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Abstract: Four complexes, [Cu4L2(OCH3)2(CH3OH)2]·2H2O (1), [Zn2L2Cl4]·2H2O·2CH3OH (2),
[Hg2L2Br4]·4CH3OH (3), and {[CdL2Cl2]·4H2O·4CH3OH}n (4), have been synthesized and charac-
terized from a bis(pyridylhydrazone) ligand (L) with copper(II), zinc(II), mercury(II) or cadmium(II),
respectively. Complex 1 exists as a centrosymmetric tetranuclear dimer with L as deprotonated tri-
dentate ligand. Complexes 2 and 3 exist as centrosymmetric metallamacrocycles with L as bidentate
ligand. Complex 4 exists as a 1D looped-chain coordination polymer. The thermal stabilities and
vapor adsorption properties of the four complexes were investigated as well.

Keywords: pyridylhydrazone; complex; crystal structure; vapor adsorption

1. Introduction

Within the field of supramolecular chemistry, hydrazone derivatives have been one
of the most important classes of flexible and versatile polydentate ligands which show
very high efficiency in chelating with transition metal ions [1–6]. The coordinating ability
of hydrazones is possible due to the nucleophilic character of the nitrogen atoms of the
triatomic structure C=N-N of the azomethine group [7,8]. So far, hydrazone-based metal
complexes have received considerable attention from chemists in many applications such
as chromogenic reagents in the spectrophotometric determination of transition-metal ions,
metal extracts and biologically active compounds [9]. They have also been demonstrated to
possess diverse pharmacological properties [10–17], catalytic properties [18,19], adsorption
properties [20,21], electrochemical properties [22], luminescent properties [23,24], etc.

Pyridyl moiety is probably the most popular building block for the construction of
metal-organic networks due to its strong coordination ability to metal ions [25–27]. In
recent years, bis(pyridylhydrazone) ligands are often used in the construction of novel
supramolecular architectures and promising candidates for metallo-anion receptors. Co-
ordination polymers with organic ligands based on dipyridylamide moieties reveal that
dipyridyl groups are a good choice for connecting metal centers and the hydrogen bonding
of amide functionality can add extra dimensionality to the resulting structures. Several
beautiful examples have been reported recently and further demonstrate the potential in
the organization of the primary molecules in the solid state [28–31].

In this work, a bis(pyridylhydrazone) ligand (L) was synthesized by the Schiff base
condensation reaction of 5-(tert-butyl)-2-hydroxyisophthalaldehyde with nicotinic hy-
drazide (Scheme 1). Four complexes have been synthesized and characterized from the
bis(pyridylhydrazone) ligand with Cu(II), Zn(II), Hg(II), and Cd(II), respectively. The
different geometries of the complexes disclose that the coordination sites play important
roles in the formation of different structures.
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Scheme 1. Synthesis of the bis(pyridylhydrazone) Schiff base ligand. 

2. Results and Discussion 
2.1. Description of Crystal Structures 
2.1.1. Crystal Structure of Complex 1 

The reaction between the ligand and Cu(Ac)2 yielded green crystals of tetranuclear 
[Cu4L2(OCH3)2(CH3OH)2]·2H2O (1). Complex 1 crystallizes in the triclinic space group Pī. 
In the complex, the Addison τ5 parameters of copper(II) are 0.09 and 0 for Cu1 and Cu2 
(τ5 = 0 for a perfectly square-pyramidal geometry, and τ5 = 1 for a perfectly trigo-
nal-bipyramidal geometry) [32], suggesting that both copper atoms adopt a 
square-pyramidal geometry (Figure 1a). The structure can be considered as a centro-
symmetric tetranuclear dimer complex which consists of two trianionic ligands, two 
methanol molecules, two methoxide ions, and four copper(II) ions. The copper atom is 
coordinated with three oxygen atoms and one nitrogen atom in the basal positions, and a 
methanol oxygen atom (for Cu1) or a methoxide oxygen atom (for Cu2) in the axial posi-
tion. In the molecule, the Cu1-Cu2 distance is 2.957(4) Å, which is consistent with similar 
complexes found in the literature [33,34]. Noticeably, [Cu2(μ3-OCH3)2Cu2a] forms a 
square with Cu2-Cu2a separation of 2.973(5) Å and the distance of the two μ3-methoxide 
oxygen atoms bridged by Cu2/Cu2a is 2.969(4) Å, which is well comparable with previ-
ously reported copper complexes [35]. The packing view shows O–H···N hydrogen bonds 
between two neighboring ligands constitute an infinite 1D supramolecular chain (Figure 
1b). 

 

Scheme 1. Synthesis of the bis(pyridylhydrazone) Schiff base ligand.

2. Results and Discussion
2.1. Description of Crystal Structures
2.1.1. Crystal Structure of Complex 1

The reaction between the ligand and Cu(Ac)2 yielded green crystals of tetranuclear
[Cu4L2(OCH3)2(CH3OH)2]·2H2O (1). Complex 1 crystallizes in the triclinic space group
Pı̄. In the complex, the Addison τ5 parameters of copper(II) are 0.09 and 0 for Cu1 and
Cu2 (τ5 = 0 for a perfectly square-pyramidal geometry, and τ5 = 1 for a perfectly trigonal-
bipyramidal geometry) [32], suggesting that both copper atoms adopt a square-pyramidal
geometry (Figure 1a). The structure can be considered as a centrosymmetric tetranuclear
dimer complex which consists of two trianionic ligands, two methanol molecules, two
methoxide ions, and four copper(II) ions. The copper atom is coordinated with three
oxygen atoms and one nitrogen atom in the basal positions, and a methanol oxygen atom
(for Cu1) or a methoxide oxygen atom (for Cu2) in the axial position. In the molecule,
the Cu1-Cu2 distance is 2.957(4) Å, which is consistent with similar complexes found
in the literature [33,34]. Noticeably, [Cu2(µ3-OCH3)2Cu2a] forms a square with Cu2-
Cu2a separation of 2.973(5) Å and the distance of the two µ3-methoxide oxygen atoms
bridged by Cu2/Cu2a is 2.969(4) Å, which is well comparable with previously reported
copper complexes [35]. The packing view shows O–H···N hydrogen bonds between two
neighboring ligands constitute an infinite 1D supramolecular chain (Figure 1b).
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2.1.2. Crystal Structure of Complexes 2 and 3

The reaction of the ligand with ZnCl2 or HgBr2 in the MeOH–DMF solution gave
the complex [Zn2L2Cl4]·2H2O·2CH3OH (2) or [Hg2L2Br4]·4CH3OH (3) as colorless block
crystals. Both of the two complexes crystallize in triclinic space group Pı̄. Complexes 2
and 3 are isostructural except for the variation in the lattice solvent molecules, and they
exist with very similar coordination configurations. Therefore, only the crystal structure
of complex 2 is discussed herein. Complex 2 exists as a centrosymmetric 36-membered
binuclear metallamacrocycle, which is composed of two Zn(II) ions, two ligands, four Cl
anions, two methanol and two H2O molecules. Each Zn(II) is four-coordinated by two
Cl anions and two pyridyl nitrogen atoms with a slightly distorted tetrahedral geometry
deduced by its structural parameter τ4 = 0.91 (τ4 = 0 for a perfectly a square-planar
geometry, and τ4 = 1 for a perfectly tetrahedral geometry) [36]. The Zn1–N1, Zn1–N6a,
Zn1–Cl1 and Zn1–Cl2 bond lengths are 2.079(3), 2.060(3), 2.2264(16) and 2.2070(16) Å,
respectively. The N–Zn–Cl bond angles are in the range of 104.46(8)◦~108.21(9)◦. The bond
angles for Cl1–Zn–Cl2 and N1–Zn–N6a are 123.80(5)◦ and 104.21(12)◦, respectively, which
are consistent with those found in the similar complexes [37]. The dihedral angles between
the pyridyl and the central benzene ring, and the neighboring pyridyl ring are 30.45◦ and
76.48◦, respectively. The dinuclear structures connect to each other through N2–H2A···O3
hydrogen bond interactions to form 1D channels in the overall three dimensional network
(Figure 2b).
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2.1.3. Crystal Structure of Complex 4

The reaction of the ligand and CdCl2 in MeOH–DMF (4:1, V/V) gave the complex
{[CdL2Cl2]·4H2O·4CH3OH}n (4) as yellow block crystals. Complex 4 crystallizes in the
triclinic space group Pı̄. The cadmium atom is six-coordinated by two chlorine atoms and
four pyridyl nitrogen atoms from four adjacent ligands in a slightly distorted octahedral
geometry. The four pyridyl nitrogen atoms constitute the basal plane of the octahedron,
and the two chlorine atoms are located at the axial positions (Figure 3a). The ligands act
as bidentate building blocks by pyridyl nitrogen atoms, linking the Cd(II) ions to form
a 1D looped-chain of 36-membered macrocycles propagating along the c axis with the
Cd···Cd distance of 16.68 Å. Each macrocycle is found to be associated with four methanol
molecules via O-H···O, N-H···O or O-H···Cl hydrogen bonds (D···A = 2.726(10)–3.112(4)
Å). Intermolecular hydrogen bonding interactions (N2-H2A···O3) and π···π stacking inter-
actions between the adjacent benzene rings (the centroid-to-centroid distance is 3.912 Å) are
formed to generate a 2D framework along the bc plane (Figure 3b), which is further linked
by C22-H22···Cl1 hydrogen bond interactions, resulting in a 3D porous supramolecular
network (Figure 3c).
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2.1.4. Structural Comparison

The organic ligands and metal ions play important roles in the formation of the final
coordination frameworks and topologies. As described above, self-assembly of the ligands
with Cu(II), Zn(II), Hg(II), and Cd(II) lead to 0D or 1D structures, which are all obtained
in similar solvent evaporation conditions (MeOH/DMF). The structural analysis reveals
that each copper(II) ion is five-coordinated with a square-pyramidal geometry. The zinc(II)
and mercury(II) ions are four-coordinated with a slightly distorted tetrahedral geometry,
and the cadmium ion is six-coordinated with a distorted octahedral geometry. Besides, it
was found that the bis(pyridylhydrazone) compound acts as a tridentate deprotonated
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ligand in complex 1, while as a bidentate ligand in complexes 2–4. In short, the diversity
of coordination preferences of metal ions as well as the nature of the ligands affect the
assembly of the architectures.

2.2. TG Analyses of the Complexes

Thermal stabilities of the four complexes were measured by thermogravimetric analy-
sis (TGA) between 25 and 800 ◦C in the N2 atmosphere at the heating rate of 10 ◦C min−1

(Figure 4). Complex 1 shows a slight weight loss from room temperature to 200 ◦C corre-
sponding to the release of two H2O molecules (observed weight loss 2.7%, calculated 2.8%).
The complex began to decompose from about 200 ◦C due to the release of the methanol
molecules and methoxide ion, as well as the decomposition of the organic frameworks. For
complex 2, there is a weight loss (5.2%) in the range of 25 to 140 ◦C, which is attributed to
the loss of solvent molecules (calculated 8.6%). The organic framework begins to decom-
pose at above 400 ◦C. Complex 3 shows a continuous weight loss (9.6%) in the temperature
range of 25 to 240 ◦C, which is due to the loss of methanol molecules (calculated 10.1%).
The complex begins to decompose at above 250 ◦C with a sharp weight loss, which is
accompanied by the elimination of HgBr2. Complex 4 exhibits a slight weight loss (6.6%)
in the temperature range 25 to 290 ◦C, then begins to decompose the organic frameworks
with a sharp weight loss. The results show that the solvent molecules can affect the thermal
stability of the complexes.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 11 
 

 

100 200 300 400 500 600 700 800
0

20

40

60

80

100

 

 

W
eig

ht
 / 

%

Temperature / ℃

 complex 1
 complex 2
 complex 3
 complex 4

 
Figure 4. TGA curves for complexes 1–4. 

2.3. Adsorption Measurements of the Complexes 
Considering different hydrogen bond interactions and porous structures in the 

complexes, we explored methanol vapor adsorption for the four complexes at room 
temperature (Figure 5). The samples activation occurred at 353 K in a dynamic vacuum 
for 8 h until the outgas rate was less than 4 mmHg·min−1. Vapor adsorption isotherms 
were obtained by a Micromeritics ASAP 2020 system under the methanol vapor atmos-
phere. The Langmuir surface area and BET (Brunauer–Emmett–Teller) surface area for 
complexes 1–4 are listed in Table 1. As shown in Figure 5, the adsorption isotherms show 
a typical type III nature with the largest quantity adsorbed for complexes 1–4 are 7.81, 
5.59, 6.36 and 6.72 mmol·g−1, which are similar to the complexes reported in previous 
references [38,39]. It is meaningful for the complexes to be potential materials as adsor-
bent of methanol vapor. 

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

 

 

Q
ua

nt
ity

 A
ds

or
be

d 
(m

m
ol

/g
)

Relative Pressure (P/Po)

 complex 1
 complex 2
 complex 3
 complex 4

 

Figure 4. TGA curves for complexes 1–4.

2.3. Adsorption Measurements of the Complexes

Considering different hydrogen bond interactions and porous structures in the com-
plexes, we explored methanol vapor adsorption for the four complexes at room temperature
(Figure 5). The samples activation occurred at 353 K in a dynamic vacuum for 8 h until the
outgas rate was less than 4 mmHg·min−1. Vapor adsorption isotherms were obtained by a
Micromeritics ASAP 2020 system under the methanol vapor atmosphere. The Langmuir
surface area and BET (Brunauer–Emmett–Teller) surface area for complexes 1–4 are listed
in Table 1. As shown in Figure 5, the adsorption isotherms show a typical type III nature
with the largest quantity adsorbed for complexes 1–4 are 7.81, 5.59, 6.36 and 6.72 mmol·g−1,
which are similar to the complexes reported in previous references [38,39]. It is meaningful
for the complexes to be potential materials as adsorbent of methanol vapor.
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Table 1. Langmuir and BET (Brunauer–Emmett–Teller) surface area for complexes 1–4.

Complex 1 2 3 4

Langmuir surface area (m2/g) 687 398 489 496
BET surface area (m2/g) 585 309 355 372

3. Experimental Section
3.1. Materials and Physical Measurements

All reagents and solvents were commercially available (Aladdin, Shanghai, China)
and used without further purification. Melting points (uncorrected) were determined
by an LTD 9100 apparatus (Electrothermal Engineering, London, UK). 1H NMR spectra
were recorded in DMSO-d6 using a JNM-ECZ 400 MHz NMR spectrometer (JEOL, Tokyo,
Japan). IR spectra were recorded on a VERTEX 70 FTIR instrument (Bruker, Germany)
with KBr pellets in the range of 4000–400 cm−1 regions. Elemental analysis (C.H.N)
were carried out on a Vario ELIII elemental analyzer (Elementar, Berlin, Germany). The
crystal diffraction data were collected with a D8 VENTURE diffractometer (Bruker, Berlin,
Germany). Thermogravimetric analysis (TGA) curves were carried out on a TGA-7 thermal
analyzer (Perkin Elmer, Waltham, MA, USA) in the temperature region of 25–800 ◦C.
The vapor adsorption measurements of methanol were performed by an ASAP 2020
(Micrometrics, Norcross, GA, USA) outfitted with a turbo molecular drag pump.

3.2. Synthesis
3.2.1. Synthesis of the Ligand

5-(tert-butyl)-2-hydroxy-isophthalaldehyde was synthesized according to previous
literature [40]. A solution of 5-(tert-butyl)-2-hydroxy-isophthalaldehyde (0.42 g, 2.0 mmol)
in anhydrous ethanol (50 mL) was heated and stirred until dissolved, and nicotinic hy-
drazide (0.55 g, 4.0 mmol) in anhydrous ethanol (50 mL) was added dropwise. The mixture
was refluxed with stirring for 8 h and then cooled to room temperature. The solvent was
evaporated under reduced pressure to obtain 10 mL yellowish oily liquid, and 30 mL of
dichloromethane was added to precipitate the yellowish solid, which on recrystallization



Molecules 2021, 26, 109 8 of 11

from methanol gave a bright yellow solid. Yield: 0.76 g, 85.5%; mp: 252 ~ 253 ◦C. 1H
NMR(DMSO-d6, 400 MHz): δ 1.34 (s, 9H, -CH3), 7.79 (s, 2H, Ar-H), 7.58 ~ 7.61 (m, 2H,
Py-H), 8.28, 8.30 (d, J = 8.0 Hz, 2H, Py-H), 8.76 (s, 2H, Py-H), 8.78, 8.79 (d, J = 4.0 Hz, 2H,
Py-H), 9.10 (s, 2H, CH=N), 12.34 (s, 1H, -OH), 12.34 (s, 2H, CONH). ESI-MS: m/z = 445.20
[M + H]+. Anal. Calcd. (%) for C24H24N6O3: C 64.85, H 5.44, N 18.91. Found (%): C 64.89,
H 5.49, 18.84. FT-IR (KBr pellet, ν/cm−1): 3402 (m), 3180 (s), 2961 (s), 2862 (m), 1649 (s),
1617 (s), 1592 (s), 1562 (s), 1459 (m), 1418 (m), 1352 (s), 1304 (s), 1229 (m), 1198 (w), 1159 (s),
1123 (w), 1091 (w), 1066 (w), 1027 (w), 957 (w), 892 (m), 823 (w), 708 (s), 631 (w).

3.2.2. Synthesis of Complexes 1–4

[Cu4L2(OCH3)2(CH3OH)2]·2H2O (1), Cu(Ac)2·H2O (39.9 mg, 0.2 mmol) in methanol
(40 mL) was added dropwise with stirring to L (44.5 mg, 0.1 mmol) in DMF (5 mL) and the
stirring was continued for 2 h. The solution was filtered off and left for slow evaporation
at room temperature. Green crystals were obtained after a few days. The crystals were
collected by filtration, washed with methanol, and dried to give complex 1 in a 43% yield.
Anal. Calcd. (%) for C52H60Cu4N12O12: C 48.07, H 4.65, N 12.94; Found (%): C 48.18, H
4.53, N 13.06. FT-IR (KBr pellet, ν/cm−1): 3423 (s), 2957 (s), 1615 (s), 1586 (s), 1549 (m),
1505 (s), 1472 (m), 1411 (w), 1375 (s), 1312 (w), 1226 (m), 1194 (w), 1153 (m), 1080 (m),
1048 (m), 958 (w), 917 (w), 844 (w), 822 (w), 763 (w), 731 (m), 703 (m), 639 (m).

[Zn2L2Cl4]·2H2O·2CH3OH (2), ZnCl2 (13.6 mg, 0.1 mmol) in methanol (40 mL) was
added with stirring to L (44.5 mg, 0.1 mmol) in DMF (10 mL) and stirring was continued at
room temperature for 3 h. Then the same process was used as for 1. Yield (based on Zn):
38%. Anal. Calcd. (%) for C50H60Zn2Cl4N12O10: C 47.60, H 4.79, N 13.32; Found (%): C
47.52, H 4.85, N 13.26. FT-IR (KBr pellet, ν/cm−1): 3434 (m), 3192 (m), 2961 (s), 2865 (m),
1620 (s), 1553 (s), 1519 (s), 1475 (m), 1374 (s), 1316 (s), 1239 (m), 1201 (w), 1161 (m), 1099 (m),
963 (w), 909 (w), 836 (w), 778 (w), 733 (m), 703 (m), 651 (w).

[Hg2L2Br4]·4CH3OH (3), HgBr2 (36.0 mg, 0.1 mmol) in methanol (40 mL) was added
dropwise with stirring to L (44.5 mg, 0.1 mmol) in DMF (5 mL) and stirring was continued
at room temperature for 3 h. Then the same process was used as for 1. Yield (based on
Hg): 32%. Anal. Calcd. (%) for C52H64Hg2Br4N12O10: C 35.94, H 3.71, N 9.67; Found (%):
C 35.81, H 3.62, N 9.79. FT-IR (KBr pellet, ν/cm−1): 3542 (n), 3191 (s), 3025 (m), 2961 (s),
2861 (m), 1655 (s), 1616 (s), 1563 (s), 1460 (m), 1427 (m), 1379 (m), 1351 (s), 1295 (s), 1229 (w),
1197 (w), 1159 (m), 1123 (w), 1091 (w), 1051 (w), 957 (m), 895 (m), 826 (m), 756 (w), 702 (s),
638 (w).

{[CdL2Cl2]·4H2O·4CH3OH}n (4), CdCl2·2.5H2O (22.8 mg, 0.1 mmol) in methanol
(40 mL) was added dropwise with stirring to L (88.8 mg, 0.2 mmol) in DMF (10 mL).
Then the same process was used as for 1. Yield (based on Cd): 35%. Anal. Calcd. (%)
for C52H72CdCl2N12O14: C 49.08, H 5.70, N 13.21; Found (%): C 49.18, H 5.60, N 13.31.
FT-IR (KBr pellet, ν/cm−1): 3452 (m), 3202 (s), 3038 (s), 2957 (s), 2863 (w), 1659 (s), 1617 (s),
1559 (s), 1471 (m), 1428 (w), 1353 (s), 1289 (s), 1229 (w), 1200 (w), 1159 (m), 1093 (w),
1030 (m), 956 (w), 894 (m), 826 (w), 731 (w), 704 (s), 638 (w).

3.3. Crystallographic Data Collection and Structure Determination

Single-crystal X-ray data of complexes 1–4 were collected using a D8 VENTURE
diffractometer (Bruker, Berlin, Germany). Intensities of reflections were measured using
Mo Kα monochromatized radiation (λ = 0.71 073 Å). Data reductions and absorption
corrections were performed by using the SAINT and SADABS programs implemented
in the APEX2 software (version 1.2), respectively. The structures were solved by direct
methods and refined by full-matrix least squares methods on F2 using the SHELXTL
programs [41,42]. All non-H atoms were refined anisotropically. Hydrogen atoms were
generated geometrically with fixed isotropic thermal parameters, and included in the
structure factor calculations. Some solvent molecules in the four complexes are disorder
and removed by Platon/Squeeze in the APEX2 software (version 1.2). Crystal data and
structure refinement parameters are listed in Table 2. Selected bond lengths and angles for
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the complexes are listed in Supplementary Materials Table S1. Hydrogen bonding lengths
and angles are listed in Supplementary Materials Table S2. CCDC reference numbers:
2041792 for 1, 2041793 for 2, 2041794 for 3, and 2041795 for 4.

Table 2. Crystal data and structure refinement parameters for complexes 1–4.

Complex 1 2 3 4

Empirical formula C52H56Cu4N12O10 C48H48Cl4N12O6Zn2 C48H48Br4Hg2N12O6 C52H64CdCl2N12O10
Formula weight 1263.24 1161.52 1609.80 1200.45
Temperature/K 273(2) 273(2) 223(2) 223(2)
Crystal system triclinic triclinic triclinic triclinic

Space group Pı̄ Pı̄ Pı̄ Pı̄
a/Å 10.227(6) 9.019(5) 9.2634(6) 8.9706(11)
b/Å 11.498(7) 12.473(7) 12.7672(7) 12.3790(15)
c/Å 13.310(8) 15.450(10) 15.2183(9) 15.0517(18)
α/(◦) 113.636(19) 93.56(2) 92.911(2) 80.276(4)
β/(◦) 90.801(19)) 103.431(19) 102.156(2) 83.890(5)
γ/(◦) 102.829(19) 105.544(18 106.228(2) 76.927(4)
V/Å 3 1388.7(15) 1614.3(16) 1677.81(17) 1600.7(3)

Z 1 1 1 1
Dc/(g·cm−3) 1.511 1.195 1.593 1.245
θ range/(◦) 2.48 ≤ θ ≤ 24.00 2.04 ≤ θ ≤ 25.00 3.27 ≤ θ ≤ 25.00 2.58 ≤ θ ≤ 24.50
Absorption

coefficient/mm−1 1.578 0.957 6.998 0.483

F(000) 648 596 768 622
Reflections collected 26104 32817 29072 28266

Independent reflections 4358 5680 5846 5275
Observed reflections

(I > 2σ(I)) 2454 4404 5282 4331

Number of parameters 361 329 329 357
Goodness-of-fit on F 2 1.042 1.088 1.053 1.099

Final R
indices(I > 2σ(I))

R1 = 0.0705,
wR2 = 0.1701

R1 = 0.0459,
wR2 = 0.1318

R1 = 0.0336,
wR2 = 0.0895

R1 = 0.0593,
wR2 = 0.1319

R indices (all data) R1 = 0.1362,
wR2 = 0.2020

R1 = 0.0608,
wR2 = 0.1397

R1 = 0.0396,
wR2 = 0.0920

R1 = 0.0772,
wR2 = 0.1403

Largest diff. peak and
hole (e Å−3) 0.435, −0.530 0.380, −0.454 1.933, −1.229 0.673, −0.580

4. Conclusions

In summary, we have synthesized and characterized four complexes derived from
a bis(pyridylhydrazone) ligand with copper(II), zinc(II), mercury(II) and cadmium(II),
respectively. The structural analysis reveals that each copper(II) ion is five-coordinated
with a square-pyramidal geometry in the tetranuclear complex 1. The zinc(II) and mer-
cury(II) ions are four-coordinated with a slightly distorted tetrahedral geometry in the
metallamacrocycle 2 or 3. The cadmium ion is six-coordinated with a distorted octahedral
geometry in the 1D looped-chain coordination polymer 4. It is worth noting that the
bis(pyridylhydrazone) compound acts as a tridentate ligand in complex 1, while acting as
a bidentate ligand in complexes 2–4, which indicates that the nature of the ligands play
an important role in the coordination networks. The adsorption measurements for the
complexes show that they can be potential materials as the adsorbents of methanol vapor.

Supplementary Materials: The following are available online, Figure S1: 1H NMR for L. Figure S2:
MS for L. Figure S3: IR spectra for L and complexes 1–4. Table S1: Selected bond lengths and angles
(◦) for complexes 1–4. Table S2: Hydrogen bonding lengths and angles for complexes 1–4.
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