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Sir,

We read with great interest the article by Perez et al.

(2018) on the emerging condition of intellectual disability

caused by biallelic pathogenic variants in RSRC1 (arginine

and serine rich coiled-coil 1). Previous genome wide associ-

ation studies (GWAS) by Potkin et al. (2009, 2010) had
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suggested a possible involvement of RSRC1 in non-syn-

dromic intellectual disability and gene regulatory networks

in schizophrenia. However, the results of these studies

remained elusive and were not confirmed by a subsequent

GWAS study by Schizophrenia Working Group of the

Psychiatric Genomics Consortium (2014). Meanwhile,

Berndt et al. (2013) identified RSRC1 as a new locus influ-

encing height through a genome-wide meta-analysis. The

first family in which a homozygous RSRC1 variant clearly

segregated with non-syndromic intellectual disability was

only recently reported by Maddirevula et al. (2018). A pos-

sible role of RSRC1 in major depressive disorder has been

further suggested by a meta-analysis on three large GWAS

performed by Li et al. (2018).

Serine and arginine-rich (SR) proteins are evolutionary con-

served co-regulators of constitutive and alternative pre-

mRNA splicing. The longest RSRC1 transcript

(NM_001271838.1) includes 10 exons (Fig. 1A) and encodes

a 334-amino-acid SR-related protein of 53 kDa (SRrp53)

(Fig. 1B), localized to the nuclear speckled domain.

Interacting with other splicing regulators, RSRC1 plays a rele-

vant role in the second step of pre-mRNA splicing. In add-

ition, it could be involved in post-splicing mRNA processing,

shuttling between the nucleus and cytoplasm (Cazalla et al.,

2005). RSRC1 further promotes PIAS1-mediated

SUMOylation of the pleiotropic transcription factor oestrogen

receptor b (ERb), acting as transcriptional regulator (Chen

et al., 2015).

The involvement of RSRC1 in cancer was first suggested

by the identification of the recurrent PTPLB-RSRC1 in-

frame gene fusion in nasopharyngeal carcinoma by Valouev

et al. (2014). Teplyuk et al. (2016) showed that RSRC1 is a

target gene of the microRNA-10b (miR-10b), an oncogenic

microRNA that is highly expressed in glioblastoma and rep-

resents a candidate for the development of targeted thera-

pies. More recently, several studies have implicated RSRC1

in cancer predisposition and progression. The RSRC1 in-

tronic polymorphism rs6441201 G4A has been associated

with neuroblastoma susceptibility (McDaniel et al., 2017;

Tang et al., 2018). A possible role of RSRC1 in non-small-

cell lung cancer tumorigenesis and progression has been

hypothesized based on the data from RNA sequencing data

of tumour-educated platelets (Sheng et al., 2018). RSRC1

has been also shown to suppress gastric cancer cell prolifer-

ation and migration through the regulation of PTEN expres-

sion, acting as tumour suppressor (Yu et al., 2019).

The first RSRC1 pathogenic variant segregating with intel-

lectual disability was reported by Maddirevula et al. (2018)

in three affected siblings from a consanguineous Malaysian

family (Supplementary Table 3). The homozygous truncating

variant c.268C4T (p.Arg90*) (NM_001271838.1) resulted

in a full loss of function, causing the natural knockout of

the gene. All the reported patients showed developmental

delay and variable degree of intellectual disability. One sub-

ject also suffered from febrile seizures. Brain MRI was nor-

mal in the 10-year-old male (Patient 1), whereas temporal

lobe atrophy was found in his 4-year-old brother (Patient 2).

No distinctive neurological features or facial dysmorphism

were observed. More recently, Perez et al. (2018) reported

five further individuals from consanguineous Bedouin kin-

dred with early developmental delay, intellectual disability,

hypotonia, behavioural abnormalities, and mild facial dys-

morphic features. Brain MRI was normal (Supplementary

Table 3). Exome sequencing revealed the homozygous

c.205C4T (p.Arg69*) in RSRC1 (NM_001271838.1) in all

patients, a nonsense variant leading to nonsense-mediated

mRNA decay. RSRC1 knock-down SH-SY5Y cells showed

impaired alternative splicing. Specific differential expression

of genes associated with intellectual disability, hypotonia,

schizophrenia, and dementia was also observed, supporting

the pivotal role of RSRC1 in transcriptional regulation

(Perez et al., 2018).

We report 17 additional subjects from seven consanguin-

eous families with intellectual disability, behavioural abnor-

malities, and facial dysmorphism, harbouring homozygous

RSRC1 loss-of-function variants (Table 1 and Supplementary

Table 1). The families were of different ancestries (European/

Middle Eastern, Saudi, Egyptian, Old Order Amish,

Pakistani, and Persian) (Supplementary Fig. 1). The collabor-

ation among the involved study centres was managed

through GeneMatcher (Sobreira et al., 2015). After informed

consent was obtained from the parents, photographic mater-

ial was collected and genetic testing through exome sequenc-

ing was performed. Genetic methods are provided in detail in

the Supplementary material. Trio-exome sequencing was con-

ducted in Patient 10, the family quartet was sequenced for

Patients 8 and 9, and proband-exome sequencing was per-

formed in all the remaining individuals, followed by variants

validation through Sanger sequencing. No relevant single nu-

cleotide variant was identified in the siblings of Amish ances-

try (Patients 1–4), who were further studied through

comparative genomic hybridization (CGH) array. Five

RSRC1 sequence variants (including an intragenic duplica-

tion) and two partial deletions were identified.

In all the enrolled subjects, global psychomotor develop-

mental delay and mild-to-moderate intellectual disability

were observed. Twelve patients were diagnosed with vari-

able behavioural disorders (Table 1 and Supplementary

Table 1). Neurological examination revealed generalized

hypotonia in all patients and five of them had a history of

hypotonia at birth. Decreased deep tendon reflexes were

found in six patients (35%). Five patients showed gait

ataxia, which was associated with bradykinesia in Patient

11. Truncal ataxia was observed in Patient 10. Seizures

occurred in six individuals (35%), including four cases of fe-

brile seizures. Afebrile generalized tonic-clonic seizures in

addition to febrile seizures were observed in Patients 7, 12,

and 13. Patient 10 experienced three episodes of generalized

tonic-clonic seizures before becoming seizure-free. His EEG

showed occasional epileptiform discharges in the centrofron-

tal and in the left parietocentral regions during sleep. No re-

current epileptic phenotype or peculiar EEG features were

recognizable in our cohort. Psychomotor regression was not

observed in any case. The most common dysmorphic
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Figure 1 Genetic findings and clinical pictures of RSRC1 patients. (A) Schematic diagram of the longer RSRC1 transcript

(NM_001271838.1) consisting of 2597 nucleotides in 10 exons. The deletions encompassing exons 2 and 9–10 are represented by diagonal green

lines. Single nucleotide variants are shown in red (previously reported patients) or in green (this study). (B) The RSRC1 protein

(NP_001258767.1) consists of 334 amino acids encompassing an RS domain rich in arginine (R) and serine (S) that mediates the interactions with
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features were deep-set eyes, broad nasal base, and ogival

palate (Fig. 1C). Associated congenital anomalies were ex-

tremely variable, ranging from simple pes planus to redun-

dant skin. Other isolated clinical features included mitral

valve prolapse, recurrent respiratory infections in the first

year of life, and tracheomalacia. When available, brain MRI

did not reveal any distinctive finding. Non-specific mild cere-

bral atrophy was observed in Patients 5 and 6, whereas en-

largement of subarachnoid spaces was found in Patients 2

and 3. Delayed myelination, dysmorphic lateral ventricles,

and unilateral focal polymicrogyria were observed in Patient

10.

In our cohort, we identified homozygous RSRC1 variants

or deletions leading to loss of function (Table 1 and

Supplementary Table 1). Variants’ nomenclatures are given

with reference to the RSRC1 transcript NM_001271838.1.

The four Amish siblings (Patients 1–4) carried an 81-kb dele-

tion encompassing exons 9–10 of RSRC1 and the entire

MLF1 gene. Although MLF1 is involved in haematopoiesis

and leukemogenesis, a possible pathogenic role for this gene

in some of the dysmorphic features and congenital anomalies

in the Amish patients cannot be excluded (Yoneda-Kato

et al., 1996; Nakamae et al., 2017). A second 500-bp dele-

tion involving exon 2 of RSRC1 was identified in the sib-

lings from the Pakistani family (Patients 8 and 9). Both these

rearrangements are novel and are not reported in ClinVar

and DECIPHER databases (Supplementary Table 1). The

three patients from the second Pakistani family (Patients

12–14) carried the splicing variant c.532-1G4A. This

amino acid change is predicted to cause aberrant splicing

through the alteration of the splice acceptor site at exon 6

of RSRC1 (Supplementary Table 3). In the remaining fami-

lies, homozygous stop-gain or start-loss variants were iden-

tified. The 16-year-old female of European ancestry

(Patient 11) harboured the intragenic duplication

c.441_447dupAGAAAAG (p.Glu150Argfs*6). The stop-

gain variants c.784C4T (p.Gln262*) and c.250C4T

(p.Arg84*) were identified in the siblings from the Persian

(Patients 5–7) and Middle East (Patient 10) families, re-

spectively. In the Egyptian family (Patients 15–17), the

variant c.3G4T (p.Met1?) causing a start loss and leading

to full loss of function (null variant) was found.

All the variants fully segregated with the phenotype and

were not found in the most common genome databases,

including the Genome Aggregation Database (gnomAD),

Iranome, Greater Middle East Variome Project (GME

Variome), and our database of 10 000 in-house control

exomes. The only exception was the splicing variant c.532-

1G4A, which was observed in heterozygous state in 3 of

166 052 in gnomAD (allele frequency 0.00001806).

Furthermore, the start loss variant affecting the same nucleo-

tide of the c.3G4T (p.Met1?) variant observed in our

Egyptian family is reported in heterozygous state in

gnomAD (genomes allele frequency 0.00003186). However,

neither variant has been reported in homozygous state in

healthy individuals. The analysis of sequence conservation

through Genomic Evolutionary Rate Profiling (GERP) score

revealed good conservation of the affected residues and in

silico prediction analysis through CADD score calculation

revealed high-deleterious scores (Supplementary Table 3).

All variants were predicted to be damaging or likely

damaging by several bioinformatic tools (e.g. SIFT,

MutationTaster, and Human Splice Finder) and were classi-

fied as pathogenic (class 5) or likely pathogenic (class 4)

according to the American College of Medical Genetics and

Genomics (ACMG) guidelines (Richards et al., 2015).

This study supports the idea that RSRC1 pathogenic var-

iants cause a non-syndromic disorder characterized by mild-

to-moderate intellectual disability, generalized hypotonia, and

variable neurological and behavioural features (Fig. 1D).

Despite a few minor dysmorphic features being observed (es-

pecially deep-set eyes and broad nasal base), a consistent re-

current facial gestalt could not be recognized. Furthermore,

the extremely variable associated non-neurological features

were not suggestive of a syndromic condition. Even though

seizures are common in RSRC1 patients, most of them only

Figure 1 Continued

other RS-rich proteins involved in splicing regulation (SF2/ASF and U2AF35) and a coiled coil domain required for RSRC1/ERb interaction as well

as the enhancement of ERb SUMOylation. The residues K196 and K 230 are necessary for RSRC1 SUMOylation by SUMO1 and the E3 ligases

PIAS1 and PIAS3. Pathogenic amino acid changes reported in previous papers and identified in this study are shown in red and green, respectively.

(C) Sequential pictures from selected patients. Patients from the Amish family (Patients 1–3) show prominent forehead, deep set eyes, depressed

nasal bridge, protruding ears, and overbite with drooling. Redundant skin is evident in Patient 1. The Persian patient (Patient 7) shows straight

eyebrows with mild synophrys, deep set eyes, and protruding ears. In the first Pakistani family (Patients 8 and 9) dysmorphic features include

straight eyebrows with mild medial flaring, deep set eyes, wide nasal base, short philtrum, uplifted earlobes, and prominent chin. Subjects from

the second Pakistani family (Patients 12–14) also show straight eyebrows with mild synophrys and deep set eyes, in addition to protruding ears

with uplifted lobes (Patient 14). Patients from the Egyptian family (Patients 15–17) show thick eyebrows with medial sparing, deep set eyes, and

prominent columella. (D) Graphic illustrations of the most common clinical findings in RSRC1 patients in our cohort: the bar graph shows the

percent distribution of the cardinal features of RSRC1-related intellectual disability, with the grey lines representing not available data; the pie

charts show the percentage distribution of developmental delay/intellectual disability and the different behavioural abnormalities observed in

RSRC1 patients. Gene transcript and protein details available at: https://www.ensembl.org (RSRC1-215, transcript ID ENST00000611884.5),

https://www.nextprot.org (NX_Q96IZ7), https://www.uniprot.org (Q96IZ7), https://www.proteomicsdb.org (Q96IZ7). ADHD = attention def-

icit hyperactivity disorder; ASD = autism spectrum disorder; DD = developmental delay; ID = intellectual disability; N/A = not available; Pt =

patient; SCT = sluggish cognitive tempo; TT = temper tantrums.
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suffer from febrile seizures, lacking a distinctive epileptic

phenotype. Definite epileptic seizures were only diagnosed in

Patient 12 and in a case reported by Perez et al. (2018).

This patient suffered from focal seizures with impaired

awareness occasionally progressing to tonic-clonic and

was treated with valproic acid. Behavioural abnormalities

are frequent, although extremely variable and ranging

from attention deficit hyperactivity disorder (ADHD) to

autism spectrum disorder (ASD) (Fig. 1D). Besides the

non-specific neuroradiological abnormalities observed in

our patients, bilateral symmetric temporal lobe atrophy

has been described in a single case by Maddirevula et al.

(2018). Even though further neuroimaging studies will be

necessary, the limited data available support the lack of a

peculiar neuroradiological phenotype. According to these

observations, biallelic RSRC1 variants should be consid-

ered the cause of a non-syndromic intellectual disability

mainly associated with generalized hypotonia and behav-

ioural disturbances. Facial dysmorphism and other minor

clinical features have limited diagnostic relevance, likewise

neuroimaging is of limited value.

Thanks to the remarkable advances in gene discovery

achieved through exome sequencing, the large group of

known genes causing non-syndromic intellectual disability is

rapidly expanding with relevant impact on diagnosis and pa-

tient management. Our findings support the pathogenic role

of biallelic loss-of-function RSRC1 variants in autosomal re-

cessive intellectual disability, in addition to contributing to

the phenotypic delineation of this emerging condition. Global

developmental delay, mild-to-moderate intellectual disability,

behavioural abnormalities, and generalized hypotonia repre-

sent the cardinal features of RSRC1-related intellectual dis-

ability. Other neurological features may be less frequently

observed, especially hyporeflexia and febrile seizures. Further

studies will help clarify the possible role of neuroimaging in

the diagnostic process. In conclusion, we suggest that the in-

volvement of RSRC1 should be considered in the differential

diagnosis in intellectually disabled children with hypotonia

and behavioural disturbances, and that RSRC1 should be

included in next generation sequencing (NGS) panels for in-

tellectual disability.
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