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Alzheimer’s disease (AD) is a serious neurodegenerative disease. It is widely believed that the accumulation of amyloid beta (Aβ)
in neurons around neurofibrillary plaques is the main pathological characteristic of AD; however, the molecular mechanism
underlying these pathological changes is not clear. Baicalin is a flavonoid extracted from the dry root of Scutellaria baicalensis
Georgi. Studies have shown that baicalin exerts excellent anti-inflammatory and neuroprotective effects. In this study, an AD
cell model was established by exposing SH-SY5Y cells to Aβ1-42 and treating them with baicalin. Cell survival, cell cycle
progression, and apoptosis were measured by MTT, flow cytometry, and immunofluorescence assays, respectively. The
expression levels of Ras, ERK/ERK phosphorylation (p-ERK), and cyclin D1 were measured by Western blotting. In addition,
whether the MEK activator could reverse the regulatory effect of baicalin on Ras-ERK signaling was investigated using Western
blotting. We found that baicalin improved the survival, promoted the proliferation, and inhibited the apoptosis of SH-SY5Y
cells after Aβ1-42 treatment. Baicalin also ameliorated Aβ1-42-induced cell cycle arrest at the S phase and induced apoptosis.
Furthermore, baicalin inhibited the levels of Ras, p-ERK, and cyclin D1 induced by Aβ, and this effect could be reversed by the
MEK activator. Therefore, we suggest that baicalin may regulate neuronal cell cycle progression and apoptosis in Aβ1-42-
treated SH-SY5Y cells by inhibiting the Ras-ERK signaling pathway. This study suggested that baicalin might be a useful
therapeutic agent for senile dementia, especially AD.

1. Introduction

Alzheimer’s disease (AD) is a progressive, severe, and fatal
neurodegenerative disease that is caused by aging. Cognitive
dysfunction, especially memory impairment and impaired
visual-spatial skills, is a major characteristic of AD. With
the increasing size of the aging population, the prevalence
of AD in the elderly population has increased over the years,
and the prevalence rate of AD among 65-year-old Chinese
people is as high as 6.6% [1]. At present, it is generally
accepted that the major pathological characteristics of AD
are extracellular neurofibrillary plaques and intracellular
neurofibrillary tangles, but the molecular mechanism under-
lying the formation of these pathological characteristics is

not clear [2]. Amyloid-beta (Aβ) deposition in the brain is
thought to be the main pathological process underlying
AD development [3]. The active subunit of γ-secretase
cleaves amyloid precursor protein (APP) to produce Aβ
[4]. Aβ and hyperphosphorylated tau coexist to cause a
hyperactivity phenotype and lead to dysregulated expression
of synaptic genes associated with synaptic function [5].

Primary neurons exposed to Aβ1-42 exhibited abnormal
expression of cell cycle markers, DNA replication markers,
and mitotic mutations [6]. Studies have shown that Aβ stim-
ulation promotes the abnormal expression of factors related
to cell cycle progression, such as inhibitor of differentiation-
1 (Id1), sonic hedgehog (SHH), and cyclin D1, in neurons.
Abnormal activation of the cell cycle in neurons involved
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in terminal differentiation leads to embrittlement degenera-
tion and neuronal death [7]. Aβ can also induce increased
reactive oxygen species (ROS) production and DNA damage
in neurons, resulting in decreased expression of cyclin-
dependent kinase 5 (Cdk5), which prevents cell cycle reentry
in neurons [8, 9]. In response to costimulation with Aβ,
overexpression of cyclin D1, which is a cell cycle promoter,
activates the phosphorylation of retinoblastoma protein
(Rb), and then, cells transition to the S phase. Excessive
DNA damage leads to the activation of poly ADP-ribose
polymerase (PARP) and p38 (Thr 180/Tyr 182), resulting
in increased caspase-3 activation, increased Bax expression,
and decreased Bcl-2/Bax ratios, leading to neuronal apopto-
sis [9]. This type of neuronal cell death that occurs between
G1 and S before cells enter the synthetic phase of the cell
cycle is classically called “abortive cell cycle reentry” and is
characterized by upregulation of cell cycle- and apoptosis-
related protein expression [10, 11]. Ras expression was
enhanced, and ERK1/2 was activated in the cell model
expressing APP [12]. Aβ1-42 can enhance the Ras-ERK sig-
naling cascade. Aβ1-42 activates the Ras-ERK signaling path-
way, which affects apoptosis and cell cycle progression and is
involved in the occurrence of AD [13]. Therefore, the study
of drugs that interfere with the signaling pathway of Aβ to
prevent disorders in cell cycle progression and neurodegen-
eration in AD has certain clinical significance.

Baicalin, a flavonoid extracted from the dry root of Scu-
tellaria baicalensis Georgi, has antiviral, antitumor, hypogly-
cemic, and lipid-lowering effects, along with brain-
protecting, liver-protecting, and other effects, especially
anti-inflammatory and neuroprotective effects [14–17]. Bai-
calin can reduce the microglial-mediated neuroinflamma-
tory response and improve cognitive impairment in APP/
PS1 mice [18], and baicalin alleviates Alzheimer’s disease
and memory deficits caused by the Aβ1-42 protein in rats
[19]. In this study, human neuroblastoma cells (SH-SY5Y)
exposed to Aβ1-42 were used to establish an AD cell model,
and the effects of baicalin on cell cycle progression and apo-
ptosis through the Ras-ERK signaling pathway were studied.

2. Methods

2.1. Cell Culture. Human neuroblastoma SH-SY5Y cells
(CL-0208) were obtained from Procell (Wuhan, China)
and grown in complete medium consisting of Eagle’s
MEM (11095080, Thermo Fisher, China) and Ham’s F-
12 Nutrient Mix (11765062, Thermo Fisher, China) sup-
plemented with 10% FBS (10099, Thermo Fisher, China)
and 100U/mL penicillin–streptomycin (15070063, Thermo
Fisher, China).

2.2. Experimental Design. Aβ1-42 (03112, Thermo Scientific,
USA) was dissolved in saline (0.22 nmol/μL) (in 0.1%
DMSO). Aggregated Aβ1-42 was obtained by incubating the
cells in a 37°C water bath for 7 days. SH-SY5Y cells in loga-
rithmic growth were seeded in 96-well plates and incubated
for 24 h. Aβ1-42 (03112, Thermo Scientific, USA, 10μM) was
used to construct an AD cell model. Cell viability (MTT) and
lactate dehydrogenase (LDH) activity (M8180 and BC0685,

Solarbio, China) were measured at 6 h, 12 h, 24 h, and 36 h,
and the optimal duration of treatment with Aβ1-42 was
evaluated.

The cells were divided into a control group, a model
group (10μM Aβ1-42), and baicalin low-, medium-, and
high-dose treatment groups (5μM, 10μM, and 20μM).

2.3. Cell Viability and LDH Activity. SH-SY5Y cells were cul-
tured and seeded in 96-well plates and grown to 80%
(Lianke, China). The cells were collected, and 10μM Aβ1-
42 for 24 h, the cell viability and LDH activity of each well
were tested according to the instructions of the MTT kit
and the LDH activity kit.

2.4. TUNEL Assay. SH-SY5Y cells were cultured and seeded
in 6-well plates with coverslips at a concentration of 4 × 105
cells/well. After 24 h of test processing, the cells were fixed
with 4% paraformaldehyde for 10min, washed with PBS,
and permeabilized with 0.3% Triton X-100 for 5min.
TUNEL reagent (C1086, Beyotime, China) was added, the
fixed cells were incubated at 37°C for 1 h, and the cells were
then incubated with DAPI for 5min to stain the nuclei,
followed by a PBS wash. Confocal scanning microscopy
(A1+, NIKON, Japan) was performed to image the cells with
a 10× objective lens. Five fields were randomly selected, the
average fluorescence intensity of each group was analyzed
by ImageJ (Version 1.52 s), and the apoptosis rate was
calculated.

2.5. Analysis of Cell Cycle Progression and Apoptosis by Flow
Cytometry. SH-SY5Y cells were seeded in 6-well plates at a
density of 4 × 105 cells/well. After 24 h of experimental treat-
ment, cell cycle progression was analyzed according to the
method described in the Cell Cycle Staining Kit (CCS012,
Lianke, China). The cells were collected, and 1mL of
room-temperature PBS was added. 3mL of anhydrous etha-
nol (precooled at -20°C) was slowly added to the cells and
simultaneously mixed at high speed. The cells were fixed
overnight at -20°C. On the day of the test, 5mL of room-
temperature PBS was added. The cells were allowed to rehy-
drate for 15 minutes. One milliliter of PI dye was added to
each tube and incubated in the dark for 30min. The lowest
loading speed was selected, and the cells were analyzed on
a flow cytometer (MoFlo XDP, Beckman Coulter, Germany)
at an excitation wavelength of 488nm and detection channel
of FL2-RPE (emission: 578nm). The results were analyzed
by Modfit LT (Version 5.0).

Following the instructions of the Annexin V-FITC Apo-
ptosis Detection Kit (BMS500FI, Thermo Fisher, China), the
cells were washed in PBS with gentle shaking. The cells were
resuspended in 200μL of binding buffer (1×) at a cell density
of 5 × 105 cells/mL. Then, 5μL of Annexin V-FITC was
added to 195μL of cell suspension and incubated for
10min. The cells were washed in 200μL of binding buffer
(1×) and resuspended in 190μL of binding buffer (1×).
Finally, 10μL of propidium iodide (20μg/mL) was added,
and FACS analysis was performed.

2.6. Western Blotting. Following the experimental treatment,
the cells were lysed with a RIPA lysis buffer kit (Beyotime
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Biotechnology Co., Ltd., cat. P0013B, Shanghai, China) sup-
plemented with 1% protease inhibitor and 1% phosphatase
inhibitor. After sonicating at 30Hz for 10 s to fragment the
DNA, the samples were centrifuged at 12,000 rpm for
15min to obtain the supernatants. A Pierce™ BCA Protein
Assay Kit (cat. 23227, Thermo Scientific, Shanghai, China)
was used to measure the protein concentrations. The sam-
ples were loaded into 8% SDS-PAGE gels and electrophoret-
ically transferred to 0.45μm PVDF membranes (Millipore
Sigma Inc., IPVH00010, Billerica, USA). Five percent nonfat
dry milk or 5% BSA (V900933, Sigma-Aldrich, Billerica,
USA) was added for blocking, and the primary antibodies
(1: 1000) were incubated overnight at 4°C, followed by incu-
bation with the secondary antibodies (1 : 10 000) at 37°C for
1 hour. The blots were treated with ECL Plus™ Western
blotting substrate (32132, Thermo Scientific Technology,
Shanghai, China) and then assessed using an imaging system
(ChemiDoc™ XRS+, Bio-Rad, California, USA). The rabbit
anti-Ras (ab52939), rabbit anti-ERK1+ERK2 (ab184699),
and rabbit anti-phospho-ERK1+ERK2 (phospho T202
+Y204) (ab214362) primary antibodies were purchased from
Abcam (Cambridge, USA). The rabbit anti-cyclin D1 anti-
body (bs-0623R) and rabbit anti-β-actin (bs-0061R) primary
antibodies were purchased from Bioss Biotechnology Co.,
Ltd. (Beijing, China). The goat anti-rabbit IgG antibody
(cat. AP132P) was purchased from Sigma-Aldrich, Inc. (Bil-
lerica, USA).

2.7. Activator Treatment. Aβ1-42-treated SH-SY5Y cells were
treated with the MEK activator PAFC-16 (20μM, Santa
Cruz Biotechnology cat. sc-201009, Dallas, TX, USA), or
20μM baicalin for 24h. Cell lysates were prepared and
examined to assess changes in the ERK, P-ERK, and cyclin
D1 levels by Western blotting analysis.

2.8. Statistical Analysis. Statistical Product and Service Solu-
tions (SPSS, Version 21.0) was used for data statistics and
analysis. The measurement data are expressed as the mean
± standard deviation (SD). A one-way ANOVA was con-
ducted and normal analysis and homogeneity of variance
tests. The LSD test was used to compare the square variances
between groups; otherwise, Tamhane’s T2 method was used.
P values < 0.05 were considered significant.

3. Results

3.1. Baicalin Improved the Survival of Aβ1-42-Treated SH-
SY5Y Cells. According to reports in the literature, we
selected 10μM Aβ1-42 to induce SH-SY5Y cell injury and
used MTT to observe the cell survival rate after Aβ1-42 treat-
ment for different time points. The results showed that SH-
SY5Y cell death occurred 6 hours after Aβ1-42 treatment, the
cell survival rate decreased to 60% after 12 hours, and the
cell survival rate at 24 hours was close to 50%
(Figure 1(a)). Therefore, we chose to treat SH-SY5Y cells
with Aβ1-42 for 24 hours to establish an AD cell model.

In a preliminary study, we assessed the cytotoxicity of
baicalin. We found that the concentrations of baicalin tested
(5μM, 10μM, 20μM, 30μM, and 40μM) did not cause SH-

SY5Y cell death (Figure 1(b)). In the following experiment,
we evaluated the pharmacodynamic effect of baicalin. Cell
viability was measured by the MTT method, and cell mem-
brane damage was assessed by measuring LDH leakage
(LDH %). The MTT test results (Figure 1(c)) showed that
compared with the model group, treatment with 5μM baica-
lin improved cell viability to a certain extent after 24 h
(P < 0:05), and treatment with 10μM and 20μM baicalin
significantly improved the viability of Aβ1-42-treated SH-
SY5Y cells after 24 h (P < 0:05). The LDH leakage rate
results (Figure 1(d)) showed that compared with the model
group, baicalin reduced the LDH leakage rate of cells in
the model group to a certain extent, and the difference
between cells treated with 10μM and 20μM baicalin for
24 h was considered to be statistically significant (P < 0:05).

3.2. Baicalin Inhibited Aβ1-42-Induced SH-SY5Y Cell
Apoptosis. Phosphatidylserine (PS) is usually located inside
the cytoplasmic membrane facing the cytoplasm. However,
when apoptosis occurs, the asymmetry of the cell membrane
is disrupted, and PS is localized to the cell surface [20]. This
biochemical event is known as a marker of apoptosis. In this
study, we used Annexin V-FITC/propidium iodide (PI)
staining and flow cytometry to investigate the externaliza-
tion of PS induced by Aβ1-42. The apoptosis results showed
that baicalin inhibited Aβ1-42-mediated SH-SY5Y cell apo-
ptosis in a concentration-dependent manner (Figures 2(a)–
2(e)). The statistical analysis results of fluorescence intensity
showed that, compared with the control group, the apoptosis
rate of SH-SY5Y cells treated with 10μMAβ1-42 for 24h was
increased significantly (P < 0:05), and the apoptosis rate was
38:12 ± 6:28%. Compared with the model group, the inci-
dence rates of apoptosis after treatment with 10μM and
20μM baicalin were 18:69 ± 4:26% and 14:64 ± 4:15%,
respectively, and the differences between these values were
statistically significant (P < 0:05).

To determine whether baicalin treatment interferes with
Aβ1-42-induced apoptosis in SH-SY5Y cells, a TUNEL apo-
ptosis detection kit was used to analyze SH-SY5Y cell apo-
ptosis. SH-SY5Y cells were treated with or without 10μM
Aβ1-42 and were treated with or without baicalin for 24 h.
Analysis of SH-SY5Y cells showed that these drugs signifi-
cantly inhibited Aβ1-42-induced SH-SY5Y apoptosis
(Figure 3). These data suggest that baicalin protects SH-
SY5Y cells against Aβ1-42-mediated cytotoxicity.

3.3. Baicalin Ameliorated Aβ1-42-Induced SH-SY5Y Cell
Cycle Arrest in the S Phase. Aβ plays a significant role in dif-
ferent cellular processes, such as proliferation, apoptosis,
and signal transduction [21]. Then, the effect of baicalin on
SH-SY5Y cell cycle progression after treatment with Aβ1-42
was measured by flow cytometry (Figures 4(a)–4(e)). Com-
pared with the control, 24 h of treatment with 10μM Aβ1-
42 significantly increased the number of SH-SY5Y cells in
the model group in the S phase (P < 0:05) and significantly
decreased the number of cells in the G2/M phase (P < 0:05
). Compared with the model group, the 10μM and 20μM
baicalin treatment groups had an obvious decrease in the
number of cells in the S phase (P < 0:05), with a significant
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increase in the number of cells in the G2/M phase (P < 0:05).
In the 5μM baicalin intervention group, there were no sig-
nificant differences in the numbers of cells in the G0/G1, S,
and G2/M phases of the cell cycle. The results showed that
a large number of SH-SY5Y cells were arrested in the S phase
after treatment with Aβ1-42. The effect of Aβ1-42 on SH-
SY5Y cell cycle progression was ameliorated by 10μM and
20μM baicalin treatment.

3.4. Baicalin Inhibited the Aβ1-42-Induced Activation of Ras-
ERK Signaling. The Ras-ERK pathway can stimulate cyclin
D1 expression and regulate cell cycle progression. Finally,
we studied whether the above regulation has an impact on
the Ras-ERK pathway; thus, we evaluated the effect of Aβ1-
42 and baicalin on the p-ERK1/2 and cyclin D1 protein
levels. After 24 h of baicalin treatment, the cells were har-
vested, and the protein expression levels were detected by
Western blotting. The Western blotting results
(Figures 5(a)–5(d)) showed that compared with the blank
control group, the SH-SY5Y cells in the Aβ1-42 treatment
group exhibited significantly increased Ras protein expres-
sion levels, and the p-ERK1/2 and cyclin D1 protein levels
were significantly upregulated (P < 0:05). Compared with
the model group, the protein expression levels of Ras, p-
ERK1/2, and cyclin D1 decreased after treatment with
5μM baicalin, but the difference was not statistically signifi-
cant. The protein expression levels of Ras, p-ERK1/2, and
cyclin D1 were significantly decreased after treatment with
10μM and 20μM baicalin (P < 0:05).

3.5. The Effect of Baicalin on the Ras-ERK Signaling Axis by
the MEK Activator.We determined whether baicalin amelio-
rated Aβ1-42-induced SH-SY5Y cell damage, which may be
related to the inhibition of the Ras-ERK signaling pathway.
We conducted studies on Aβ1-42- treated SH-SY5Y cells
treated with or without the ERK activator PAFC-16. Our
results showed that PAFC-16 further increased the phos-
phorylated ERK levels in Aβ1-42-treated SH-SY5Y cells.
Aβ1-42-treated SH-SY5Y cells treated with PAFC-16 showed
an increase in the levels of cyclin D1, demonstrating that this
activation occurs downstream of Ras-ERK activation. Fur-
thermore, FAFC-16 counteracted the baicalin-induced inhi-
bition of ERK phosphorylation and cyclin D1 expression
(Figures 6(a)–6(b)). The results suggested that baicalin ame-
liorated Aβ1-42-induced SH-SY5Y cell damage by inhibiting
the Ras-ERK axis.

4. Discussion

Aβ aggregation and plaque formation are important factors
in the pathogenesis of AD. Aβ toxicity induces abnormal
activation of the cell cycle in terminally differentiated neu-
rons, which is an important cause of neuronal apoptosis
[7]. The use of SH-SY5Y cells to study the damage caused
by toxic stimulation with Aβ on nerve cells is the most com-
monly used cell model to evaluate neuronal apoptosis in AD.
Several studies have shown that the decrease in cell viability
and toxic damage occur in dose-dependent manners in Aβ-
induced SH-SY5Y cell models, including oxidative stress
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Figure 1: Baicalin improved the survival of Aβ1-42-treated SH-SY5Y cells. (a) Cell viability of SH-SY5Y cells treated with 10μM Aβ1-42 for
different times. (b) Cell viability of SH-SY5Y cells treated with different concentrations of baicalin. (c) Cell viability of Aβ1-42-treated SH-
SY5Y cells treated with different concentrations of baicalin. (d) LDH of Aβ1-42-treated SH-SY5Y cells treated with different
concentrations of baicalin. The levels of cell viability and LDH are presented as the mean ± SD. N = 6, ∗ represents P < 0:05, and ∗∗
represents P < 0:01.
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injury, mitochondrial dysfunction, decreased bcl-2/Bax
expression, increased cytochrome C release, and increased
caspase-3 activity [22–24]. In addition, studies have shown
that SH-SY5Y exposed to Aβ-induced toxicity can alter cell
cycle progression by activating MAPK-ERK1/2, significantly
increasing the number of cells in the S phase and decreasing
the number of cells in the G2/M region [25, 26]. In this
study, Aβ-induced toxicity promoted the reentry of SH-
SY5Y cells into the cell cycle, arrested the cells in the S phase,
and induced apoptosis; these effects were related to the acti-
vation of the Ras-ERK signaling pathway. Baicalin treatment
can reverse this phenomenon to a certain extent.

In recent years, the potential neuroprotective effects of
the active components of herbal extracts on various neuro-
logical diseases have been extensively studied [27, 28]. Baica-
lin has a variety of biological properties, including anti-
inflammatory, antioxidant, and anticancer activities.
Numerous preclinical trials have demonstrated baicalin’s
potential for treating a wide range of human diseases
[29–31]. Increasing evidence suggests that baicalin can be
used as a potential anti-AD drug, playing a key role in inhi-
biting Aβ-induced neurotoxicity. Yu et al. [32] found that
baicalin inhibited the formation of Aβ1-42 fibers and
increased the viability of cells after incubation with Aβ1-42
by UHPLC-DAD-TOF/MS. Baicalin can effectively improve
the learning and memory impairment, hippocampal injury,
and neuronal apoptosis induced by Aβ1-42 injection in rats,

and this effect may be related to the antioxidant effect medi-
ated by Nrf2 [33]. Another study showed that baicalin
reduced memory and cognitive deficits in APP/PS1 mice
by inhibiting activation of the NLRP3 inflammasome and
the TLR4/NF-κB signaling pathway to inhibit microglia-
induced neuroinflammation [18]. In vitro experiments also
proved that baicalin exerts a good protective effect on Aβ-
induced cell damage. Baicalin directly interacts with copper
to inhibit the accumulation of Aβ1-42 and protects SH-
SY5Y cells from the oxidative damage caused by Aβ1-42
accumulation by reducing the production of H2O2 [34].
Baicalin-mediated activation of Nrf2 showed a strong ability
to resist oxidative stress in N2a/APPswe cells [35]. In addi-
tion, baicalin can inhibit Aβ-induced microglial activation
[36] and reduce Aβ cytotoxicity in PC12 cells [37]. Our
results showed that baicalin can inhibit Aβ to cause cell cycle
disorders and apoptosis, which may be related to the overac-
tivation of the Ras-ERK signaling pathway.

G1/S-specific cyclin D1 (cyclin D1) is a protein encoded
by the human CCND1 gene. The cyclin D1 gene is a part of
the highly conserved cell cycle family. Cyclin D1 regulates
cyclin-dependent kinases (CDKs). Different cyclins exhibit
unique expression and degradation characteristics, which
contribute to the temporal coordination of cell cycle events
[38]. Cyclin D1 is associated with cell cycle activation and
G1/S progression. Aβ promotes the expression of cyclin
D1 and enables cells to escape anaphase in mitosis and
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reenter the cell cycle [25]. However, adult neurons no longer
enter the cell cycle (remaining in the G0 phase) and are con-
sidered permanent postmitotic cells. In the brains of AD
patients, the accumulation of cyclin D1 was associated with
cell cycle activation, which eventually leads to cell death
[39]. Increased Ras expression is associated with the cell
cycle and enhances the Ras-ERK signaling axis to activate
AP-1 and induce cyclin D1 expression [40]. However, the
overactivation of the Ras-ERK pathway can block the cell
cycle and result in excessive accumulation of cyclin D1 in
cells, which can prevent the degradation of the cell cycle
inhibitor p21CIP1 and cause the cells to enter a static state
[41]. Aβ can not only activate Ras-ERK signaling but also
enhance the expression and nuclear accumulation of cyclin
D1 in neurons. Inhibition of Ras-ERK can induce cyclin
D1 expression and nuclear accumulation to weaken the cas-
cade of ERK signals [13]. The results of cell cycle analysis by
flow cytometry showed that the numbers of SH-SY5Y cells
in the S phase were significantly increased and the numbers
of cells in the G2/M phase were significantly decreased after
treatment with Aβ1-42, indicating cell cycle arrest. After bai-
calin treatment, the numbers of cells in the S phase were sig-
nificantly reduced. Moreover, the WB results showed that
Ras-ERK signaling pathway activation was inhibited. These
results suggest that baicalin treatment could improve the
effect of Aβ1-42 on SH-SY5Y cell cycle progression. We
hypothesized that the possible mechanism was that the stim-
ulation of neurons with Aβ forced the neurons into the cell

cycle. However, cell cycle dysfunction successfully prevented
neuronal division or made the cells vulnerable, which led to
neuronal degeneration and eventually neuronal death, while
baicalin could effectively alleviate the cell cycle arrest caused
by Aβ.

Deposition of Aβ is considered to be the central link in
the pathogenesis of AD, and the pathological process of
Aβ is closely related to the Ras-ERK signaling pathway
[13]. The Ras-ERK signaling pathway can transduce extra-
cellular signals to the nucleus and affect cell fate, including
cell proliferation, differentiation, survival, and transforma-
tion [42]. Activation of this pathway under different condi-
tions might trigger cell-specific responses. In general,
sustained and intense activation of this pathway increases
cell proliferation by promoting protein synthesis and the
formation of cyclin/cyclin-dependent kinase (CDK) com-
plexes [43]. Abnormal activation of the Ras-ERK pathway
can induce cell apoptosis and is of great significance to the
pathogenesis of AD and other degenerative diseases [44].
Many types of cells are characterized by dysfunction of cell
cycle regulation in AD, including neurons. Abnormal release
of growth factors, cytokines, and other molecules, such as
nitric oxide, oxygen free radicals, or lipid peroxidation prod-
ucts in the mitotic signaling pathway, such as the MAPK sig-
naling pathway, leads to excessive stimulation of mitotic
neurons, resulting in abnormal cell division and dedifferen-
tiation and neuronal death in terminally differentiated neu-
rons [45]. In AD, abnormal cell cycle activation and
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neuronal loss induced by Aβ oligomers may be associated
with Ras [46]. Studies have shown that statins can improve
cognitive function in mice with AD by inhibiting the activity
of Ras [47]. Our results showed that Ras expression at the
cellular level was increased after treatment with Aβ1-42.
The significant upregulation of p-ERK expression indicated
that it was activated. Moreover, the expression level of SH-
SY5Y cyclin D1 was also increased after treatment with

Aβ1-42, suggesting that Aβ activation of the Ras-ERK signal-
ing pathway may be one of the mechanisms by which Aβ
induces cell cycle disorders and apoptosis, leading to neuro-
degeneration and neuronal loss in AD. This is in accordance
with the previous literature [48]. However, after treatment
with 10μM and 20μM baicalin, the Ras, p-ERK, and cyclin
D1 levels in SH-SY5Y cells exposed to Aβ1-42 were signifi-
cantly decreased, suggesting that the inhibition of the
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proapoptotic ERK pathway was involved in the neuroprotec-
tive effect of baicalin. Additionally, we hypothesized that
baicalin may also exert therapeutic effects through other
pathways.

5. Conclusion

In this study, an AD cell model was established by treating
SH-SY5Y cells with Aβ1-42, and baicalin was administered
for intervention. The results suggested that baicalin can sig-
nificantly reduce the SH-SY5Y cell damage induced by Aβ1-
42, change the cell cycle composition ratio and inhibit cell
apoptosis, which may be related to the inhibition of the
Ras-ERK signaling pathway.
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