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Abstract

Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies
have suggested an association between acute or chronic use of exogenous cannabinoids (D9-tetrahydrocannabinol) and
executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as
biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present
study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine
(AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive
flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card
Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60
years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive
flexibility performance (r = 2.37; p,.05). A positive correlation was found between AEA concentrations and both cognitive
flexibility (r = .59; p,.05) and decision making performance (r = .23; P,.05). There was no significant correlation between
either 2-AG (r = 2.17) or AEA (r = 2.08) concentrations and inhibition response. These results show, in humans, a relevant
modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have
significant implications for the underlying executive alterations described in some psychiatric disorders currently associated
with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders).
Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new
treatments and pharmacological approaches.
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Introduction

Cannabis has been used for thousands of years and has long

been associated with effects on cognitive and emotional processes.

Investigation over the last decades has revealed that the effects of

cannabinoids are mediated by their action on the endocannabi-

noid system. The endocannabinoid system comprises two recep-

tors (CB1 and CB2) found predominately on presynaptic terminals

of glutamatergic and GABAergic neurons [1]. The cannabinoid

receptor 1 (CB1) is the most widely expressed G-protein coupled
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receptor in the brain and is associated with the majority of central

effects of the cannabinoids [2]. Endogenous cannabinoid ligands

(endocannabinoids) bind to cannabinoid receptors, and up to now,

the arachidonate-derived lipid molecules N-arachidonoylethano-

lamine (anandamide; AEA) [3] and 2-arachidonoylglycerol (2-AG)

[4] are the best studied and are considered as retrograde

messengers in the brain.

The biosynthesis of endocannabinoids in the brain has been

reviewed by Di Marzo [5]. Unlike the typical neurotransmitters,

endocannabinoids are stored in the membrane as phospholipid

precursors and released ‘‘on demand’’ by the elevation of

intracellular Ca2+, membrane depolarization, or stimulation of

metabotropic receptors. The endocannabinoids AEA and 2-AG

are biosynthesized from different membrane phospholipid fami-

lies, both esterified with arachidonic acid. For example, N-

arachidonoylethanolamide, AEA is produced from N-arachido-

noylphosphatidylethanolamines (NArPE). Several possible biosyn-

thetic routes for the formation of AEA have been suggested with

multiple enzymes implicated: the N-acylphosphatidylethanola-

mine specific phospholipase D (NAPE-PLD), the a,b-Hydrolase-4

(ABHD4), the glycerophosphodiesterase-1 (GDE1), a soluble

phospholipase A2, an unidentified phospholipase C, and phos-

phatases. These biosynthetic pathways may be able to substitute

one another as mice lacking NAPE-PLD do not show decreased

AEA [6]. AEA is generally degraded by the fatty acid amide

hydrolase (FAAH) enzyme [7]. Additionally, AEA can be

degraded by two other enzymes, FAAH-2 and N-acylethanola-

mine acid amidase [8]. In contrast, the biosynthetic precursors for

2-AG, the sn-1-acyl-2-arachidonoylglycerols (AArG) are mostly

produced by phospholipase Cb (PLCb) acting on membrane

phosphatidylinositols, and then converted to 2-AG by the action of

either of two isoforms of the same enzyme, the sn-1-diacylglycerol

lipases a and b (DAGLa and DAGLb) [9]. 2-AG is largely

degraded by the monoacylglycerol lipase (MAGL) [7].

A network of interactions between the biosynthetic pathways of

the two main brain endocannabinoids AEA and 2-AG has been

suggested [5]: (i) the formation of their phospholipid precursors is

dependent on the pool of arachidonic acid available; (ii) the

degradation of AEA and 2-AG releases in both cases free

arachidonic acid which can be rapidly re-esterified into phospho-

lipids; (iii) in brain, 2-AG levels are approximately 200 times

higher than AEA and the hydrolysis of 2-AG by MAGL

contributes to determining free arachidonic acid levels, unlike

anandamide hydrolysis [10].

The endocannabinoid system has been implicated in different

behaviors, including food intake [11], the reinforcing character-

istics of drugs of abuse [12] and cognitive processing [13–15]. The

role of the endocannabinoid system in memory functioning has

been widely studied [13,14], apparently because of the high

density of CB1 receptors in the hippocampus [16]. However, the

endocannabinoid system appears to be implicated in other

prefrontal-mediated cognitive functions such as the executive

functions [17]. A major role of the endocannabinoid system in

prefrontal activity was originally suggested by the elevated number

of CB1 in this cerebral region, observed in both animals [18,19]

and humans [20]. Additionally, the endocannabinoids AEA and 2-

AG are also found in this brain area [21], as well as the fatty acid

amide hydrolase (FAAH) and monoacylglycerol Lipase (MAGL)

[22], the enzymes accountable for AEA and 2-AG degradation

[23,24].

The effects of the endocannabinoid system on executive

functioning have been extensively studied in animal models. In

vitro experiments have indicated a clear role of endocannabinoids

on behavioral flexibility, whereby reduced levels of 2-AG in the

hippocampus resulted in poor flexibility [25,26]. In addition, some

animal studies suggested that endocannabinoids have a negative

impact on set-shifting and cognitive flexibility, and that the use of

antagonists of CB1 receptors can improve such executive functions

[27]. Upregulation of the CB1 receptor, mainly in the prefrontal

cortex, has also been associated with cognitive flexibility

alterations in rats, assessed with attentional set shifting paradigms

(an equivalent to the human Wisconsin card sorting test) [27–29]

and olfactory go/no-go discrimination task [30]. Although the

underling mechanisms remain ambiguous, it has been suggested

that interactions with dopaminergic, GABAergic and glutamater-

gic transmission might be implicated [27,29,30].

In humans, several studies have suggested that acute consump-

tion or administration of exogenous cannabinoid compounds

(namely D9-tetrahydrocannabinol-THC) is associated with exec-

utive impairments. Indeed, acute use of THC in healthy controls is

associated with alterations in response inhibition [31], decision

making [32], and flexibility [33]. Acute administration of low

doses of THC also modulates the cerebral inhibition response

circuits (namely right inferior frontal cortex, anterior cingulate

gyrus and posterior cingulated cortex) during a response inhibition

task [34]. In the same line, after the acute administration of THC

a consistent neural hyperactivity was observed on the prefrontal

and anterior cingulated cortex [35–37], corroborating the

hypothesis of the role of cannabinoids on frontal-mediated

cognitive functions.

Chronic cannabis use has also been associated with executive

functions deficits. Studies examining the degree of inhibitory

control during a Stroop task concluded that cannabis users

produced more errors of commission (failing to inhibit appropri-

ately) than drug-free subjects and also showed an altered pattern of

brain activation (namely reduced left anterior cingulate, bilateral

dorsolateral prefrontal cortex, and right ventromedial prefrontal

cortex activation) [38,39]. Furthermore, dysfunctions in decision

making (assessed with the Iowa Gambling Task) associated with

reduced cortical activation, were observed in chronic cannabis

users compared with non-drug users [40]. These results raise

exciting questions about a plausible role of the endocannabinoid

system on prefrontal-dependent cognitive functions in humans.

However, to date, no published reports establish the impact of the

endocannabinoid system on executive functioning, such as

capacity of inhibition response, impulsivity, or decision making

in humans.

In this study, we explored the relationship between circulating

levels of plasma endocannabinoids (AEA and 2-AG) and executive

functions (decision making, response inhibition, and cognitive

flexibility) in healthy subjects in order to determine the plausible

role of the endocannabinoid system on prefrontal-depended

cognitive functioning. Hence, we used three neuropsychological

tasks (Wisconsin Card Sorting Test; Stroop Color and Word Test;

and Iowa Gambling Task) known to be mediated by prefrontal

and orbitofrontal cortex functioning [17].

Methods

Sample
Seven centers, all involved in the CIBERobn Spanish Research

Network, participated: the Eating Disorders Unit (Department of

Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona),

the Department of Endocrinology at the University Hospital of

Santiago (Santiago de Compostela); the Department of Diabetes,

Endocrinology and Nutrition (Clinic University Hospital Virgen

de Victoria, Málaga); the Department of Endocrinology (Univer-

sity of Navarra, Pamplona); the Diabetes, Endocrinology and

Endocannabinoids and Executive Functions in Humans
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Nutrition Department, Biomedical Research Institute of Girona

(IdIBGi-Doctor Josep Trueta Hospital, Girona); the IMIM

(Hospital del Mar Medical Research Institute, Barcelona); the

Department of Basic Psychology, Clinic and Psychobiology

(University Jaume I, Castelló). Enrolment in the study was

between January 2010 and September 2012.

One hundred and fifty seven subjects (n = 157) were included.

All participants were female, aged between 18 and 60 years, and

spoke Spanish as their first language. Participants were recruited

through several sources, including word-of-mouth and advertise-

ments in the local university. The lifetime history of health or

mental illnesses profile was based on the general health

questionnaire (GHQ)-28. Prior to assessment, subjects were

specifically asked about lifetime or current presence of drug or

alcohol abuse or dependence (including cannabis abuse/depen-

dence). Sociodemographic characteristics are presented in Table 1.

Exclusion criteria were: (1) Individuals who have suffered a

lifetime disorder of the Axis I mental disorders; (2) History of

chronic medical illness or neurological condition that might affect

cognitive function; (3) Head trauma with loss of consciousness for

more than 2 min, learning disability, or mental retardation; (4)

Use of psychoactive medication or drugs; (5) Being male; and (6)

Age under 18 or over 60 (to discard neuropsychological deficits

associated with age).

All participants were informed about the research procedures

and gave informed consent in writing. Procedures were approved

by the Ethical Committee of each of the aforementioned

institutions.

Neuropsychological Assessment
As described in a previous study [41], all participants underwent

a comprehensive neuropsychological and clinical assessment. The

neuropsychological tests were selected to cover various aspects of

executive functions including decision making, response inhibition,

strategic planning and cognitive flexibility and were administered

by a trained psychologist in a single session and in a randomized

order. All participants were assessed with the following neuropsy-

chological tests: (a) The Wisconsin Card Sorting Test (WCST)

[42], (b) The Stroop Color and Word Test (SCWT) [43] and (c)

The Iowa Gambling Task (IGT) [44]. These tests are well

standardized and clear application norms are included in the

manual, which guarantee the equivalence between administrators.

For two tests (IGT and WCST), a computerized version was

employed, with also help to avoid differences in correction

between administrators. The protocol requires that the adminis-

trator remain unobtrusively present while the administration is

taking place. However, before starting both, the IGT and WCST,

the respondent was told to refrain from asking any questions until

the completion of the test.

(a) Wisconsin card sorting test. The WCST is a classical

measure of cognitive flexibility, conceptualized as the capacity to

shift among stimuli. Subjects have to match a target card by color,

number, or shape with one of four category cards and the

classification rule is unpredictably changing. The test ends when

the participant has completed 6 categories or 128 trials. The main

outcome variable is the number of categories completed and

higher scores indicate better cognitive flexibility and conceptual-

ization. We also considered the number of errors and the number

of cards used until the first category was successfully completed

(initial conceptualization), as both variables are considered

predictors of WCST results and mental set flexibility [45].

(b) Stroop color and word test. This paper and pencil test is

a measure of inhibition response and interference control skills.

Participants have 45 seconds to read as many words as possible in

the first page (color words printed in black ink) and name the ink

in pages 2 (‘‘Xs’’ printed in color) and 3 (names of colors printed in

an incongruent color). The main outcome variable is the

‘‘interference score’’ and higher scores in this variable indicate

better capacity of inhibition response.

(c) Iowa gambling task. This task evaluates decision-

making, risk and reward and punishment value. The subject has

to select 100 cards from four decks (A, B, C and D). After each

card selection an output is given: gain or a gain and loss of money.

For decks A and B the final loss is higher than the final gain, while

decks C and D are advantageous because the punishments are

smaller. The outcome variable is the Total Score, with higher

results point to better performance and higher capacity of decision

making.

Endocannabinoid Quantification Methods
Samples were always collected from subjects between 8 and

9 am after a fast of at least 12 hour duration. Blood obtained from

human volunteers was centrifuged at 3500 rpm at 4uC for 15–

20 min. Plasma aliquots were stored at 280uC until analysis. The

endocannabinoid quantification was done with slight modifica-

tions of a previously described methodology of endocannabinoid

analysis in brain tissue [46]. After the addition of the deuterated

analogues (Cayman Chemical, USA) AEA-d4 (0.5 ng) and 2-AG-

d5 (10 ng) to a 0.5 mL aliquot of plasma, endocannabinoids were

extracted with a liquid-liquid extraction in tert-butyl-methyl-ether

(Merck, Germany) and the extracts analyzed in a LC/MS-MS

system (Agilent 6410, USA). The column used was a C8

(2.16100 mm61.8 mm particle size, Zorbax). The analysis was

done in the multiple reaction monitoring mode (MRM) and the

following precursor to product ion transitions was used: m/z

348R62 for AEA, m/z 352R66 for AEA-d4, m/z

379.2R287 for 2-AG and m/z 384R287 for 2-AG-d5. The

quantification of AEA and 2-AG was done by isotopic dilution.

Variations in accuracy and precision were ,10% for the

individual sample replicates. The limit of detection on column

was 8 pg for AEA and 200 pg for 2-AG.

Table 1. Sociodemographic variables.

Age (years); mean (SD) 25.6 (7.8)

Education level; %

Primary 6.7

Secondary 61.1

University 32.2

Employment status; %

Employed 25.9

Unemployed 7.5

Student 47.6

Student+Employed 19.0

Civil status; %

Single 72.8

Married - in couple 24.5

Divorced - separated 2.7

Tobacco use; %

Yes 31.1

Number of cigarettes-day; mean (SD) 2.3 (4.6)

SD: standard deviation.
doi:10.1371/journal.pone.0066387.t001
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Statistical Analysis
Analyses were carried out with SPSS 20 for Windows. Pearson’s

correlation valued the linear association between endocannabi-

noids on cognitive outcomes. Next, multiple linear regressions

measured the predictive power of endocannabinoids on cognitive

measures. One model was adjusted for each cognitive outcome,

entering simultaneously the two predictors (2-AG and AEA) and

the covariates age, academic level, and tobacco use. The variables

age, academic level, and tobacco use were also included as

covariates into multivariate models since they achieved significant

association with the outcomes (executive functions performance).

R2 coefficients valued the global predictive validity of models.

Results

Table 2 shows the descriptive values for endocannabinoids and

cognitive outcomes. A negative correlation was found between 2-

AG and cognitive flexibility performance. Specifically, there was a

significant inverse correlation between 2-AG and both WCST

total categories completed (r = 2.37; p,.05) and WCST trials to

complete the first category (r = 2.38; p,.05). A significant positive

correlation was found between AEA concentrations and both,

cognitive flexibility [WCST total categories completed (r = .59;

p,.05); WCST trials to complete the first category (r = .59;

p,.05)] and decision making performance (IGT Total Score;

r = .23; p,.05). We did not found any significant correlation

between either 2-AG (r = 2.17) or AEA (r = 2.08) concentrations

and Stroop performance.

Following a multiple regression model valuing the specific

contribution of endocannabinoids on executive functions perfor-

mance, 2-AG was significantly and inversely associated with

Stroop interference (p = .05) and WCST performance (WCST

total categories completed; p,.05; WCST trials to complete the

first category; p,.05). 2-AG was not associated with the decision

making performance (p = .28) (see Table 3). A significant

contribution of AEA was also observed on WCST performance

(WCST total categories completed; p,.001; WCST trials to

complete the first category; p,.001). A trend toward significance

was also found on IGT performance (total score; p = .09). AEA

was not a predictor of inhibition response performance (p = .31)

(see Table 3).

Discussion

The primary finding of this study is that the endocannabinoids

AEA and 2-AG have a relevant and opposite role on the executive

functioning in humans. According to our results, elevated levels of

AEA are associated with improvement on decision making and

cognitive flexibility performance, while elevated levels of 2-AG are

associated with disruption of the cognitive flexibility and inhibition

response capacities. These results demonstrate, in humans, the

association between the endocannabinoid system and prefrontal-

depended cognitive functions, and might have implications for the

therapeutic use of drugs with cannabinoid activity.

Our results are in agreement with animal studies that

demonstrate a clear and dose-related role of the endocannabinoid

system in behavioral flexibility [27,29]. Administration of high

doses of CB1 receptor agonists increases impulsive behaviors,

while the administration of low doses of CB1 antagonists improves

set-shifting performance and reduces the number of impulsive

responses [27,47]. Genetic deletion of CB1 receptors also produces

a significant impairment on reversal learning [15,48], in an

analogous way to that found after prefrontal cortex lesions [49]. A

balance between novelty seeking and behavioral inhibition has also

been found using mutant mice lacking the CB1 receptor either in

cortical glutamatergic or GABAergic neurons [50] thus corrobo-

rating the found neural modulation of endocannabinoids on this

executive function.

Our results are also supported by findings in chronic cannabis

users, pointing to long-term and acute effects of the exogenous

agonist of the CB1 receptors (such as derivates of the Cannabis

sativa, namely THC) on executive functioning [51,52]. Specifically,

deficits in cognitive flexibility were reported in chronic cannabis

users [53,54] and seem to be persistent after 28 days of cannabis

abstinence [54]. Impulsive behaviors also characterize the

cognitive profile of cannabis users after both acute and chronic

cannabis use [31,33,51,55], and impairments on decision making

are frequently reported in both recreational and chronic cannabis

users [33,56]. Similarly, it has been demonstrated that, compared

with a placebo, subjects receiving acute administration of THC

make more wrong decisions [33]. Finally, deregulation of the

endocannabinoids system has been found in different psychiatric

and neurologic disorders associated with executive dysfunctions,

such as schizophrenia [57], Alzheimer disease [58], and

Huntington disease [59]. Thus, our results point to a plausible

implication of endocannabinoids on prefrontal cortex-depended

dysfunction in such disorders.

As previously demonstrated in animal studies, the effects of the

endocannabinoid system on executive functions might be

explained by its action on some neurotransmitters, such as

dopamine (DA), glutamate, or GABA, implicated in both

prefrontal activity and executive functioning. In fact, endocanna-

binoids are retrograde messengers and are supposed to play a

relevant role in synapses [60,61]. Depending on the cerebral

regions, the endocannabinoid system might produce activation or

inhibition of neurotransmission, and consequently regulate the

cognitive functions depending on these brain areas, including

executive functions [62–64]. In this line, an enhanced prefrontal

DA activity has been detected after administration of cannabi-

noids, modifying the prefrontal activity by elevating the release of

DA in mesocortical neurons [65,66]. It has also been demonstrat-

ed that the hyperactivity of prefrontal dopaminergic synapses

induced by cannabinoid administration contributes to executive

function deficits [67]. Additionally, CB1 receptor agonist sup-

presses the transmission of glutamate in the prefrontal cortex,

producing impairments on executive functioning [68]. Specifically,

Table 2. Descriptives (mean and standard deviation) for
endocannabinoids and cognitive outcomes.

Mean (SD)

Endocannabinoids

2-arachidonoyl glicerol (ng/mL) 1.60 (1.02)

Arachidonoyl ethanolamide (ng/mL) 0.55 (0.17)

Cognitive variables

STROOP

Interference 5.87 (7.71)

WCST

Total errors 15.65 (13.51)

Categories completed 5.74 (1.18)

Trials first category 15.31 (18.14)

IGT

Total score 17.09 (28.29)

doi:10.1371/journal.pone.0066387.t002
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a disruption in cognitive flexibility was observed after blocking the

NMDA glutamate receptors within the prefrontal cortex [69,70].

Furthermore, it was demonstrated that administration of a CB1

antagonist reduces the CB1 inhibition of glutamatergic activity in

the PFC, which has been associated with activations in the

prefrontal circuits implicated in executive functions [70]. Alto-

gether, a plausible mechanism explaining the modulation of

endocannabinoids on executive functions found in our study might

by their actions on these neurotransmission systems.

Finally, the opposite effect produced by AEA and 2-AG plasma

levels on executive functioning in humans might be explained

because they derive from different biosynthetic pathways. How-

ever, as it has been suggested [5] it is extremely difficult to dissect

AEA from 2-AG function. In addition to the interconnection of

their biosynthetic routes with arachidonic acid metabolism,

neurons have developed mechanisms through which anandamide

and 2-AG can reciprocally control their biosynthesis, possibly as a

way of fine-tuning endocannabinoid tone [5,71,72].

To our knowledge, this is the first study evaluating the role of

endocannabinoids in executive functions in humans. However,

these results must be interpreted in the context of some limitations.

First, measures of intelligence quotient (IQ) were not considered,

which might have influenced the executive performance. None-

theless, years of education, as a cognitive level measure, has been

considered in the statistical analysis. Second, only females were

included in the study, thus the results are not applicable to males.

Considering the sexual dimorphism observed in the endocanna-

binoid system [73], with males having higher levels of CB1

receptors [74] and females displaying a more efficient CB1

receptor activity [75], we decided to focus only on females.

However, replication with a group including males should be

considered. Additionally, cognitive flexibility, decision making,

and inhibition response are complex cognitive functions supported

by complex brain systems, and are hardly explained by only one

task. Thus future studies should consider to include further

decision-making, inhibition response, and cognitive flexibility tasks

in order to better understand such executive variables. Further-

more, we use circulating levels of endocannabinoids, rather than

central concentrations of endocannabinoids, as a measure of

endocannabinoid system functioning. However, because of their

elevated lipophilic characteristics, endocannabinoids easily cross

the blood–brain barrier [76], it is therefore expected that the

plasma levels of the endocannabinoids described in our study are

almost certainly reflecting an equivalent central concentration of

AEA and 2-AG. Finally, although a regression analysis was

performed, our data are correlative in nature, meaning that they

are indicative of associations between parameters and by no means

demonstrate causality. Future studies with a longitudinal design

should be performed in order to confirm the cause-effect

relationships between endocannabinoids and executive functions

in humans.

As a summary, this study demonstrates that, in humans, the

endocannabinoid system plays an important role on prefrontal-

dependent cognitive functioning, probably through mechanisms

involving dopaminergic, cholinergic, GABAergic, and glutama-

tergic systems, as proved in animal models. The present study

might have significant implications for the underlying executive

alterations described in drug users [53,54], obesity [41], and eating

disorders [41,77,78], given the current body of evidence on the

implication of the endocannabinoid system in these disorders [79–

81]. Understanding the neurobiology of their dysexecutive profile

might contribute to the development of new treatments and

pharmacological approaches for these disorders.
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