC
therapeutics using molecular modeling strategies as well as considering natural plant-derived
products seems to be a promising strategy. The phytochemical Rocaglamide A (Roc-A) and its
derivatives rise as an interesting set of reference compoundsdue to their in vitro cytotoxic activity
with SC cell lines. In view of this, we performed a hierarchical virtual screening study considering
Roc-A and its derivatives, with the aim to find new chemical entities with potential activity against
SC. For this, we selected 15 molecules (Roc-A and 14 derivatives) and initially used them in
docking studies to predict their interactions with Checkpoint kinase 1 (Chk1) as a target for SC.
This allowed us to compile and use them as a training set to build robust pharmacophore
models, validated by Pearson’s correlation (p) values and hierarchical cluster analysis (HCA),
subsequentially submitted to prospective virtual screening using the Molport

®
database.

Outputted compounds were then selected considering their similarities to Roc-A, followed
by analyses of predicted toxicity and pharmacokinetic properties as well as of consensus
molecular docking using three software. 10 promising compoundswere selected and analyzed
in terms of their properties and structural features and, also, considering their previous reports in
literature. In thisway, the 10 promising virtual hits found in thisworkmay represent potential anti-
SC agents and further investigations concerning their biological tests shall be conducted.
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INTRODUCTION

Cancer is the name given to a set of diseases characterized by disordered or abnormal cell growth.
These defective cells may subsequently invade neighboring tissues or organs, spreading throughout
the body in form of different types of neoplasms (Balkwill et al., 2012; Zugazagoitia et al., 2016; Salem
et al., 2017).

Between 5 and 10% of neoplasms are associated with genetic inheritance related to cancer.
Nonetheless, a large part accounts to damage of genetic material provoked by physical, chemical or
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biological factors, which accumulates throughout life (Hawk and
Lippman, 2000; World Cancer Research Fund/American
Institute for Cancer Research, 2018).

Skin cancer (SC) is among the most common type of cancers
worldwide. It is usually caused by the excessive incidence of UVB
radiation and affects specially Caucasians. Among different types of
SC, the non-melanoma type is most frequently found. This type of
cancer accounts for 90% of all SC, and its incidence has increased
mainly among younger people. In addition, there are other types of
SC such as melanoma, basal cell carcinoma, and squamous cell
carcinoma (Mueller and Reichrath, 2008; Gordon, 2009).

When it comes to evaluating possible biological targets
associated with anti-SC action, some hypotheses have been
considered useful and valid. For instance, Sarkaria et al. (1999)
reported the inhibition of Chk1 as a prominent protein target
within this context. Chk1 is a phosphotransferase kinase required
for checkpoint signaling in DNA-damaged cells. Furthermore,
Chk1 has been found to be overexpressed in a variety of human
breast, colon, liver, gastric, and nasopharyngeal carcinomas.
Notably, its expression often positively correlates with tumor
grade and disease recurrence (Zhang and Hunter, 2014).

Another important target for evaluation of anti-SC agents is
the BRAF kinase, which is mutated in most type tumors.
Furthermore, clinical trials show that BRAF kinase inhibitors
in combination with other MEK kinase inhibitors are among the
most promising chemotherapy regimens for the treatment of
advanced BRAF mutant melanoma (Fujimura et al., 2019).

In SC, there are oncogenic signaling pathways that converge
on eukaryotic initiation factor 4F (eIF4F), which also makes it a
prominent target (Grafanaki et al., 2019). This is composed of the
cap-binding protein eIF4E, an RNA helicase eIF4A, and a scaffold
protein eIF4G (Gingras et al., 1999). In addition, increased eIF4A
protein, and others from the same family, are related to poor
clinical prognosis (Liang et al., 2014; Robichaud et al., 2014).

Several anticancer drugs have been discovered by molecular
modeling strategies as well as screening of natural plant-derived
products (Pezzuto, 1997; Da Rocha et al., 2001). The
phytochemical compound Roc-A (Figure 1) belongs to the
chemical class of cyclopenta [b]-tetrahydrobenzofurans,

collectively called flavaglins or rocaglamides, which are known
to kill malignant cancer cells while sparing normal cells (Ebada
et al., 2011; Basmadjian et al., 2013; Li-Weber, 2015).

Roc-A and other flavaglins have shown cytotoxic activity based
on several in vitro experiments using different SC cell lines. For
instance, Roc-A presented cytotoxic activity proven in RPMI-7951
cells (IC50 = 0.002 μg/ml) and kB cells (IC50 = 0.006 μg/ml) (Wu
et al., 1997; Basmadjian et al., 2013). Insightfully, some Roc-A
derivatives has also shown potential insecticidal activity (Nugroho
et al., 1997; Nugroho et al., 1999). Thus, this raises the question
whether it would be possible to consider the potential anticancer
activity of Roc-A and its derivatives, overcoming any toxicity issues,
as a starting point for amolecularmodeling studywith interest in the
treatment of SC.

With this in mind, in this study, we sought to perform a study
consisting of hierarchical virtual screening to obtain new
chemical entities with potential anti-SC activity. For this, we
considered available biological information of Roc-A and its
derivatives, such as their cytotoxic activity towards SC cell
lines and a set of computational methodologies as depicted by
the flowchart in Figure 2.

MATERIALS AND METHODS

Selection of Roc-A and Derivatives:
Training Set
Roc-A and its derivatives were selected according to studies of
Nugroho et al. (1997), Nugroho et al. (1999), which investigated
Roc-A and its derivatives for their potential insecticidal activity.
Thus, from this study we selected Roc-A and 14 derivatives, i.e., 15
compounds (Figure 3), which we here denominate as training set.

Selection of Protein Complex
In order to select the most suitable protein complex of Chk1 to be
used in our docking studies we have evaluated different structures
retrieved from the Protein Data Bank (PDB, https://www.rcsb.
org/). Initial search in such databank retrieved 149 entries, from
which 19 were discarded since they presented resolution higher

FIGURE 1 | Representation of 2D and 3D structures of Roc-A (1R,2R,3S,3aR,8bS)-1,8b-dihydroxy-6,8-dimethoxy-3a-(4-methoxyphenyl)-N,N-dimethyl-3-phenyl-2,3-
dihydro-1H-cyclopenta [b][1]benzofuran-2-carboxamide).

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8365722

dos Santos et al. Rocaglamide Derivatives to Discovery New Potential Anti-Skin Cancer Agents

https://www.rcsb.org/
https://www.rcsb.org/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


than 2.5 Å. From the remaining, we visually inspected 5 PDB
entries which consisted of protein complexes of Chk1 bound to
native ligands apparently similar to Roc-A.

In addition, we analyzed the overlap between chemical structures
of Roc-A and 5 native ligands within the corresponding binding site
of these PDB files. For this, the structural similarities of
compounds—in terms if steric and electrostatic features—were
assessed by using the software BIOVIA Discovery Studio
Visualizer (v 17.2.0.16349) (Biovia et al., 2000).

Docking Studies for the Training Set
In advance of performing docking simulations, the protein structure
of Chk1 (PDB code 2CGX) was prepared by importing it into the
Protein Preparation Wizard software (Madhavi Sastry et al., 2013;
Schrödinger, 2018), then its pre-processingwas done by checking the
following functions: assignment of bond orders using CCD
(Chemical Component Dictionary) database (Westbrook et al.,
2015), addition of hydrogens, generation of disulfide bonds, use
of Prime to fill missing loops and side chains, and removal of water
molecules; excluding ligands, cofactors and metals. The binding
pocket defined in this work for such structure, except when
mentioned, was defined by the following centroid (in terms of
spatial coordinates): x = 4.9375, y = -5.3174, z = 17.8840.
Docking simulations were developed using default settings in
GOLD docking software (Verdonk et al., 2003; CCDC, 2015).

Therefore, here we employed the CHEMPLP scoring function
and a 10 Å sphere radius centered on the mentioned centroid.

In order to validate docking studies redocking simulations were
performed using the previously prepared protein from PDB ID
2CGX, considering the abovementioned centroid as well as standard
settings of each software. Worth noting that previous to redocking
simulations, a simple preparation of the native ligand was carried
out, in which such molecule was considered flexible in a 3D format
(mol2), with adjustment of the bond orders, addition of hydrogen
atoms, and calculation of partial charges.

Prior to docking, the training set was preprocessed using the
OMEGA software (Hawkins and Nicholls, 2012; OpenEye, 2020).
General parameters were set standard with generation of only
1 minimum energy conformer per molecule; adjustment of the
strain energy (above the energy of global minimum conformer)
was considered until 9.0 kcal/mol, as well as RMSD (root mean
square deviation) of 0.6 Å (root mean square deviation) as a cutoff
for conformer identity, as previously reported by us (da Silva and Taft,
2017).

Similarity Analysis Between Roc-A and Its
Derivatives
In advance of building pharmacophore models, structures of 15
compounds were drawn in the ACD/ChemSketch program

FIGURE 2 | General scheme summarizing the methodological steps proposed via hierarchical virtual screening in this work.
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(freeware) 2020 1.2 (Hunter, 1997) and submitted to geometry
optimization in the program BIOVIA Discovery Studio
Visualizer (v 17.2.0.16349) (Biovia et al., 2000). The force field
used was the MM+ (Molecular Mechanics), according to the
methodological strategy proposed by da Silva Costa et al. (2018);
afterwards the structures underwent refinement by using the
Dreiding-like force field (Hahn, 1995).

After optimization of compounds, their structures were inputted
in the BIOVIA Discovery Studio Visualizer (v17.2.0.16349) and
gathered into a single file (mol2). Then, this file was submitted to
the BindingDB webserver (https://www.bindingdb.org/bind/index.
jsp) for calculation of similarities values by means of Tanimoto
index (TI) (Liu et al., 2007). TI values (Eq. 1) varies between 0 and 1,
representing the overall similarity between two compounds based on

FIGURE 3 | Training set consisting of fourteen Roc-A derivatives, described by Nugroho et al. (1997), Nugroho et al. (1999), used to build pharmacophore models.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8365724

dos Santos et al. Rocaglamide Derivatives to Discovery New Potential Anti-Skin Cancer Agents

https://www.bindingdb.org/bind/index.jsp
https://www.bindingdb.org/bind/index.jsp
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


their fingerprint bits (molecular fragments), so that the closer to 1,
greater the similarity (Gimeno et al., 2019).

Tanimoto Index � c
(a + b − c) (1)

Where, for two generic compounds A and B: a: number of bits in
A; b: number of bits in B; c: number of common bits between A
and B.

Building Pharmacophore Models
The input file with optimized structures of 15 compounds was
submitted to the Pharmagist webserver (https://bioinfo3d.cs.
tau.ac.il/PharmaGist/) (Schneidman-Duhovny et al., 2008b) to
generate pharmacophoric features of Roc-A and its
derivatives—considering Roc-A as the pivot molecule.
Worth noting that Pharmagist generates pharmacophore
models based on the overlap of individual pharmacophoric
features of each molecule inputted. Therefore, the method
essentially aligns and overlaps the pivot molecule with other
molecules from the training set, seeking chemical and spatial
characteristics common to the greatest number of molecules.
The resulting set with the highest score and the highest
number of aligned molecules should be subsequently
evaluated to be considered a valid pharmacophore model
(Schneidman-Duhovny et al., 2008a; da Silva Costa et al.,
2018).

The idea was to select pharmacophore models, constituted by
validated pharmacophoric features and alignments, to initiate our
hierarchical virtual screening—as in previous studies of Cruz et al.
(2018); Ferreira et al. (2019). From this, basically, the aim is to
apply such models to identify new compounds, within large and
commercial databases, which may show a greater chance of
presenting the biological activity of interest as well as
appropriate pharmacological properties.

Evaluation of Pharmacophore Models
From the data obtained using Pharmagist, we constructed a
matrix with four main pharmacophoric descriptors/features
and their associations with TI values for each compound. This
allowed us to calculate Pearson’s correlation values p, which
measures the degree of relationship between the variables (da
Silva Costa et al., 2018; Ferreira et al., 2019). The p value has a
dimensionless value expressed in the numerical range from −1.0
to +1.0. When the p value is equal to 0.0, there is no linear
correlation between the analyzed variables. However, general
range of values ≤0.2, 0.2 to 0.4, and ≥0.7 indicate weak,
moderate, and strong correlations, respectively. A p value of
+1.0 indicates a perfect positive correlation between the
variables; a p value of −1.0 indicates a perfect negative
correlation between the variables (that is, if one increases the
other decreases) (Ferreira et al., 2019).

Hierarchical Cluster Analysis (HCA) was also applied to
evaluate the relationship between the pharmacophoric
variables. This statistical method can show the similarity (or
difference) between descriptors, individually, considering both p
values and distance methods (Santos et al., 2014; Ferreira et al.,
2019). For the construction of the HCA dendrograms and

statistical analysis, the Minitab® program was used (Minitab,
2022).

Pharmacophore-Based Virtual Screening
To employ the pharmacophore models in virtual screening we
used the Pharmit® platform (https://pharmit.csb.pitt.edu/), an
online tool that uses the state-of-the-art sublinear algorithms to
provide an interactive screening of millions of compounds. In
addition, the platform offers specific information based on
pharmacophore, spatial arrangement of interaction
characteristics, molecular formula, and energy minimization
(Sunseri and Koes, 2016).

Hence, we initially applied pharmacophore-based virtual
screening using its implemented database from the company
Molport® (https://www.molport.com/shop/index), which has
approximately 8 million molecules. In addition, we applied
filters such as maximum and minimum values of
physicochemical properties for the studied compounds, by
means of the webserver Molinspiration© (https://www.
molinspiration.com/), Slovensky Grob, Slovakia. However, the
first obtained pharmacophore model, with seven
pharmacophoric features, could only retrieve a small number
of compounds in initial virtual screening. Therefore, we
performed several recombinations amongst the
pharmacophoric features in order to achieve/generate more
pharmacophore models and obtain a greater number of
compounds in virtual screenings, as discussed on results section.

Selection of Compounds From
Pharmacophore-based Screening
Each set of compounds - retrieved from each one of the seven
models employed in pharmacophore-based virtual screening -
was considered to calculate corresponding similarities (TI values)
in relation to Roc-A. TI values were calculated using the
webserver BindingDB (https://www.bindingdb.org/bind/index.
jsp) (Liu et al., 2007). Then, TI values for compounds were
sorted and we selected top 200 from each set, considering a
minimum threshold of ≥0.2 for TI values.

Prediction of Toxicity and Pharmacokinetic
Properties
The SwissADME (http://www.swissadme.ch/) is a free webtool
that gives access to a set of fast, yet robust, predictive models to
estimate: physicochemical properties, pharmacokinetics, drug
similarity, and medicinal chemistry compatibility. SwissADME
was therefore used to select the most promising compounds
considering the following filters: “High” Gastrointestinal
Absorption (GIA), “No” Blood Brain Barrier (BBB)
Permeation, and “0” Lipinski’s rule violations.

The toxicity profiles of compounds was evaluated using
DEREK 10.0.2 software (Nexus, 2011). DEREK (Deductive
Estimation of Risk from Existing Knowledge) according to the
protocol proposed by (Nexus, 2011; Ferreira et al., 2019). In this
way, the following filters were considered: type of toxicity
endpoint, description of toxicophoric group, and toxicity alert.
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Docking-Based Virtual Screening
Following the methodological proposal (Figure 2), 60
compounds were retrieved from the pharmacophore-based and
toxicity/pharmacokinetic properties screenings. These were
submitted to a further screening step to select most promising
compounds according to their consensus docking analysis using 3
software. Worth mentioning that we employed same
methodological steps as in topic 2.3 to pre-process these 60
compounds as well as same prepared Chk1 protein structure.
Thus, docking simulations were performed using default settings
in each of the 3 docking software: GOLD (Verdonk et al., 2003;
CCDC, 2015), FRED (McGann, 2011; OpenEye, 2020) and
DockThor (Guedes et al., 2021). In GOLD, they were carried
out in a similar way to the methodological step Docking Studies
for the Training Set. In FRED, first, spruce4docking (OpenEye,
2020) to process apo structure of Chk1 (2CGX.pdb; prepared as
described above), in order to generate “receptor” for a binding
pocket and thus indicate a representative residue for such cavity.
The compounds were then processed by OMEGA (OpenEye,
2020) to generate 300 conformers for each molecule and docking
runs were conducted in standard (default) mode, using its
implemented Chemgauss4 scoring function. In DockThor,
configurations were employed considering the same binding
pocket centroid as in GOLD, and scores were predicted
considering the binding affinity (in kcal/mol units) for
compounds by the implemented DockTScore program.

Analysis of Properties and Structures of
Promising Compounds
Promising compounds retrieved after docking screening passed
through analysis of their lipophilicity and water solubility
expressed by means of values of logP and logS, respectively.
This was performed using the prediction software SwissADME
(Daina et al., 2017), based on the methodological proposal of
Sepay et al. (2020).

SwissADME provides five methods to predict logP values:
iLOGP, xLOGP3, WLOGP, MLOGP and Silicos-IT. The iLOGP
is an internal physical method of SwissADME, based on free
solvation energies in 1-octanol/water and calculated by the
Generalized-Born model and solvent accessible surface area
(GB/SA) (Daina et al., 2014). xLOGP3 uses known logP values
from reference compounds as starting point to perform
predictions (Cheng et al., 2007). WLOGP is a purely atomistic
method based on the fragmentary system of Wildman and
Crippen (1999). MLOGP is a standard model of topological
method, based on a linear relationship considering 13
molecular descriptors (Moriguchi et al., 1994). Silicos-IT is a
hybrid method that has 27 fragments and 7 topological
descriptors calculated by the FILTER-IT software—developed
by the company SILICOS-IT (http://silicos-it.be.s3-website-eu-
west-1.amazonaws.com/index.html).

Also, SwissADME provides 3 topological methods
regarding prediction of logS values: ESOL, ALI e Silicos-IT.
ESOL is a quantitative structure-property relationship (QSPR)
model that establishes linear relationships between logS and 4
molecular parameters: molar mass, number of rotatable bonds,

fraction of aromatic heavy atoms, and xLOGP3 (Delaney,
2004). The model adapted from Ali et al. (2012) relates logS
to logP and TPSA (Topological Polar Surface Area). The
company Silicos-IT also offers a method to predict logS
values considering the FILTER-IT software, and based on a
system of 16 fragments modulated by the square root of the
molar mass (Daina et al., 2017). Finally, we mention that we
used the program GraphPad Prism 9© to build graphics related
to these analyses.

In addition, the final promising compounds were submitted to
search in the webserver SciFinder® - available for access in the
CAS (Chemical Abstract Service) - to obtain information whether
their structures were associated with previous studies, or reports
regarding their biological activities, following the methodological
proposal developed by Ferreira et al. (2019).

Also, a similarity analysis was conducted between the obtained
promising compounds and the pivot molecule (Roc-A). For this,
we calculated the percentage of steric overlap at 50, 70, and 100%
of contribution for each of the final promising compounds in
relation to Roc-A using the software Discovery Studio Visualizer
(v.17.2.0.16349)—according to the methodological proposal of da
Silva Costa et al. (2018) and Cruz et al. (2018).

In silico Evaluation of Selectivity and
Theoretical Determination of Biological
Activity
After analyzing the properties and structures of the promising
compounds, those with the best classified parameters were
selected for the molecular docking simulations, following the
methodology proposed by Ramos et al. (2019). In this step of the
methodology, the values of binding free energy (ΔG) related to
the interactions of promising compounds from the
Pharmacophore-based Virtual Screening will be evaluated, as
well as analysis of the binding mode, always comparing results
to the control compound Roc-A.

The structures (promising compounds, control compound and
molecular targets) used in the study were prepared using the
Discovery Studio Visualizer software (v.17.2.0.16349) (Biovia
et al., 2000). The receptors Chk1 (PDB ID 2CGX) (Foloppe
et al., 2006), elF4A1-ATP (PDB ID 5ZC9) (Iwasaki et al., 2019)
e BRAF (PDB ID 6XFP) (Yen et al., 2021), all of the Homo sapiens
organism, with their respective complexed inhibitors (3D3, RCG
and V1Y), were used in the AutoDock 4.2/Vina 1.1.2 software with
a graphical interface in the PyRx software version 0.8.30 (https://
pyrx.sourceforge.io). The Molecular Docking methodology was
validated by calculating the RMSD performed by comparing the
conformation of the crystallographic ligand and the best
conformation obtained via Molecular Docking.

The coordinates of the Grid center (x, y and z) of the active
sites were obtained considering the coordinates of the complexed
ligands (see Table 1). In order to evaluate the binding affinity, it
was used a binding free energy (ΔG) function score derived from
the interaction of ligands with amino acid residues of receptors
via AutoDock 4.2/Vina 1.1.2 was used. Interaction figures and
interaction distance measurements were made using Discovery
Studio Visualizer (v.17.2.0.16349) (Biovia et al., 2000). The
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Heatmap figure was made using the software GraphPadPrism 8.0
(GraphPad Software Inc., San Diego, CA).

The prediction of in silico biological activity of promising
compounds was performed via PASS Online (http://way2drug.
com/passonline/). According to the developers’ definition, this is
software designed to assess the biological potential of an organic
drug-like molecule. This provides prediction of many types of
biological activity with average accuracy above 95%. The
probability of “to be active” (Pa) and the probability of “to be
inactive” (Pi) are estimated by comparison with the molecules of
the PASS training set. (Filimonov et al., 2014).

Leave-one-out cross-validation (LOO CV) is performed using the
PASS training set for prediction validation the biological spectrum is
predicted for each compound using the structure-activity relationship
(SAR) as activities fromother data for all compounds. Then, the result is
compared with known experimental data for the promising compound
studied. The procedure is repeated with compounds from the PASS
training set; then themean values of Invariant PredictionPrecision (IAP
= 1-IEP) are calculated for each biological activity and for all biological
activities (Filimonov et al., 2014).

The in silico prediction of cytotoxic effect of promising
compounds was performed via CLC-Pred (Cell Line Cytotoxic
Predictor) (http://www.way2drug.com/cell-line/). An in silico
prediction web-service of cytotoxicity of chemical compounds
in untransformed or cancer cell lines. The development of the
CLC-Pred was used the PASS algorithm to create and validate the
SAR classification models. The CLC-Pred training set contains
thousands of compound structures with their experimental data
from ChemBL. The average accuracy of the prediction calculated
by LOO CV is 93% (Lagunin et al., 2018).

Lagunin et al., 2018 emphasizes that only activities with Pa >
Pi are possible for a compound. Furthermore, Pa measures the
similarity of the predicted compound with the structures of the
compounds, which are the most typical in a subset of active in the
web-server training set.

RESULTS AND DISCUSSION

Selection of Chk1 Protein Complex
The selection of the target Chk1 was based on the work of Lu
et al. (2008) and Sarkaria et al. (1999), which mentions it as an

important target associated with SC. In fact, Da Silva Costa
et al. (2018) also used Chk1 as a target associated with skin
cancer in a virtual screening study.

Several protein complexes for Chk1 are found in the PDB,
however, the structure of such protein complexed with Roc-A has
not been disclosed yet. Therefore, in order to select a reliable
Chk1 protein complex to this study, we considered performing
chemical-similarity comparisons between Roc-A and native
ligands of corresponding protein-ligand complexes available in
the PDB.

In this manner, as described in methods section, we selected 5
native ligands (from 5 different protein-ligand complexes of
Chk1) to compare them with the structure of Roc-A
(Figure 4). Results for overlap similarity between each selected
native ligands and Roc-A, as well as the resolution of each PDB,
are shown in Table 2. The values for overlap similarity were
determined considering the following contributions: 100% steric
(100ste), 100% electrostatic (100elt), 60% steric/40% electrostatic
(60ste/40elt), 40% steric/60% electrostatic (40ste/60elt) and 50%
steric/50% electrostatic (50ste/elt).

The ligand 3D3 presented the highest values of overlap
similarity with Roc-A, i.e., 0.546267, 0.538086, and 0.537710
for the contributions 100elt, 40ste/60elt, and 50ste/elt,
respectively. Also, the second highest value for the
contribution 60ste/40elt (0.538365) and a good value for
100ste (0.613006). Worth reminding that values of overlap
similarities closer to 1.0 indicate a greater degree of similarity
between Roc-A and the given ligand (Biovia et al., 2000).

These results allowed us to assume a reasonable degree of
similarity between the ligand 3D3 and Roc-A. Figure 5 shows
the ligand 3D3 (IUPAC name 2-[(6-amino-7H-purin-8-yl)thio]
acetamide) overlapped with Roc-A. Such ligand complexed with
the protein Chk1, was deposited by Foloppe et al. (2006) under the
PDB code 2CGX. Moreover, this protein/complex crystallographic
structure was chosen because it presents a resolution of 2.20 Å,
which indicates its suitability for molecular docking studies.

Docking Studies for the Training Set
After selecting the Chk1 protein complex (PDB ID 2CGX), we
performed docking simulations using the GOLD software,
following the procedures detailed in the methodology section
(topic Docking Studies for the Training Set). Before running

TABLE 1 | Protocol data used for molecular docking validation.

Receptor Ligand/ID Coordinates of grid
center

Grid box
size

Chk1 (Homo sapiens) PDB ID:
2CGX

2-[(6-amino-7h-purin-8-yl)thio]acetamide/3D3 X = 4.602 20x
Y = -5.735 28y
Z = 17.765 18z

elF4A1-ATP (Homo sapiens) (PDB
ID: 5ZC9)

(1R,2R,3S,3aR,8bS)-6,8-dimethoxy-3a-(4-methoxyphenyl)-N,N-dimethyl-1,8b-
bis(oxidanyl)-3-phenyl-2,3-dihydro-1H-cyclopenta [b][1]benzofuran-2-carboxamide/RCG

X = 42.459 32x
Y = 5.194 38y
Z = 44.166 32z

BRAF kinase (Homo sapiens) (PDB
ID: 6XFP)

4-amino-N-{1-[(3-chloro-2-fluorophenyl)amino]-6-methylisoquinolin-5-yl}thieno [3,2-days]
pyrimidine-7-carboxamide/V1Y

X = -3.752 38x
Y = 15.954 38y
Z = 13.702 24z
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docking simulations for the 15 compounds of the training set,
validation of the docking protocol in the GOLD software was
performed. The validation procedure was successful, as can be
seen in Supplementary Figures S1, S2 (see Supplementary
Material). The native 3D3 ligand was redocked into the Chk1
protein showing an RMSD of 1.15 Å and keeping the same
relevant interactions within the binding site.

In sequence, we ran docking simulations for Roc-A and
retrieved its best scored pose by GOLD. Such pose can be
depicted by two main key interactions: hydrogen bond
between the OMe and NH group of Cys87, and a hydrogen
bond between the OH and C=O of Leu15 (see Supplementary
Figure S2). When docking the other 14 compounds from the
training set, these same two interactions (along with others) were

FIGURE 4 | 2D structures of native ligands complexed with Chk1 protein structures retrieved from PDB.

TABLE 2 | Overlap similarity values between Roc-A and native ligands of complexes analyzed.

PDB ID Ligand name Overlap[a] Resolution (Å)[b]

100ste 100elt 60ste/40elt 40ste/60elt 50ste/elt

2CGX 3D3 0.613006 0.546267 0.538365 0.538086 0.537710 2.20
2BRN DF1 0.722827 0.392307 0.490008 0.412153 0.447358 2.80
2BRO DF2 0.707922 0.463492 0.543004 0.475574 0.508122 2.20
2BRM DFZ 0.783006 0.357218 0.491289 0.359335 0.423177 2.20
2WMU ZYU 0.629184 0.350906 0.457512 0.417874 0.437330 2.60

100ste = 100% of steric contribution; 100elt = 100% of electrostatic contribution; 60ste/40elt = 60% steric and 40% electrostatic; 40ste/60elt = 40% steric and 60% electrostatic; and
50ste/50elt = 50% of both contributions. [a]: Overlap similarities values obtained using the software Biovia Discovery Studio Visualizer. [b]: Data retrieved from rcsb.org.

FIGURE 5 | Representations of overlap similarities between molecular structures of 3D3 ligand (green) and Rocaglamide-A (yellow) according to different steric/
electrostatic contributions.
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observed (Supplementary Figure S2). Regarding the score values
for compounds, Roc-A showed a value of 38.873. It is noteworthy
that this value was lower than those observed for all other 14
compounds in the training set (shown in Table 3), which suggests
that the whole training set is suitable for building pharmacophore
models.

Pharmacophore Modeling
The best pharmacophore model was chosen according to the set
of pharmacophoric features presenting highest scores, as well as
to the multiple alignment of Roc-A and 14 derivatives. In other
words, the Pharmagist webserver generates scored sets of

pharmacophoric features based on the alignment of the
molecules with the pivot molecule (which is kept rigid). The
webserver’s algorithm uses standard weighted values for each
pharmacophoric feature. Initially, the alignment of each pivot
molecule pair is scored by its characteristics and then the multiple
alignment between the best analyzed pairs is generated. Several
multiple alignments are, therefore, scored in the same way
(Schneidman-Duhovny et al., 2008a; Schneidman-Duhovny
et al., 2008b; da Silva Costa et al., 2018). In this manner, the
quantitative characteristics for the best pharmacophore model are
shown in Table 4 and its qualitative characteristics are shown in
Figure 6.

The best pharmacophore model showed a score of 64.640 with
all of the fifteen molecules from the training set aligned.
Furthermore, it presented seven features (F), that is: 7 spatial
features (SF) related to the conformation of pharmacophoric
regions; 3 aromatic regions (Aro); and 4 hydrogen bond acceptor
groups (Acc). Worth mentioning that the model did not show
features regarding hydrophobic regions (Hyd); hydrogen donors
(Don); anionic atoms (Neg), and cationic atoms (Pos).

Evaluation of Pharmacophore Models
In order to evaluate this initial pharmacophore model and to
prove the correct alignment of corresponding structures, we
carried out an analyses of p values and HCA. Table 5 shows
the data obtained from this pharmacophore model, for each
compound of the training set, as well as corresponding TI
calculated values. In addition, it shows p values in between
pharmacophoric features and TI values.

Pharmacophoric features Hyd, Don, Neg, and Pos were not
analyzed in terms of p values, due to their absence in the
respective pharmacophore model. Observation of the p values

TABLE 3 | Compounds from the training set ranked according to their
corresponding docking score values, predicted using the CHEMPLP scoring
function by GOLD software.

Compound Score (GOLD—CHEMPLP)

Roc-A 38.873
7 51.520
5 50.822
2 49.503
11 49.045
3 48.018
15 47.828
14 46.745
9 46.104
4 45.177
8 45.146
10 44.818
13 43.561
12 42.213
6 41.283

TABLE 4 | Score, pharmacophoric features, and aligned compounds in the best pharmacophore model generated by PharmaGist.

Score F SF Aro Hyd Don Acc Neg Pos Aligned compounds

64.640 7 7 3 0 0 4 0 0 1*, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

F, number of features; SF, spatial features; Aro, aromatic groups; Hyd, hydrophobic groups; Don, donor groups; Acc, acceptor groups; Neg, anionic atoms; Pos, cationic atoms. 1*, pivot
molecule (Roc-A).

FIGURE 6 |Qualitative characteristics of the best pharmacophoremodel initially generated by PharmaGist. (A) Alignedmolecules. (B) Pharmacophoric features positioned
over Roc-A (pivot molecule). (C) Pharmacophoric features: 3 aromatic groups (Aro) in purple, and 4 hydrogen bond acceptor groups (Acc) in yellow.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8365729

dos Santos et al. Rocaglamide Derivatives to Discovery New Potential Anti-Skin Cancer Agents

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


between the pairs of features in the generated matrix, allows one
to infer that there was: no Aro-SF correlation (0.000), weak
positive Acc-Aro correlation (0.221), moderate positive Acc-
F and Acc-SF correlation (0.438 and 0.624), and strong
positive SF-F correlation (0.813). Regarding p values
between TI and pharmacophoric features, only moderate
negative correlations were observed (TI-F: 0.410; TI-SF:
0.591; TI-Aro: 0.422, and TI-Acc: 0.602). This is expected,
since TI is influenced by the number of bits between two
compounds.

The HCA is a complementary multivariate statistical
technique widely accepted in the analysis of experimental data
(Macêdo et al., 2015; Ferreira et al., 2019). This statistical method
was here used in order to select the pharmacophoric features
overall correlated with similarity (TI values).

We constructed an HCA dendrogram which furnished similar
results to those of p values analysis. Worth noting that the Euclidean
distance was used as a parameter to organize the variables into
clusters, and also that the pharmacophoric features were considered
as dependent variables. In this way, according to this dendrogram,
the following correlations could be confirmed: SF, Acc, Aro and TI.
That is: these pharmacophoric features remained organized into a
single cluster, in which a greater similarity was observed for SF and
Acc, followed by Aro and TI (Figure 7A).

Moreover, another HCA dendrogram was built considering the
compounds from the training set as observations. This classified
them into two clusters: one containing the eight most similar
compounds in relation to Roc-A (in blue); and other containing the
six least similar ones (in red) (see Figure 7B).

The most similar compounds to Roc-A were molecules 2 and 3.
These presented the highest TI values, the same number of Aro,
and close numbers of SF andAcc (Table 5). In addition, the overlap
similarity, considering 100ste/100ele, between the corresponding
pairs between thesemolecules were: Roc-A–2 (0.829871/0.753159),
Roc-A–3 (0.838816/0.713790), and 2–3 (0.981833/0.884395). Also,
worth to highlight the overlap similarities for other pairs of
molecules, such as: 4–5 (0.925622/0.819664), 6–7 (0.926376/
0.866807), and 8–9 (0.945688/0.891420) (Supplementary Table
S1). Therefore, these quantitative results of overlap similarity
corroborate the alignment of the HCA dendrogram.

We also pointed out structural differences between the
molecules of the training set, as can be seen in Figure 8
(which can be conjunctly viewed with Figure 6 that highlights
their alignment with the pivot molecule). Worth mentioning
some pair’s differences: Roc-A–2 differs by the presence of a
hydroxyl group; Roc-A–3 differs by the presence of an ethyl

TABLE 5 | Pharmacophoric features for each compound of the training set and their
TI (Tanimoto Index) similarity values in relation to Roc-A (pivot molecule). Additional
matrix showing pearson’s correlation (p) values in between pharmacophoric
features and TI values.

Compound F SF Aro Acc TI

Roc-A 17 15 3 7 1.000000
2 20 17 3 8 0.946588
3 18 16 3 8 0.852853
4 20 17 3 9 0.816619
5 18 17 3 9 0.811429
6 20 18 3 9 0.800562
7 19 17 4 9 0.786885
8 21 17 3 9 0.772989
9 22 18 3 9 0.769886
10 18 17 4 10 0.751958
11 22 20 3 9 0.749311
12 17 15 4 7 0.748588
13 19 18 4 10 0.741026
14 21 20 4 9 0.722222
15 21 19 3 9 0.693431

SF 0.813 — — — —

ARO −0.319 0.000 — — —

ACC 0.438 0.624 0.221 — —

TI −0.410 −0.591 −0.422 −0.602 —

F, number of features; SF, spatial features; Aro, aromatic groups; Acc, acceptor groups;
TI, tanimoto index.

FIGURE 7 | (A) HCA dendrogram built considering pharmacophoric features and TI values. (B) HCA dendrogram for compounds of training set - more similar in blue
cluster and less similar in red cluster.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 83657210

dos Santos et al. Rocaglamide Derivatives to Discovery New Potential Anti-Skin Cancer Agents

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


methanoate group; 4–5 differs by the presence of a hydroxyl
group in 4, and an ethanal group in 5; 6–7 differs by the presence
of a methoxy group in 6, and a 2H-1,3-dioxole group in 7; 8–9
differs by the presence of a methoxylamine group in 8, and an
N-hydroxymethanamine group in 9.

Pharmacophore-based Virtual Screening
The initial pharmacophore model was submitted to the Pharmit
webserver (Sunseri and Koes, 2016), to obtain its corresponding
spatial coordinates. A set of coordinates was obtained for each of

the pharmacophoric features (3 Aro and 4 Acc), which were
obtained from aligned molecules, as shown in Table 6. This
pharmacophore was here denoted as Model 1 and it was
submitted to virtual screening, using the Molport® database,
which retrieved only 8 compounds without the application of
filters.

Aiming to increase the diversity along the search for new
structures, maximum and minimum values of physicochemical
properties of the structures were also used as filters
(Supplementary Table S2). In this way, we performed another

FIGURE 8 | Structural differences between most similar compounds of training set. The red circles indicate which functional groups are exchanged. 1* corresponds to
Roc-A (pivot molecule).
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virtual screening in Pharmit considering the Model 2 (with
application of filter), which retrieved 2 more compounds.
These 2 models, so far, could retrieve a total of 10 compounds
(see Table 6) and the graphic spatial distribution of their
pharmacophoric features can be seen in Figure 6C.

We realized that Models 1 and 2 were not satisfactory for the
virtual screening process, but their pharmacophore alignments
were maintained and supported by the evaluation of p values,
which confirmed the existence of correlation between the
variables selected (Figures 6B,C). Moreover, the alignment of
structures in more or less similar clusters was also confirmed by
the HCA.

So, in order to increase the number of compounds retrieved
from virtual screening, as well as their structural diversities, we
followed the protocol by (Ferreira et al., 2019) to perform
different combinations between pharmacophoric features to
generate new pharmacophore models. This has been done by
using Eq. 2 (Santos, 2017), presented below:

Cp, n � n!

p!(n − p)!
(2)

Where: C = number of combinations; p =model type (p ≠ 0, p = 1,
p = 2, p = ∞); n = number of model variables.

Considering a total of 5 variables (pharmacophoric
features), by simple combination and without repetition,
five new pharmacophore models (Models 3, 4, 5, 6, and 7)
were generated. Table 7 details their corresponding set of
pharmacophoric features as well as their spatial coordinates.
Thus, each one of these new models were further submitted to
new virtual screening campaigns, which retrieved us a total of
2.332 compounds—totaling 2.342 compounds out of the seven
pharmacophore models.

Selection of Compounds From
Pharmacophore-based Screening
In this step, each set of compounds that was obtained from
pharmacophore-based virtual screening, employing each model
(Models 1, 2, 3, 4, 5, 6 and 7), was considered to calculate
corresponding similarities (TI values) in relation to Roc-A. For

each set, we sorted similarity values of compounds and selected
top 200. Worth reminding that we considered a threshold to only
pick up compounds that presented TI value greater than 0.2 (see
Table 8). Therefore, we could obtain a total of 931 compounds
out of this task, that proceeded to the next screening step.

Prediction of Toxicity and Pharmacokinetic
Properties
The retrieved 931 compounds, in addition to Roc-A, were
subjected to predictions of toxicity and pharmacokinetic
properties, as mentioned in methods. This analysis was carried
out to filter out and select most promising compounds
throughout our screening. In brief, we could retrieve a total of
60 compounds out of these analyses, and Table 9 shows
predictions for 10 selected and most relevant compounds -
complete pharmacokinetic data on Supplementary Tables
S3–S7 (see Supplementary Material). Next, we discuss some
important remarks considering our analysis of toxicity and
pharmacokinetic predictions.

Lipinski’s Rule of Five is intended to help medicinal chemists
filtering potential drug candidates, by excluding those with
unwanted physicochemical properties. According to Lipinski’s
Rule of Five, four molecular properties are overall considered:
logP (≤5) (predicted here as iLOGP), number of hydrogen bond
donors (≤5), number of hydrogen bond acceptors (≤10) and
molecular weight (<500 g/mol). Furthermore, several extensions
of the Lipinski’s rule have been proposed as guidelines and one of
them mentions, for instance, that TPSA must be less than 140 Å2

(Lipinski et al., 2001; Veber et al., 2002). Considering these
parameters, we evaluated that Roc-A presented 1 violation of
Lipinski’s rule, since it presents MW = 505.56 g/mol.
Nevertheless, all other selected compounds did not present
violations of Lipinski’s rule (see Table 9).

GIA and BBB permeation are two crucial pharmacokinetic
characteristics for developing drug candidates. Although there
are different routes of drug administration, the oral route is
generally preferred due to patient’s comfort. Thus, initial
estimation of oral bioavailability, that is, the fraction of the
dose that reaches the bloodstream after oral administration, is

TABLE 6 | Pharmacophoric features and spatial coordinates for pharmacophore Models 1 and 2, obtained by Pharmagist and Pharmit, as well as number of compounds
retrieved from corresponding virtual screening campaigns using Molport database.

Model 1[a]/Model 2[b]

Pharmacophoric features Spatial coordinates Number of compounds obtained

x y z R

Acc 1 12.380 −15.578 2.204 0.5

8[a]/2[b]

Acc 2 15.069 −16.653 −1.457 0.5
Acc 3 15.205 −15.655 2.057 0.5
Acc 4 16.838 −21.912 1.729 0.5
Aro 1 19.831 −16.492 −1.023 1.1
Aro 2 12.488 −16.602 −0.420 1.1
Aro 3 16.316 −19.305 0.830 1.1

Total 10

[a]No filters applied.
[b]Filters applied.
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TABLE 7 | Pharmacophore Models 3, 4, 5, 6, 7, and corresponding graphic representations, pharmacophoric features, spatial coordinates and number of compounds
retrieved in each virtual screening campaign using Molport database.

Graphic representation Pharmacophoric features Spatial coordinates Number of compounds obtained

x y z R

Model 3

Acc 3 15.205 −15.655 2.057 0.5

991

Acc 4 16.838 −21.912 1.729 0.5
Aro 1 19.831 −16.492 −1.023 1.1
Aro 2 12.488 −16.602 −0.420 1.1
Aro 3 16.316 −19.305 0.830 1.1

Model 4

Acc 1 12.380 −15.578 2.204 0.5

129

Acc 2 15.069 −16.653 −1.457 0.5
Aro 1 19.831 −16.492 −1.023 1.1
Aro 2 12.488 −16.602 −0.420 1.1
Aro 3 16.316 −19.305 0.830 1.1

Model 5

Acc 2 15.069 −16.653 −1.457 0.5

264

Acc 4 16.838 −21.912 1.729 0.5
Aro 1 19.831 −16.492 −1.023 1.1
Aro 2 12.488 −16.602 −0.420 1.1
Aro 3 16.316 −19.305 0.830 1.1

Model 6

Acc 1 12.380 −15.578 2.204 0.5

217

Acc 3 15.205 −15.655 2.057 0.5
Aro 1 19.831 −16.492 −1.023 1.1
Aro 2 12.488 −16.602 −0.420 1.1
Aro 3 16.316 −19.305 0.830 1.1

Model 7

Acc 1 12.380 −15.578 2.204 0.5

731

Acc 4 16.838 −21.912 1.729 0.5
Aro 1 19.831 −16.492 −1.023 1.1
Aro 2 12.488 −16.602 −0.420 1.1
Aro 3 16.316 −19.305 0.830 1.1

Total 2332
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a key decision-making criterion at various stages of the drug
development process. Worth noting that bioavailability is highly
multifactorial, but is primarily driven by GIA (Newby et al.,
2015). BBB may be considered a shield that protects the brain,
since it is a “physical” and “biochemical” barrier. Although
active transport is important, passive diffusion is the main
pathway for drugs to access the brain from the bloodstream
(Di et al., 2012). Therefore, for a drug with biological activity in
the central nervous system (CNS), a favorable BBB permeation
is desirable. However, for a drug with no CNS activity, as drawn
here, permeation to the BBB is not necessary, so that side effects
are minimized (Wang and Hou, 2009; Rojas et al., 2011). GIA
and BBB permeation were here predicted by the BOILED-Egg
model proposed by Daina and Zoete, (2016). Such model
outputs “high” or “low” for GIA, and “yes” or “no” for BBB
permeation. Our predictions showed that Roc-A and all other
compounds presented “high” GIA and “no” BBB permeation
(see Table 9), a fact that makes them suitable for the next stages
of the study.

Toxicity predictions were carried out to verify and investigate
toxicity alerts, such as the presence of toxic groups (toxicophoric)
in the compounds. From Table 9, we observe that Roc-A showed
skin sensitization toxicity alert, which refers to allergic response
produced by contact of a substance with the skin (Aptula et al.,
2005). This alert has been attributed as plausible due to the
toxicophoric group substituted phenol or precursor. In addition,
there was also a toxicity alert for teratogenicity, which refers to the
possibility of a substance causing fetal malformation during the
gestational period. This alert was attributed as plausible to the
toxicophoric group 4-hydroxydiphenyl-ethane or -ethene. From
the remaining compounds, 41 of them showed no toxicity alerts,
but 24 of them showed plausible toxicity alerts for skin
sensitization. Among the toxicophoric groups for the latter
are: substituted phenol or precursor, phenyl ester, activated

N-heterocycle, hydrazine or precursor, imine or alpha, beta-
unsaturated imine.

To sum up, Roc-A showed a toxicity alert for teratogenicity
and one violation of Lipinski’s rule, while the screened
compounds did not show similar alerts. These results
allowed us to infer that, overall, the screened compounds
presented improved toxicity and pharmacokinetic predicted
profiles than the pivot molecule (Roc-A).

Docking-Based Virtual Screening
We carried out docking simulations using three different
software, following procedures detailed in methodologies
section. The idea of using three software—GOLD, FRED and
Dockthor, which employ different methodologies—was to
expand and diversify possible interpretations for ligand-protein
interactions as well as to analyze their corresponding scores
punctuations in a consensual perspective.

In advance of running docking simulations to the 60
remaining compounds, validation of each docking protocol in
3 software were performed. Validation procedures were all
successful in three cases as one can see in Figure S1. The
native ligand 3D3 was redocked into Chk1 protein presenting
a RMSD of 1.15, 1.53 and 1.64 Å by using the software GOLD,
FRED and Dockthor, respectively.

Moreover, we ran docking simulations to Roc-A using the
three software. Figure 9 shows the obtained docking poses for the
pivotal compound. One should note that poses were not too
similar regarding their overlaps and distribution within binding
site, moreover different interactions were observed: GOLD pose
showed one hydrogen bond between OMe group and NH from
Cys87 and one hydrogen bond between OH and C=O from
Leu15; FRED pose showed one pi-cation interaction between
phenyl and +NH3 from Lys38; and Dockthor pose showed no
interactions, to view the interactions in more detail see
Supplementary Figure S3. Score values obtained for Roc-A
was 38.873, −4.889, and −7.816 using GOLD, FRED and
Dockthor, respectively. Worth mentioning that these values
were worse than those observed for the majority of 60
screening compounds, in general, which could suggest that
this set of screening compounds show an even greater
potential to interact with Chk1 than Roc-A.

Docking results for the 60 screening compounds showed that
each one of the 3 software was able to generate diverse poses for
them. However, our consensus analysis was aimed at considering
corresponding scores obtained. In other words, we performed
consensus scoring with the docking results. In this way, each table
output, from each software (containing the score values for each
compound), were sorted in ranking values from best to worst
(1–60 position). These ranking values were then considered to
calculate an average ranking value for each compound. Thus, we
were able to pick top 10 compounds with best average ranking
values obtained by using 3 docking software, as shown in
Table 10 and their 2D structures in Figure 10.

In addition, docking poses are presented in Figure 9 for
compound PC-135638768 which was considered the top 1
compound in our consensus docking analysis. Interestingly,
the three poses obtained by three software showed a great

TABLE 8 | Number of compounds selected from each pharmacophore model in
different thresholds of similarity values (Tanimoto index) in relation to Roc-A.

Tanimoto index thresholds

≥0.20 ≥0.25 ≥0.3 ≥0.35 ≥0.40

Model 1
8 8 8 6 6

Model 2
2 2 2 2 2

Model 3
991 986 814 242 45

Model 4
129 103 74 28 13

Model 5
264 232 150 107 31

Model 6
216 191 116 32 10

Model 7
730 725 562 205 34
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overlap and the same hydrogen bond interactions between NH
and C=O from Glu85 and C=O and NH from Cys87.
Additionally, GOLD pose presented a hydrogen bond between
C=O and +NH3 from Lys38. One should note that this latter
interaction was verified in a similar way as for Roc-A FRED pose.
Also, the crucial interaction observed for the native ligand with
Cys87 has been overall kept for compound PC-135638768.
Therefore, this suggests that the final top 10 compounds

selected by these criteria may show a great potential to act as
putative Chk1 inhibitors with interest in anti-skin cancer activity.

Analysis of Properties and Structures of
Promising Compounds
The 1-octanol/water partition coefficient logP is commonly
used as a parameter to express a given compound’s

FIGURE 9 | Docking poses obtained for Roc-A using (A)GOLD in orange, (B) FRED in purple, and (C) Dockthor in light blue, and for PubChem-135638768 (D,E,F) using
same corresponding software/colors. Results obtained using the protein Chk1 (PDB ID 2CGX). Dashed lines in yellow represent hydrogen bonds and in green cation-pi.
Figures were prepared using Maestro.

TABLE 9 | Prediction of toxicity and pharmacokinetic properties for 10 selected compounds, out of total of 60 retrieved from virtual screening, using DEREK and SwissADME,
respectively.

Compound GIA BBBP Lipinski violations Toxicity endpointa Toxicophoric group Toxicity alert

Roc-A High No 1 Skin sensitisation Substituted phenol or precursor Plausible
Teratogenicity 4-hydroxydiphenyl-ethane or -ethene Plausible

Model 4
PC-53093220 High No 0 — — No alert
PC-53116405 High No 0 — — No alert

Model 5
PC-16811025 High No 0 — — No alert
PC-135638768 High No 0 — — No alert
PC-16803784 High No 0 — — No alert
PC-16810169 High No 0 Skin sensitization Substituted phenol or precursor Plausible
PC-18582767 High No 0 — — No alert
PC-16810171 High No 0 Skin sensitization Substituted phenol or precursor Plausible

Model 6
PC-9115580 High No 0 — — No alert

Model 7
PC-17581023 High No 0 Skin sensitization Substituted phenol or precursor Plausible

PC, PubChem; GIA, Gastrointestinal Absorption; BBBP, Blood-Brain Barrier Permeant.
aIn human, mouse and/or rat.
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FIGURE 10 | Representation of 2D structures of 10 promising compounds obtained by hierarchical virtual screening. PC: PubChem.

FIGURE 11 | logP values predicted using different methodologies for pivotal
molecule and 10 promising compounds. Pivotal molecule: Roc-A; PC: PubChem.

FIGURE 12 | logS values predicted using different methodologies for pivotal
molecule and 10 promising compounds. Pivotal molecule: Roc-A; PC: PubChem.

TABLE 10 | Top 10 compounds selected according to their best average ranking values, which in turn were calculated from each individual ranking and corresponding scores
obtained using 3 docking software (GOLD, FRED and Dockthor).

Compound GOLD FRED Dockthor #Average ranking

scorea # Ranking scoreb # Ranking scorec # Ranking

Roc-A 38.8725 37 −4.8893 36 −7,816 31 34,7
PC-135638768 71.8748 2 −10.2612 1 −8.998 3 2.0
PC-18582767 64.5324 6 −9.8941 2 −8.640 9 5.7
PC-53093220 67.2732 3 −8.0923 14 −9.127 2 6.3
PC-16803784 65.4361 5 −8.9784 8 −8.633 10 7.7
PC-16811025 62.8643 9 −9.7540 4 −8.534 14 9.0
PC-16810171 63.3645 8 −9.8666 3 -8.342 19 10.0
PC-16810169 62.3539 10 −9.1083 7 −8.502 16 11.0
PC-53116405 77.7655 1 −6.9509 29 -−8.734 6 12.0
PC-17581023 58.6058 17 −8.1517 12 −8.659 8 12.3
PC-9115580 61.9378 12 −7.8324 18 −8.722 7 12.3

aGOLD, score values obtained by CHEMPLP, scoring function.
bFRED, Chemgauss4 score values.
cpredicted binding affinity by the DockTScore program given in kcal/mol units. PC: PubChem.
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lipophilicity, which is a key property for drug development
(Daina et al., 2014). Such property affects, for instance, the
tendency of a compound to break down into non-polar versus
aqueous environments. Therefore, increasing the lipophilicity
of compounds, generally, might lead to increase on their
permeability, protein binding, volume of distribution, as
well as decrease on their solubility and renal excretion
(Kerns and Di, 2003).

Roc-A presented a consensus logP value equal to 2.87;
while the 10 promising compounds showed consensus logP
values spanning from 2.01 to 3.19, as can be seen in Figure 11
and Supplementary Tables S8–S13. In fact, in this study,
only positive logP values in the range of 0.97–4.57 were found.
Worth mentioning that such positive values indicate
reasonable lipophilicities, according to Sepay et al. (2020).
Compounds PC-18582767, PC-16811025 and PC-16803784
have similar chemical structures, bearing an ethoxyphenyl
group and differing only in the positions of their
dimethoxyphenyl groups, which attributes them similar
logP values. On the other hand, PC-9115580 and PC-
53116405 do not bear an ethoxyphenyl group, so the
insignificant change in their logP values indicates that the
absence of this group cannot increase their polarity. In
addition, PC-16810171 and PC-16810169 are chemically
similar and differ only in the position of their
methoxyphenyl groups, so they have very similar logP
values. Lastly, PC-135638768 has 3 nitrogen atoms in its
structure and a methyl group, which may explain its
higher logP value, favoring solubilization in a hydrophobic
medium.

According to Sepay et al. (2020) water solubility is also an
important requirement for any drug candidate intended to be
administered orally, or parenterally, since a sufficient amount
of active pharmaceutical ingredients must be administered in a
small volume.

Roc-A presented a consensus logS value equal to -5.38; while the
promising compounds showed consensus logS values in the range
of −4.64 to −6.26, as shown in Figure 12 and Supplementary
Table S14. In this study, only negative logS values in the range
−3.63 to −8.20 were found. According to Sepay et al., 2020, logS

values between −4 and −6 indicate moderate solubility, −2 to −4
indicate good solubility, and greater than -6 indicate poor
solubility. Therefore, we infer that Roc-A and nine promising
compounds were moderately soluble in water, and PC-17581023 is
poorly soluble in water. This suggests that the majority of
promising molecules found here might be administered orally.

Additionally, we searched for our 10 promising compounds in
the Scifinder® and found no biological activity or patent
previously reported for them, which make them novel
chemical structures in this context.

Furthermore, in order to corroborate the hierarchical virtual
screening data and verify the similarity between the promising
compounds and Roc-A, we carried out a similarity analysis taking
into account the overlap of their steric fields. Steric factors
represent a fundamental characteristic related to the shape and
conformation of chemical structures, being commonly associated
with their potential biological activity (McConathy and Owens,
2003). From Table 11, one can see that the 10 promising
compounds showed overlap similarities, in relation to Roc-A,
ranging from 35 to 56% for 50ste, from 46 to 60% for 70ste, and
from 57 to 69% for 100ste. Also, Supplementary Figure S4 shows
the overlap poses between Roc-A and the promising compounds.
Compound PC-18582767 presented the highest overlap
similarity in 50ste, and PC-16803784 presented highest overlap
in both 70ste and 100ste.

In general, these results allowed us to infer that all 10
promising compounds present reasonable similarity with Roc-
A, which is a known compound with bioactivity in experiments
using SC cells. Insightfully, also considering the docking results,
the 10 compounds retrieved in this work are likely to present
potential anti-SC activity.

In silico Evaluation of Selectivity and
Theoretical Determination of Biological
Activity
In order to validate the molecular docking methodology, the
crystallographic ligands were selected for redocking using the
AutoDock 4.2/Vina 1.1.2 software, via PyRx graphical interface,
with the crystallographic poses of the receptors: Chk1 (PDB ID
2CGX) (Foloppe et al., 2006), elF4A1-ATP (PDB ID 5ZC9)
(Iwasaki et al., 2019) BRAF kinase (PDB ID 6XFP) (Yen et al.,
2021).

From the crystallographic poses and obtaining the
computational poses of the respective inhibitors (3D3, RCG
and V1Y) complexed to the proteins, it was possible to
perform the validation of the molecular docking methodology
by calculating the RMSD between the poses. The results obtained
were 1.58, 1.43 and 0.50 Å, respectively. According to
Gowthaman et al. (2008) and Hevener et al. (2009), the
docking methodology is validated when the RMSD value
calculated between the crystallographic and computational
poses is less than 2.0 Å. The best results can be seen in
Supplementary Figure S5.

Foloppe et al. (2006) reported the discovery of 10 new Chk1
inhibitors, distributed in 9 different chemical structures. All
ligands act by competitive binding to the ATP target site.

TABLE 11 | Overlap similarity values of the 10 promising compounds in relation to
Roc-A.

Compound Overlap

50ste/elt 70est/30elt 100ste

PC-135638768 0.482649 0.514834 0.601549
PC-18582767 0.566805 0.574828 0.668316
PC-53093220 0.452489 0.479363 0.570985
PC-16803784 0.556497 0.607117 0.698289
PC-16811025 0.472699 0.512293 0.681568
PC-16810171 0.418454 0.462070 0.688019
PC-16810169 0.459229 0.543432 0.691514
PC-53116405 0.488060 0.513044 0.616279
PC-17581023 0.357190 0.500264 0.658258
PC-9115580 0.511303 0.547238 0.613247

PC, PubChem; 50ste/elt, 50% of both contributions; 70ste/30elt, 70% steric and 30%
electrostatic; 100ste, 100% of steric contribution.
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According to crystallographic data deposited by Foloppe et al.
(2006), at the site of the Chk1 protein (PDB ID 2CGX), the 3D3
inhibitor complexed performs Pi-Sigma interactions with the
Val23 and Leu137 residues and Pi-Alkyl with the Ala36
residue in the ß-sheet. Leu15 and Cys587 residues show Pi-
Alkyl type interaction in the Loop region of the protein. It is
possible to see Conventional Hydrogen Bonding interactions of
residues Gly16, Tyr20 and Cys87, and Carbon-Hydrogen
Bonding interactions with residue Glu85, all in the Loop
region. Residues Lys38 and Gly90 perform Van der Waals
interactions in the ß-sheet, as well as residues Gly18, Val 68,
Glu85, Tyr86 and Asp148 in the Loop.

Iwasaki et al. (2019) reported that Roc-A exhibits antitumor
activity by binding eukaryotic initiation factor-4A (eIF4A) to
polypurine mRNA sequences. The RCG inhibitor complexed
in the protein elF4A1-ATP (PDB ID 5ZC9) performs Pi-Pi T-
Shapped interactions with the Phe163 residue, Conventional
Hydrogen Bonding with Gln195 residue and Van der Waals
interactions with Asp16, Arg110, Pro159, Gly160, Asp198 and
Ile199 residues, all in the α-helix. It is important to emphasize
the interactions of the inhibitor with nucleotides of the RNA
strand present in the protein structure. The G8 nucleotide
performs Pi-Alkyl, Pi-Pi T-Shaped and Conventional
Hydrogen Bonding interactions, as well as the A7
nucleotide, according to studies conducted by Iwasaki et al.
(2019).

The RAFs proteins (ARAF, BRAF and CRAF) are
fundamental for the signaling of the RAS-RAF-MEK-ERK
(MAPK) pathway, which is central in the regulation of cell
growth and proliferation. In addition, half of malignant
melanomas contain BRAF mutations (Sekulic et al., 2008).
The V1Y complexed inhibitor at the active site of the BRAF
receptor (PDB ID 6XFP), in the Loop region, shows Pi-Pi T-
Shapped interactions with Trp531 and Phe595 residues, Pi-
Alkyl with Ile513, Leu514, His574 and Cys532 residues, and
Pi-Sulfur interactions with the Phe595 residue waste Cys532
and Asp594 show interactions of the Conventional Hydrogen

Bonding type, and residues Trp531 and Gly593 show
interactions of the Carbon-Hydrogen Bonding type. Only
residue Leu593 showed Van der Waals interactions in that
region. In the α-helix regions, the inhibitor performs Pi-Alkyl
interactions with residues Leu505 and Leu567, Conventional
Hydrogen Bonding with residue Glu501. In ßsheet regions, the
inhibitor performs Pi-Alkyl interactions with residues Val471,
Ala481 and Lys483, Pi-Cation with residue Lys483, Carbon-
Hydrogen Bonding with residue Gln530 and Van der Waals
interactions with residues Ile463, Val482, Ile527, Phe583 and
Ile592, according to a study developed by Yen et al. (2021).

In order to evaluate if promising compounds have binding
affinity (ΔG) superior to complexed inhibitors (3D3, RCG and
V1Y) and to the control compound (Roc-A) at the active sites of
Chk1, elF4A1-ATP and BRAF receptors, they were submitted to
Molecular Docking. The promising compound that showed
significant results at the three receptors were PC-53093220, as
we can see in Figure 13.

At the Chk1 receptor (PDB ID 2CGX), the 3D3 inhibitor
showed a binding affinity (ΔG) of -6.3 kcal/mol. The control
compound Roc-A exhibited a binding affinity of -1.3 kcal/mol.
The promising compounds PC-7581023, PC-16810169, PC-
16810171, PC-53093220, PC-53116405, PC-9115580, PC-
18582767 and PC-135638768 showed higher binding affinity
results than the control compound (Roc-A) and to the
complexed inhibitor (3D3), as shown in Supplementary
Figure S6.

At the active site of the elF4A1-ATP (PBD ID 5ZC9) receptor,
the RCG inhibitor showed a binding affinity of -5.8 kcal/mol. The
control compound (Roc-A) had a binding affinity of -5.4 kcal/
mol. Among the promising compounds, only one showed higher
binding affinity to the control compound (Roc-A) and/or
complexed inhibitor (RCG). That compound was PC-
18582767, which exhibited a binding affinity of -5.9 kcal/mol.
The promising compounds PC-53093220 and PC-16903784
showed a binding affinity of -5.7 and -5.5 kcal/mol,
respectively, higher than the control compound (Roc-A), as
shown in Supplementary Figure S7.

At the BRAF receptor (PDB ID 6XFP), the complexed inhibitor
V1Y exhibited a binding affinity of -13.4 kcal/mol, while the
control compound Roc-A showed a binding affinity of -3.9 kcal/
mol. Except for compound PC-16810171, all other promising
compounds showed higher binding affinity than the control
compound Roc-A. However, only a few promising compounds
approached the binding affinity of the complexed ligand, they are
PC-53093220, PC-7581023, PC-16810169 and PC-9115580,
exhibiting respectively -10.7, -9.4, -9.3 and -9.1 kcal/mol. In
comparative terms, the promising compound that exhibited the
highest binding affinity (PC-53093220) has a difference of
±2.03 kcal/mol in relation to the receptor-complexed inhibitor
(V1Y), as we can see in Supplementary Figure S8.

In Supplementary Figures 9S–12S (Supplementary
Material) are shown the interactions of complexed inhibitors
with amino acid residues at the respective active sites (A) 3D3
(PDB ID 2CGX) (B) RCG (PDB ID 5ZC9) and (C) V1Y (PDB ID
6XFP), as well as the interactions of promising compounds [(A)
PC-135638768 (B) PC-53093220 and (C) PC-7581023] with

FIGURE 13 | Heatmap plot comparing the experimental, commercial and
promissing compounds binding affinity (ΔG) values in receptors: Chk1 (PBD
ID 2CGX), elF4A1-ATP (PDB ID 5ZC9) and BRAF (PDB ID 6XFP).
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amino acid residues in the active site of the Chk1 receptor (PDB
ID 2CGX). Furthermore, they are shown the interaction of
promising compounds [(A) PC-18582767 (B) PC-16903784
and (C) PC-53093220] with amino acid residues in the active
site of the elF4A1-ATP receptor (PDB ID 5ZC9), as well as the
interaction of promising compounds [(A) PC-53093220 (B) PC-
7581023 and (C) PC-9115580] with amino acid residues in the
active site of the BRAF kinase receptor (PDB ID 6XFP).

Roc-A and 10 promising compounds were subjected to
biological activity prediction analysis in the online PASS
software and those with Pa > Pi were plotted (Table 12).
Therefore, Roc-A presented as predicted biological activities
related to SC: antineoplastic, antineoplastic (squamous cell
carcinoma), apoptosis agonist e kinase inhibitor.

The predicted biological activities of the promising compounds
were similar to those of Roc-A. However, the promising
compounds PC-16811025 and PC-16810169 presented as

predicted biological activity related to SC “Antineoplastic
enhancer”, which is absent in the prediction of Roc-A (Table 12).

Table 12 also shows prediction results via CLC-Pred (Pa > Pi)
of Roc-A and promising compounds under SC cell lines (SCCL).
Therefore, Roc-A showed predicted cytotoxic effect against 1 SCCL
(M19-MEL). It is worth emphasizing that Roc-A has experimental
IC50 data in SCCL (RPMI-7951 and kB cells) that corroborate its
cytotoxic activity predicted here (Wu et al., 1997).

Most promising compounds had a cytotoxic effect against
more than 1 SCCL. In addition, the promising compound PC-
9115580 had predicted cytotoxic activity against 8 SCCL.
However, 2 promising compounds (PC-53093220 and PC-
53116405) did not show predicted biological or cytotoxic
activity (Pa > Pi). This fact should not be seen as a lack of
activity, since even compounds with known and potent activity
can present a low value of Pa or even Pa < Pi during the prediction
(Ramos et al., 2022; Lagunin et al., 2018).

TABLE 12 | Prediction of biological activity and cytotoxic effect of promising compounds via PASS online and CLC-Pred, respectively.

CLC-PRED[a] PASS[b]

Compound Pa Pi Cell-line Cell-line full name Tissue Pa Pi Activity

Roc-A 0.198 0.139 M19-MEL Melanoma Skin 0.920 0.050 Antineoplastic
0.862 0.001 Antineoplastic (squamous cell carcinoma)
0.809 0.008 Apoptosis agonist
0.394 0.069 Kinase inhibitor

PC-135638768 0.129 0.012 SK-MEL Melanoma Skin 0.693 0.015 Apoptosis agonist
0.379 0.112 Antineoplastic
0.297 0.148 Kinase inhibitor

PC -18582767 0.351 0.038 SK-MEL-5 Melanoma Skin 0.289 0.159 Antineoplastic
0.216 0.158 Malme-3M 0.223 0.191 Apoptosis agonist
0.136 0.123 A-431

PC-16803784 0.358 0.036 SK-MEL-5 Melanoma Skin 0.239 0.195 Antineoplastic
0.216 0.156 Malme-3M

PC-16811025 0.338 0.042 SK-MEL-5 Melanoma Skin 0.247 0.188 Antineoplastic
0.208 0.172 Malme-3M 0.218 0.196 Apoptosis agonist

0.242 0.232 Kinase inhibitor

PC-16810171 0.270 0.073 SK-MEL-5 Melanoma Skin 0.302 0.151 Antineoplastic
0.248 0.109 Malme-3M 0.283 0.166 Kinase inhibitor

0.221 0.007 Antineoplastic enhancer

PC-16810169 0.413 0.025 SK-MEL-5 Melanoma Skin 0.289 0.159 Antineoplastic
0.220 0.150 Malme-3M 0.280 0.170 Kinase inhibitor

0.174 0.134 Antineoplastic enhancer

PC-17581023 0.236 0.102 M19-MEL Melanoma Skin 0.424 0.056 Kinase inhibitor
0.215 0.159 SK-MEL-28 0.303 0.151 Antineoplastic
0.198 0.171 M14

PC-9115580 0.753 0.005 UACC-257 Melanoma Skin 0.224 0.006 Protein kinase inhibitor
0.613 0.010 SK-MEL-2
0.601 0.008 M14
0.569 0.011 LOX-IMVI
0.533 0.014 SK-MEL-28
0.524 0.014 SK-MEL-5
0.372 0.030 UACC-62

PC, pubchem; Roc-A, Rocaglamide-A
aCell Line Cytotoxic Predictor.
bPrediction of Activity Spectra for Substances.
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CONCLUSION

Computer-assisted drug design is currently a reality by which is
possible to save time and resources for the treatment of existing
diseases, or new ones that may arise, such as SC. Studies
conducted here have shown that Roc-A and its derivatives
were a good starting point to apply molecular modeling
strategies. More specifically, the selected fourteen Roc-A
derivatives presented better predicted affinities for the Chk1
receptor than Roc-A itself, suggesting that their use was a
good path to develop pharmacophore models and
subsequently perform virtual screening.

The initial pharmacophoremodel that has been built consisted of
seven pharmacophoric features and after its successful validation it
has been expanded to further pharmacophore models. These were,
therefore, employed on independent virtual screening campaigns to
obtain potential virtual hits. Afterwards, prediction of toxicity and
pharmacodynamic properties allowed us to filter out sixty promising
compounds for molecular docking.

Consensus docking has been applied to expand and diversify the
possible protein-ligand interactions, as well as to consensually analyze
their corresponding scores. In this way, it has been found thatmost of
compounds scored higher thanRoc-A and, in addition, this furnished
us 10 promising compounds with great potential to interact with
Chk1. Furthermore, these have well succeeded on analyses
considering their structural properties and similarity with Roc-A.

In short, this study depicts a valuable application of hierarchical
virtual screening, involving ligand- and structure-based
methodologies to propose new potential anti-SC agents. The
suggested 10 promising compounds found here have shown better
protein-ligand interactions and lower toxicity when compared to the
reference compound Roc-A. Finally, these promising compounds
should be selected for in vitro and in vivo tests, as the results of the
prediction of biological and cytotoxic activity against SCCL indicate
great potential for their use in the treatment of SC.
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