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Abstract: Epidermal growth factor receptor (EGFR) is the first discovered member of the receptor
tyrosine kinase superfamily and plays a fundamental role during embryogenesis and in adult tissues,
being involved in growth, differentiation, maintenance and repair of various tissues and organs.
The role of EGFR in the regulation of tissue development and homeostasis has been thoroughly
investigated and it has also been demonstrated that EGFR is a driver of tumorigenesis. In the nervous
system, other growth factors, and thus other receptors, are important for growth, differentiation
and repair of the tissue, namely neurotrophins and neurotrophins receptors. For this reason, for a
long time, the role of EGFR in the nervous system has been underestimated and poorly investigated.
However, EGFR is expressed both in the central and peripheral nervous systems and it has been
demonstrated to have specific important neurotrophic functions, in particular in the central nervous
system. This review discusses the role of EGFR in regulating differentiation and functions of
neurons and neuroglia. Furthermore, its involvement in regeneration after injury and in the onset of
neurodegenerative diseases is examined.
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1. Introduction

The epidermal growth factor receptor (EGFR, also known as ErbB1 or HER-1) belongs to the
receptor tyrosine kinase (RTK) superfamily, which consists of other three members, ErbB2/Neu/HER-2,
ErbB3/HER-3 and ErbB4/HER-4 [1,2]. EGFR was the first member of the family to be discovered [3] and,
up to now, seven ligands are known to activate this receptor [4]. These ligands are structurally
related proteins among which there are high-affinity ligands such as epidermal growth factor
(EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF) and b-cellulin (BTC),
and low-affinity ligands such as amphiregulin (AR), epiregulin (EREG) and epigen (EPGN) [5].
Other ligands belonging to this family are represented by neuregulins (neuregulin 1–4) which bind
only to ErbB3 and ErbB4 while ErbB2 is still an orphan receptor [6] (Figure 1). They all derive from
integral membrane protein precursors that, after cleavage, give rise to their soluble forms containing a
conserved three-loop compact structure, known as the EGF-like domain [7–9]. EGFR, like all RTKs,
comprises an extracellular ligand binding domain, a single transmembrane domain and a cytoplasmic
domain where there is a conserved protein tyrosine kinase core. EGFR homo- or hetero-dimerizes
following ligand binding. Even if EGFR can homodimerize, the dimer formed by EGFR and ErbB2
constitutes the most active receptor, increasing the response to EGF [10,11]. As a result of the activation
of the intrinsic kinase domain following ligand binding, specific tyrosine residues in the cytoplasmic tail
are phosphorylated, becoming binding sites for adaptor proteins with Src-homology 2 domains (SH2)
and activating downstream signaling pathways. Among these, the Ras-Raf-MEK-ERK1/2, STAT3 and
STAT5 pathways and the PI3K-Akt-mTOR cascade are the main pathways activated by ligand binding
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to Erb receptors and they are fundamental in the regulation of cellular proliferation, differentiation and
survival [1,2,12,13].
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early endosomes that move toward the perinuclear region where EGFR is inactivated before being 
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inactivated as a result of the action of the tyrosine-protein phosphatase non-receptor 1 (PTP1B), which 
acts on the receptor at the ER-endosome contact-sites [14,15] (Figure 2A). On the contrary, if EGFR is 
highly activated, it is internalized through clathrin-independent endocytosis, it is not recycled but it 
reaches RAB7-positive late endosomes and then lysosomes in the perinuclear region where its 
degradation occurs [15] (Figure 2B). Degradation of EGFR is regulated by ubiquitination. 
Nonubiquitinated receptors are internalized through clathrin-mediate endocytosis and they are 
recycled back to plasma membrane rather than degraded [14]. This process is regulated by EGF 
concentration. In fact, when EGF is poorly available, activated EGFR is not marked for degradation 
[16]. Otherwise, the E3 ubiquitin ligase Cbl ubiquitinates EGFR, which is recognized by the ubiquitin-
dependent adaptors of the endosomal sorting complexes required for transport (ESCRTs) and it 
reaches multivesicular bodies (MVBs), before being degraded into lysosomes [17,18]. 

MVBs originate from early endosomes by invagination of the limiting membranes which form 
intraluminal vesicles (ILVs). When endosomes accumulate ILVs in their lumen, they become MVBs 
[19]. After being incorporated into ILVs, molecules can be sorted towards three possible routes: they 
could be recycled, secreted through exosomes or degraded following the fusion of MVBs with 
lysosomes [20]. However, it has been demonstrated that MVBs can also behave as signaling 
organelles. In fact, in the case of the WNT pathway, WNT binds to both low-density lipoprotein 
receptor-related 6 (LRP6) and Frizzled receptors which polymerize before being internalized through 
caveolin containing vesicles [21]. The WNT receptor complex reaches the MVBs and this is an 
essential step to sustain WNT signaling [22]. It is still unknown if sequestration of cytosolic 
components in the MVBs to sustain signaling is required for other signaling pathways. 

The EGFR pathway was initially described in Drosophila melanogaster and Caenorhabditis elegans 
and then better characterized through biochemical studies in mammalian cell culture [23–26]. 

Figure 1. Representation of the four ErbB receptors and their ligands. EGF: epidermal growth factor;
TGF-α: transforming growth factor-α; HB-EGF: heparin-binding EGF.

The intracellular fate of EGFR depends on how it is activated (Figure 2). If the receptor undergoes a
low activation, clathrin-mediated endocytosis occurs, so EGFR reaches RAB5-positive early endosomes
that move toward the perinuclear region where EGFR is inactivated before being recycled back to
plasma membrane by RAB11-positive recycling endosomes (Figure 2A). EGFR is inactivated as a result
of the action of the tyrosine-protein phosphatase non-receptor 1 (PTP1B), which acts on the receptor at
the ER-endosome contact-sites [14,15] (Figure 2A). On the contrary, if EGFR is highly activated, it is
internalized through clathrin-independent endocytosis, it is not recycled but it reaches RAB7-positive
late endosomes and then lysosomes in the perinuclear region where its degradation occurs [15]
(Figure 2B). Degradation of EGFR is regulated by ubiquitination. Nonubiquitinated receptors are
internalized through clathrin-mediate endocytosis and they are recycled back to plasma membrane
rather than degraded [14]. This process is regulated by EGF concentration. In fact, when EGF is poorly
available, activated EGFR is not marked for degradation [16]. Otherwise, the E3 ubiquitin ligase Cbl
ubiquitinates EGFR, which is recognized by the ubiquitin-dependent adaptors of the endosomal sorting
complexes required for transport (ESCRTs) and it reaches multivesicular bodies (MVBs), before being
degraded into lysosomes [17,18].

MVBs originate from early endosomes by invagination of the limiting membranes which form
intraluminal vesicles (ILVs). When endosomes accumulate ILVs in their lumen, they become MVBs [19].
After being incorporated into ILVs, molecules can be sorted towards three possible routes: they could
be recycled, secreted through exosomes or degraded following the fusion of MVBs with lysosomes [20].
However, it has been demonstrated that MVBs can also behave as signaling organelles. In fact, in the
case of the WNT pathway, WNT binds to both low-density lipoprotein receptor-related 6 (LRP6) and
Frizzled receptors which polymerize before being internalized through caveolin containing vesicles [21].
The WNT receptor complex reaches the MVBs and this is an essential step to sustain WNT signaling [22].
It is still unknown if sequestration of cytosolic components in the MVBs to sustain signaling is required
for other signaling pathways.

The EGFR pathway was initially described in Drosophila melanogaster and Caenorhabditis elegans
and then better characterized through biochemical studies in mammalian cell culture [23–26].
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Figure 2. Intracellular fate of epidermal growth factor receptor (EGFR) after its activation. (A) When 
EGF is poorly concentrated, EGFR undergoes a low activation and it is subjected to clathrin-mediate 
endocytosis. The receptor reaches the early endosomes and tyrosine-protein phosphatase non-
receptor 1 (PTP1B), which resides in the ER, dephosphorylates EGFR at the contact sites between ER 
and early endosomes. Then, EGFR is recycled back to the plasma membrane in RAB11-positive 
vesicles. (B) When EGF concentration is high, EGFR is more activated, and it is internalized through 
clathrin-independent endocytosis. After ubiquitination EGFR, reaches multivesicular bodies (MVBs) 
before being degraded into lysosomes. 

Figure 2. Intracellular fate of epidermal growth factor receptor (EGFR) after its activation. (A) When EGF
is poorly concentrated, EGFR undergoes a low activation and it is subjected to clathrin-mediate
endocytosis. The receptor reaches the early endosomes and tyrosine-protein phosphatase non-receptor
1 (PTP1B), which resides in the ER, dephosphorylates EGFR at the contact sites between ER
and early endosomes. Then, EGFR is recycled back to the plasma membrane in RAB11-positive
vesicles. (B) When EGF concentration is high, EGFR is more activated, and it is internalized through
clathrin-independent endocytosis. After ubiquitination EGFR, reaches multivesicular bodies (MVBs)
before being degraded into lysosomes.
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EGFR has important roles during development and in adult tissues of vertebrates [27]. In mammals,
EGFR is crucial during embryogenesis, as it promotes embryo implantation and placenta development,
and during organogenesis as it is involved in the development of several organs among which are
the lungs, heart, bone, epithelia, kidney and liver [28]. For instance, in adults, EGFR has key roles in
skin homeostasis as activation of its signaling pathway has an anti-apoptotic effect on keratinocytes
affected by ultraviolet B radiation [29]. Furthermore, EGFR is fundamental for cellular proliferation
and migration and for angiogenesis in skin wound healing [30]. Also, EGFR roles in kidney physiology
have been well investigated and it was demonstrated that EGFR activation in epithelial cells of the
proximal tube stimulates sodium reabsorption while activation of the receptor in the distal nephron
reduces sodium reabsorption [31]. Therefore, EGFR is involved in growth, differentiation, maintenance
and repair of various tissues and organs also including the nervous system. Indeed, EGFR can be
found in the central nervous system (CNS) since astrocytes, oligodendrocytes, progenitor cells of the
subventricular zone (SVZ) and some neuronal populations in the developing brain express it, while its
expression has decreased in the adult brain [32–36]. EGFR is also expressed in the peripheral nervous
system (PNS) and in particular in cutaneous nerves, sensory corpuscles, DRG (dorsal root ganglia)
primary sensory neurons, satellite glial cells and Schwann cells [37–40]. Furthermore, EGFR-null mice
grow with neural defects highlighting the key role of this receptor in the nervous system [41] (Figure 3).
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Figure 3. Diagram representing what happens to the nervous system cells after EGFR ablation. At P0,
EGFR is widely expressed in the nervous system. EGFR deletion is detrimental for progenitors,
astrocytes, oligodendrocytes and neurons. SVZ: subventricular zone; OPCs: oligodendrocyte precursor
cells; PNS: peripheral nervous system; CNS: central nervous system; GFAP: glial fibrillary acid protein;
DRG: dorsal root ganglia.

In light of the recent findings about the importance of EGFR in the nervous system, the aim of this
review is to summarize the current knowledge about its physiological role in the CNS and the PNS,
its functions in regeneration after injury and its involvement in the onset and progression of nervous
system diseases.

2. EGFR and the Nervous System

In the brain and in the nervous systems specific growth factors affect proliferation, differentiation
and migration of neurons. Indeed, a fundamental role in these processes in neurons is accomplished
by neurotrophins that use neurotrophin receptors to initiate cell signaling and regulate neuronal
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processes [42–45]. Thus, for a long time the presence and the role of EGFR in the nervous systems and
in neurons has been underestimated.

The presence of EGFR in the brain has already been observed in 1988 in rats [46]. Indeed,
EGFR immunoreactivity was found in astroglia 16 days after birth, reached a maximum 3 days later to
then became weak or absent in adult rats. Interestingly, EGFR was present in the cerebral cortex of
adult and aged rats and, in particular, EGFR-positive neurons were more present in the motor area of
the frontoparietal cortex while they were less numerous in the somatosensory area [46]. Thus, it was
hypothesized that EGF was not involved in astroglia proliferation during development but possibly
participating in neuronal survival or signaling between neurons and glia cells [46]. Furthermore,
the same authors demonstrated that while brain astroglia in adult rats express low levels of EGFR,
after injury astrocytes showed high EGFR expression suggesting that EGFR may be involved in the
transition to reactive astrocytes [46].

In 1994 it was described that EGFR was present in the skin, not just in the perineurium and Schwann
cells, as expected, but also in axons of nerve bundles, in axon and lamellar cells of Meissner corpuscles
and within the axon, inner core, outer core and capsule of Pacinian corpuscles [38]. These data proved
that human cutaneous nerves and sensory corpuscles normally express EGFR [38].

Thus, in the past 25 years the role of EGFR in the nervous system has been investigated and
its importance for neurons has been established although many aspects have not yet been clarified.
In particular, while it is clear that EGFR in the CNS has multiple key roles complementing the role of
neurotrophin receptors, its functions in the peripheral nervous system have been poorly investigated
up to now.

3. EGFR Functions in the CNS

3.1. Role of EGFR in Neural Stem Cell Pool Maintenance

Neurogenesis occurs in restricted areas throughout adult life denying the dogma by which neurons
cannot be generated in the adult brain. This process can take place because of the existence of adult
neural stem cells (NSCs), multipotent cells which generate neurons and glial cells. NSCs are localized
in specific niches of the lateral ventricle and the dentate gyrus of the hippocampus, the subventricular
zone (SVZ) and the subgranular zone (SGZ) [47]. It has been demonstrated that EGFR is important for
proliferation of NSCs derived from the mice embryo germinal zone since it is required for the formation
of a high proliferative daughter-cell population holding the same stem cell-like characteristics of the
mother cell [48,49].

More recently, a third proliferative region, the subcallosal zone (SCZ), was discovered. This region
is localized between the corpus callosum and dorsal hippocampus and contains cells that in the presence
of EGF can grow in vitro as clonal aggregates of cells called neurospheres and they are able to produce
oligodendrocytes, neurons and astrocytes [50]. Not only SCZ but also SVZ cells are responsive to EGF.
In fact, SVZ cells express EGFR and form multipotent and selfrenewing neurospheres if grown in vitro
in the presence of EGF. Most of these cells responsive to EGF do not derive from quiescent stem cells
in vivo but from rapidly dividing transit-amplifying C cells [51]. Otherwise, NSCs isolated from the
fourth ventricle or spinal cord of adult mice produce neurospheres in vitro only if they are treated with
a combination of fibroblast growth factor 2 (FGF2) + heparin or EGF + FGF2 [52]. In vivo, the infusion
of FGF2 + heparin + EGF into the fourth ventricle increases cellular proliferation in the fourth ventricle
and in the spinal cord. EGF alone is not able to stimulate proliferation whil FGF2 + heparin have
an effect on cells in the fourth ventricle but not in the spinal cord. Thus, only when EGF is added to
FGF2 and heparin, an increase in proliferation is visible in both the fourth ventricle and the spinal cord.
Considering that cells of the fourth ventricle do not express EGFR, cells expressing FGF2-receptor start
to proliferate responding to FGF2 stimulation and then they upregulate EGFR to begin EGF-induced
proliferation [53,54].
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In order to understand if the neurodegeneration that occurs in mice lacking EGFR is due to a
defect in the regulation of neural stem cells, the effect of EGFR depletion on stem cells derived from
SVZ was evaluated [55]. Cells isolated from the SVZ of P2 EGFR knock-out mice, show complete
ablation of EGFR, loose, in vitro, symmetric stem cell division that characterized selfrenewal but also
display alterations in the capability of differentiate, since wild-type neurospheres are able to produce
astrocytes and neurons, while neurospheres not expressing EGFR are able only to differentiate into
astrocytes (Figure 4A). These results demonstrate the importance of EGFR in NSCs selfrenewal and
that loss of EGFR signaling in cells derived from SVZ leads them to differentiate preferentially into
glia [55]. Consistently, in adult SVZ, EGFR is specifically expressed by undifferentiated precursors
(the transit-amplifying cells or C-cells), which are characterized by the absence of neuronal or glial
markers [51,56]. On the contrary, in the adult dentate gyrus of hippocampus, where proliferation is
less intensive compared to SVZ, the C-cells population is less present according to the reduced EGFR
immunoreactivity and to the low or absent proliferation in response to EGF stimulation [57].
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Figure 4. EGFR regulates neural stem cells and progenitors. (A) Neural stem cells can grow in vitro as
neurospheres. These clonal aggregates can differentiate into oligodendrocytes, neurons or astrocytes
if they express EGFR while, following EGFR ablation, they can differentiate only into astrocytes.
(B) Following cell-cell interaction, EGFR activation in neural progenitor cells (NPCs) stimulates Notch1
ubiquitination and degradation in adult neural stem cells (NSCs). This mechanism is responsible for
NPC pool enlargement at the expense of NSC proliferation. (C) In the VZ, NPCs expressing high EGFR
levels can undergo asymmetric mitosis producing a daughter cell expressing low EGFR levels which
continues to proliferate and a daughter cell expressing high EGFR levels which migrates in the SVZ.
Here, it can divide asymmetrically producing a daughter cell with high EGFR levels that differentiates
into astrocyte and a daughter cell with low EGFR levels that enters in a diverse differentiation path.
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In order to guarantee supply of different cell type cells to the CNS, the balance between NSCs
and neural progenitor cells (NPCs) has to be maintained [58–60]. EGFR and Notch1 pathways are
important for the maintenance of NSCs and NPCs in the brain, revealing the existence of functional
interactions between these two cellular populations. Increased EGFR signaling in neural precursor
cells in vivo is associated with the enlargement of NPCs pool at the expense of NSCs, reducing their
number, proliferation and selfrenewal capability. Notch1 is responsible for the maintenance of NSCs
identity and selfrenewal [61,62]. EGFR activation on NPCs stimulates Notch1 ubiquitination on NSCs
following cell-cell interaction and, consequently, its degradation therefore reducing neural stem cell
proliferation [61,62] (Figure 4B). Another important factor regulating NPCs selfrenewal is Sox2 [63,64].
Indeed, a feedback loop involving Sox2 and EGFR exists to enhance NPCs selfrenewal [65]. In fact,
activation of EGFR signaling stimulates Sox2 expression and Sox2 can bind to the EGFR promoter,
thus upregulating EGFR expression [65]. EGFR is downregulated by Sox2 knockdown while it is
upregulated by Sox2 overexpression and this fosters NPCs’ selfrenewal [65].

Neural-cell diversity is also guaranteed by asymmetric mitosis. NSCs and progenitors can be
subjected to asymmetric cell divisions producing two different cell daughters, a copy of itself and
a committed progenitor that enters in the path of differentiation [66,67]. Asymmetric mitosis also
concerns the cell surface receptor since EGFR can distribute in an asymmetric way during mitosis in
mouse embryonic forebrain ventricular and subventricular zones, in vitro and in vivo. The daughter
cell expressing high levels of EGFR is committed to differentiate into an astrocyte while the daughter cell
with low EGFR levels does not express astrocyte markers, suggesting a different fate (Figure 4C) [68].
In fact, in the SVZ, progenitor cells more inclined to differentiate into glia than into neurons are
characterized by increased EGFR expression [69]. Furthermore, cell proliferation, migration and
differentiation into astrocytes are stimulated by EGFR activation in late progenitors cells which move
from the ventricular zone to the SVZ in EGFR-dependent manner [70].

Altogether these results indicate that EGF and EGFR signaling play important roles in neural stem
cells and progenitors being able to regulate both selfrenewal and differentiation.

3.2. Role of EGFR in Astrocyte Differentiation and Maturation

Astrocytes represent about 40% of all cells in the CNS and they are important to sustain neuronal
function [71]. Astrocytes are derived from radial glial cells that, after a “gliogenic switch”, generate
immature astrocytes which, in turn, migrate away from ventricular zone heading for cortical layers
where they divide few times before exiting the cell cycle [72].

It has been demonstrated that the choice between proliferation and differentiation depends
on ligand concentration and on the age of progenitor cells [70]. EGFR is important to regulate
differentiation of precursors into astrocytes since SVZ neural progenitor cells expressing low EGFR levels
differentiate into neurons or oligodendrocytes while high EGFR levels determine their differentiation
into astrocytes [70]. Indeed, EGFR can be asymmetric distributed during late stage of mitosis of
progenitor cells producing a cell daughter with high EGFR levels that is committed to becoming an
astrocyte [73]. Recently it was demonstrated, through yeast two-hybrid screening, that EGFR interacts
with necdin, a protein highly expressed by postmitotic neurons and that interacts with nuclear proteins
to suppress mitosis of proliferative cells and promote neuronal survival [74]. In primary cortical
progenitor cells it was shown that necdin interacts with EGFR in its active state and is able to inhibit
astrocytes differentiation induced by EGFR activation in vitro, bringing to light a new EGFR-dependent
mechanism underlying gliogenesis [75].

Immature astrocytes migrate from the ventricular zone and mature in the cortical layers, but this
process is still poorly understood. Recently, it was demonstrated that the EGFR effect on astrocytes’
maturation is based on a positive feedback loop. In fact, maturing astrocytes produce HB-EGF,
one of the EGFR ligands, and express its receptor so it has an autocrine function, inhibiting their
maturation [76,77]. Withdrawal of HB-EGF from immature astrocytes decreases HB-EGF expression,
similarly to what happens following EGFR inhibition, while increasing HB-EGF or enhancing EGFR
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signaling leads to further increases in HB-EGF levels and therefore promotes the immature astrocyte
state [78]. This positive feedback loop could amplify a small decrease in HB-EGF levels by further
decreasing HB-EGF production, which leads to astrocyte maturation. Consistently, a gradual decrease
of HB-EGF expression as astrocytes mature occurs [78]. Interestingly, astrocytes cultured in vitro for
more than 3 weeks become refractory to EGF and do not proliferate anymore. However, when these
astrocytes are pretreated with interleukin-6, they return to be responsive to EGF and resume the cell
cycle suggesting a synergic action between cytokines and EGF [79].

EGFR acts also on astrocytes’ morphology. To sustain neuronal function, astrocytes acquire a
particular morphology represented by cribriform structures that encircle axons. Immature astrocytes
show few processes, which are instead numerous in mature astrocytes. EGFR is also important for
the acquisition of these structures since blockade of its signaling during CNS development results in
disorganization of astrocytes that lose their processes surrounding neurons, leading to degeneration of
many axons in the optic nerve (Figure 5A,B) [80,81].
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Figure 5. EGFR regulate astrocyte morphology. (A) Mature astrocytes show cribriform structures
which surround axons sustaining neuronal functions. EGFR signaling stimulates the acquisition of
these processes. (B) EGFR blockade during CNS development inhibits the formation of astrocytes’
processes leading to neuronal degeneration.

The supporting role towards neurons played by EGFR-expressing astrocytes is also suggested
by accumulation of abnormal astrocytes in EGFR-knockout mice forebrains where massive apoptosis
of neurons occurs [82–84]. Interestingly, EGFR−/− midbrain astrocytes are unaffected while EGFR−/−

cortical astrocytes activate apoptosis in an Akt- and caspase-dependent manner, losing their capability
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to sustain neurons, as it was demonstrated in coculture experiments [85]. Interestingly, although
midbrain and cortical astrocytes express equivalent levels of EGFR and its ligands, expansion and
survival of midbrain astrocytes are not dependent on EGFR signaling, thus they could be regulated by
other signaling pathways, suggesting the existence of functionally different population of astrocytes in
the mouse midbrain and cortex [85]. This result could explain why in EGFR-/- mice, neurodegeneration
occurs in the cortex and olfactory bulbs but not in the other areas of the brain [86]. Indeed, in vivo
studies on several mouse strains, demonstrate that, in EGFR-knockout mice, degeneration of the
frontal cortex, olfactory bulbs and thalamus observed at P4 results in loss of extensive parts of the
brain at P8 and this phenotype could be explained by a reduced number of GFAP (glial fibrillary acid
protein)-positive astrocytes which are also less proliferative in vitro [86].

So, EGFR signaling could be necessary for neuronal survival in a cell-autonomous manner, since
neurons express the receptor, but it could also stimulate astrocytes to secrete neurotrophic factors
required for the survival of neurons. Consequently, the reduced number of astrocytes in EGFR−/− mice
may not support neurons efficiently, contributing to the neurodegeneration observed. The reduced
number of astrocytes could be also explained with the effect of the lack of EGFR on neural progenitors
since it was demonstrated that increased EGFR signaling correlates with a greater ability of progenitor
cells to differentiate into astrocytes [70]. But the fact that FGF2 alone is sufficient to induce stem
cells differentiation into astrocytes could explain why there is a reduction but not a complete block
of astrocyte differentiation in the absence of EGFR [87]. Altogether these data indicate that EGF and
EGFR signaling affect different steps of astrocyte differentiation and maturation, being fundamental
for the biology of these cells.

3.3. Role of EGFR in Oligodendrocyte Maturation

In the CNS oligodendrocytes are responsible for the generation of myelin sheaths that surround
axons allowing axonal survival and saltatory conduction of nerve impulses [88].

EGFR is involved in oligodendrocytes’ maturation during development. In fact, EGF treatment
stimulates differentiation of bipotential oligodendrocyte precursor cells (OPCs) into myelinating
oligodendrocytes [89]. Furthermore, EGFR overexpression increases the number of differentiated
myelinating oligodendrocytes, the expression of myelin basic protein (MBP) in the corpus callosum
and the number of myelinated axons two weeks after mouse birth, highlighting the important role of
EGFR in oligodendrogenesis and myelin production (Figure 6A) [90].

However, it is not clear at what stage of oligodendrogenesis EGF starts to carry out its functions.
Starting from mice tripotential glial-restricted precursor cells (GRPs) which give rise to OPCs,
isolated from E13.5 spinal cord and cultured, it has been demonstrated that cells belonging to
the oligodendrocytes lineage are responsive to EGF at all developmental stages [91]. EGF is able
to stimulate GRPs and OPCs proliferation and selfrenewal but this effect seems to be related to the
increased response to platelet derived growth factor-AA (PDGF-AA) promoted by EGF and not to a
direct inhibition of their differentiation [91]. In fact, EGF alone stimulates GRPs differentiation in OPCs
and finally in mature oligodendrocytes [91].

EGF-induced activation of EGFR causes increased Akt phosphorylation which is involved in
myelination during early embryonic stages [92]. SHP-2, a Src-homology 2 domain (SH2)-containing
tyrosine phosphatase, has key roles in generation, proliferation and myelination of oligodendrocytes
in vivo and it can activate Akt in OPCs in an EGFR-dependent manner [93–95]. Oligodendrocytes’
maturation induced by SHP-2 is impeded following treatment with specific Akt inhibitors, highlighting
the role of the EGFR-signaling pathway in oligodendrocytes’ maturation in the embryonic brain [95].
Another Akt partner is represented by Grb2 associated binder1 (Gab1), an intracellular signaling
mediator for many growth factor and cytokine receptors, such as EGFR, that amplifies signals
leading to a stronger activation of downstream pathways like phosphatidylinositol 3-kinase (PI3K)
pathway [96,97]. It was found that EGFR-dependent Gab1/Akt activation contributes to expansion
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of Olig2+ progenitor cells in the developing spinal cord suggesting that EGFR modulates Olig-2
expression through Gab1 and Akt and therefore regulates oligodendrogenesis [98].
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Figure 6. EGFR regulates oligodendrogenesis and neurite outgrowth. (A) EGFR overexpression
stimulates oligodendrocyte precursor cells to differentiate into myelinating oligodendrocytes,
highlighting its important role in oligodendrogenesis. (B) Axon engagement, which represents
the final step of oligodendrocytes maturation, is stimulate by EGFR inhibition. (C) Microglia in the
corpus callosum produce chitinase-3-like-3 which activates EGFR expressed by NSCs in the near SVZ.
This leads to MEK/ERK pathway activation that promotes oligodendrogenesis. (D) EGFR activates
AKT and ERK signaling pathways which are important for neurite outgrowth.

While oligodendrogenesis requires the upregulation of EGFR signaling, the final step of
oligodendrocytes maturation, that is axon engagement, is fostered by EGFR inhibition (Figure 6B).
In fact, it was demonstrated that EGFR inhibition stimulates MBP expression in premyelinating
oligodendrocytes and cotreatment with Clobetasol and Gefitinib, which inhibit EGFR, favors MBP
expression and localization of phosphatidylinositol 4,5-bisphosphate (PIP2) in endosome-like structures
leading to membrane expansion and, consequently, to axon engagement [99].

In the adult brain, NSCs present in the SVZ are able to differentiate into OPCs that migrate in the site
of injury and mature into myelinating oligodendrocytes. Under physiological conditions, the production
of OPCs which migrate into the corpus callosum to mature in myelinating oligodendrocytes is low [100].
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However, if a demyelinating insult occurs [101], NSCs start to give rise to OPCs that migrate in the
white matter and it is known that EGFR signaling is a stimulus to oligodendrogenesis [90,102].

Activation of NSCs is not cell-autonomous but depends on the SVZ microenvironment [103–105].
It was demonstrated that microglia, localized in the corpus callosum near the SVZ and the lateral
ventricle, produces chitinase 3-like-3 which functions in the CNS are still unknown. This factor binds to
EGFR expressed by NSCs and activates the MEK/ERK signaling pathway leading to oligodendrogenesis
in vitro [106] (Figure 6C). Generally, neurons represent the cell type in which SVZ precursors differentiate
more but EGF infusion in the brain causes a strong proliferation of precursors that migrate in the
parenchyma around the SVZ into the striatum, septum, corpus callosum and fimbria-fornix and then
differentiate into oligodendrocytes, while neuronal differentiation does not occur [107].

EGFR expression is reduced as cells advance along the differentiation pathway [108] and
constitutive EGFR activation in oligodendrocyte progenitors is associated with diffuse hyperplasia in
postnatal white matter [109]. Thus, EGFR seems to be downregulated in oligodendrocyte lineage in
the adult but, after a demyelinating damage, factors produced in the SVZ by microglia stimulate NSCs
to differentiate into OPCs and EGFR expression and activation in oligodendrocyte lineage stimulates
oligodendrogenesis to repair the damage, recapitulating what happens during development.

Altogether, these data demonstrate that EGF and EGFR signaling have a key role in oligodendrocyte
strongly influencing different steps of maturation.

3.4. Role of EGFR in Neurite Outgrowth

Axon elongation and dendrite branching are essential for nervous system function. They are
controlled by signals produced by neurons or other cell types. Interestingly, axonogenesis can be
influenced by EGF-stimulated astrocytes and EGFR activation creates an environment promoting
axonal growth [80]. Indeed, neurite outgrowth from retinal explants is limited following EGF treatment
and in the absence of astrocytes in vitro, while cocultures of astrocytes and neonatal retinal explants
demonstrate that neurite outgrowth is greater and faster following EGF administration [80].

EGFR is also expressed by neurons and its activation regulates neurite outgrowth. Phosphorylation,
induced by EGF or by suppressor of cytokine signaling 2 (SOCS2) overexpression, stimulates neurite
outgrowth in PC12 cells and cortical neurons [110,111]. Another mechanism leading to neurite
outgrowth involves EGFR, tissue kallikrein (TK) and flotillin-2. In fact, TK stimulation facilitates
activation of EGFR which forms a complex with flotillin-2 leading to ERK 1/2 activation and, as a
consequence, to an increase of neurites number and their mean length in SH-SY5Y cells and primary
neurons [112]. Recently, additional data corroborate the role of EGFR in neurite outgrowth. In particular,
it was found that EGFR, stimulated by EGF, is involved in dendrite branching in the early stage of
development and this is mediated by Huntingtin-interacting protein 1-related protein (HIP1R), which is
necessary to EGF-induced early endocytosis of EGFR [113]. Akt and ERK are the main signaling
pathways activated by EGFR and they are involved in neurite outgrowth (Figure 6D). Regarding Akt,
two recent works highlighted its role in promoting neurite outgrowth [114,115]. The first demonstrated
that Akt pathway activation by insulin is able to attenuate neurite outgrowth impairments induced
by arsenic [114]; the second showed that Streptozotocin can be beneficial for neuronal cells inducing
neurite outgrowth through activation of PI3K-Akt signaling pathway [115]. This is a N-nitrosourea
natural compound discovered in a strain of Streptomyces achromogenes and originally identified as an
antibiotic [116] On the other hand, it was found that the G3 domain of versican, one of the major
extracellular matrix (ECM) proteins in the brain, stimulates ERK phosphorylation, enhancing neurite
growth of hippocampal neurons [117].

Hydroxymethylglutaryl–coenzyme A (HMG-CoA) reductase is a key enzyme for cholesterol
synthesis [118] and it was demonstrated that HMG-CoA reductase inhibitor mevastatin triggers neurite
outgrowth in Neuro2a cells and this is accompanied by increased phosphorylation of EGFR, ERK 1/2
and Akt. Inhibition of this kinase cascade prevents neurite outgrowth after mevastatin treatment
indicating that EGFR activation is necessary to mevastatin-induced neurite outgrowth [119].
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Therefore, in CNS, EGFR activation stimulates downstream pathways important for neurite
outgrowth during development and in mature neurons.

4. EGFR Functions in the PNS

Although the role of the ErbB family has been better investigated in the CNS rather than in
the PNS, it has been demonstrated that these receptors are important for PNS development. In fact,
early development of Schwann cells, which are glia cells responsible for production of myelin sheath
wrapping sensory and motoneurons axons [120], is compromised by mutations in ErbB2 mouse gene.
Mutant mice exhibit a peripheral neuropathy characterized by a thinning of the myelin sheaths [121].
Another study shows that mutations in ErbB2 receptor in mice embryos lead to defasciculated motor
and sensory axons and to loss of Schwann cells in the peripheral nerves [122]. ErbB3 is also relevant
for PNS development since mice lacking this receptor show loss of Schwann cells. Nevertheless, at the
early stage of development they display normal motor and sensory neurons which, however, later on
then degenerate [123].

Therefore, there are many reports regarding the role of other members of the ErbB receptor family
in PNS development while little is known about the role of EGFR, even though it was demonstrated its
expression in Schwann cells and sensory neurons [124].

Williams and co-workers identified, in the DRG at E12.5 in mouse, a population of progenitors
of PNS expressing EGFR using in vitro clonal sphere-formation assay. During normal development,
these cells derive from the neural crest and then differentiate into Schwann cells, smooth muscles/
fibroblasts-like cells or, less often, neurons [125].

The first evidence of the importance of EGF in the development of PNS came in 2009 when it was
demonstrated that this soluble factor was able to stimulate the differentiation of embryonic neural
crest cells into neurons and melanocytes, highlighting the involvement of the EGFR signaling pathway
in PNS [126]. In vivo experiments showed that EGFR-null mice display hyperinnervation of the skin
by postnatal day 0 and nerves do not show the correct organized pattern. Furthermore, skin-targeted
EGFR mutants do not display alteration in innervation suggesting that hyperinnervation is due to a
defect in DRGs [127]. In fact, the same study demonstrated in vitro that hyperinnervation observed in
EGFR null mice is due to increased axon branching establishing a role of EGFR in limiting neurite
outgrowth and branching during PNS development [127].

EGFR also has a role in PNS physiology. The PNS comprises nerve fibers important for pain
perception [128]. Recently, it was shown that EGFR is involved in pain processing. In particular,
EGFR activation induced by epiregulin but not by other ligands stimulates nociception in mice.
Moreover, EGFR knockdown in Drosophila sensory neurons impaired thermal nociception which
is rescued by reintroduction of EGFR, demonstrating that EGFR regulates peripheral nociception
in vivo [129].

Recently, we discovered a new form of Charcot-Marie-Tooth type 2B (CMT2B) disease, a peripheral
neuropathy caused by a novel mutation (K126R) in the RAB7 gene [130]. This form of CMT2B is
characterized by a motor phenotype in contrast with the previously discovered forms caused by RAB7
mutations (L129F, N161T/I, V162M) that caused a predominantly sensory phenotype. Interestingly,
in patient cells we found impaired EGFR degradation in contrast to the previously described forms
that display normal or increased EGFR degradation [130–133]. Considering the expression pattern
previously described in the CNS, where EGFR positivity was found predominantly in the motor area
compared to the somatosensory area [46], it is tempting to speculate a differential role of EGFR in
motor neurons compared to sensory neurons in PNS, although no data are yet present. The expression
of EGFR in neurons is high at birth and then decreases during development [134,135]. So, on one
hand, the increased EGFR degradation observed in CMT2B patients could lead to an insufficient
signaling in the sensory neurons and thus to the loss of the EGFR neurotrophic effect. On the other
hand, the excessive signaling due to the inhibition of EGFR degradation observed in the presence of
RAB7K126R mutation, could be detrimental for motoneurons. Although the importance of EGFR in
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promoting neurite outgrowth is known, it was also demonstrated that EGFR activation in astrocytes
after spinal cord injury triggers astrocyte activation and this is damaging for neurons as they inhibit
axonal regeneration [81]. In the PNS this has not been demonstrated but it could be that different glia
cells could play a similar role. The potential negative effect of EGFR in motor neuron regeneration
is corroborated by the absence of nerve regeneration at nerve biopsy in our patient with RAB7K126R

mutation [130]. This suggests that EGFR expression levels must be finely regulated in the nervous
system and this is important to preserve regenerative capability of neurons. Also, the fact that in
the predominantly sensory CMT2B there is increased EGFR degradation and thus decreased EGFR
amount [131–133], while in the motor CMT2B there is inhibited EGFR degradation and consequently
increased amount of EGFR [130] suggesting that the phenotypic differences of the disease could be
related to EGFR. Further work will be necessary to clarify this issue.

5. EGFR Functions after Injury and Its Role in Regeneration

Axonal regeneration in the CNS is inhibited by several inhibitory molecules released in the CNS
microenvironment after injury. Among these, chondroitin sulphate proteoglycans (CSPGs) are released
by glia cells, myelin associated glycoprotein (MAG) by myelinating glia and oligodendrocyte myelin
glycoprotein (OMgp) by oligodendrocytes [136]. Furthermore, astrocytes become reactive producing
a glial scar following neuronal cell death induced by injury [137]. Therefore, to make regeneration
possible in the CNS, it is necessary to limit the release of these inhibitory molecules and to avoid
astrocytes activation.

Several studies indicate that EGFR inhibits regeneration in the CNS through several mechanisms.
It was demonstrated that inhibitory molecules such as CSPG and OMgp activate EGFR triggering
its rapid phosphorylation and administration of EGFR inhibitors in injured optic nerves of mice
stimulates axon regeneration, thus suggesting that EGFR activation contributes to prevent CNS
regeneration [138]. According to this negative role of EGFR towards regeneration, Liu and coworkers
showed that optic nerve injury induces EGFR activation in astrocytes which become reactive possibly
contributing to the glial scar. Intriguingly, EGFR inhibition prevents astrocytes’ activation [84].
Another work demonstrated that infusion of a EGFR inhibitor in the injured spinal cord of rats leads to
an improvement of motor, sensory and bladder functions [139]. Moreover, both EGFR inhibitors and
genetic deletion are able to promote axonal regeneration in the presence of CSPG and fibrinogen [140].
However, another study demonstrated that the effect of EGFR inhibitors on axonal regeneration is
independent from EGFR activation but it is due to off-target effects since these chemicals induce glia and
neurons to produce neurotrophins leading to Trk-dependent neurite outgrowth [141]. This apparently
controversial result could be due to the use of siRNA, which could attenuate but not eliminate EGFR
expression, so residual EGFR could still inhibit neurite outgrowth.

EGFR inhibition has a positive effect also in ameliorating astrogliosis. This process characterizes
spinal cord injury in response of which astrocytes become hypertrophic and proliferate creating an
unfavorable environment to regeneration [142]. It was demonstrated that EGFR inhibition reduces
astrogliosis and the release of proinflammatory cytokines in vitro and also CSPGs production and scar
formation in vivo, limiting demyelination and neuronal cell death [143].

Spinal cord injury is also able to activate proliferation of NSCs, which migrate from the central
canal to the site of damage [144,145]. The mechanism behind this event has to be clarified. Recently,
it was demonstrated that VEGF, released following spinal cord injury because of destruction of the
vascular system, is able to induce NSCs proliferation through EGFR-VEGFR2 signaling while spinal
injection of EGFR or VEGFR2 inhibitors prevents NSCs activation [146].

Several studies faced the role of EGFR in remyelination. Transgenic mice subjected to unilateral
lysolecithin (LPC)-induced demyelination of the corpus callosum and in which EGFR is preferentially
overexpressed in the oligodendrocytes lineage show increased number of oligodendrocytes progenitors
during the 7 days after the damage compared to wild-type mice [90]. The same work shows that mice
overexpressing EGFR display more remyelinated axons and thicker myelin layers 21 days after lesion,
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compared to wild-type mice remyelination [90]. Therefore, EGFR overexpression in oligodendrocytes
lineage after demyelinating lesion of the corpus callosum promotes OPCs’ pool expansion and axon
remyelination [90].

Different is the case of spinal cord injury. In a mouse model of spinal cord injury, it was
demonstrated that EGFR inhibition in NG2+ glial progenitors correlates with their acquisition of
neuronal phenotype and with an improvement of motor skills of injured mice [147]. Considering
that the ability of glial cells to differentiate into neuronal lineage is already known [148], these data
suggest that glial cells could be stimulated to differentiate into neurons inhibiting EGFR and this
could be important for neuronal replacement after spinal cord injury. According to these findings,
another study shows that the injection of EGFR inhibitor PD168393 in the injured mice spinal cord
increases myelination, protects oligodendrocytes and OPCs from apoptosis and reduces activation of
astrocytes, microglia and macrophages [149]. Therefore, local EGFR inhibition could be a therapeutic
approach after spinal cord injury to promote regeneration.

These apparently contradictory results could be explained considering the different EGFR
expression pattern in the CNS. In the normal optic nerve, retinal ganglion cells (RGC) axons do
not show EGFR activation while astrocytes, oligodendrocytes and microglia are strongly pEGFR
immuno-positive in vivo [150]. On the contrary, it was demonstrated a constitutive activation of EGFR
in cultured RGC indicating that this event is not physiological [80,138,150,151]. When CNS injuries
occur, EGFR is activated in astrocytes, being involved in the formation of a glia-collagen scar at the
lesion site, but not in neurons [80,81]. Indeed, after optic nerve crush, pEGFR levels increased in
astrocytes, microglia, macrophages and oligodendrocytes but not in the RGC axons [152]. So, it is
unlikely that EGFR inhibitors act directly on neurons to stimulate axonal growth but it is more likely
an effect on glia and in particular on astrocytes, limiting the release of inhibitory molecules produced
when they become reactive, following EGFR activation [84,153]. Moreover, adult rat astrocytes produce
neurotrophic factors (NTF) in vivo and in vitro if they are treated with EGFR inhibitors [150] and it
is known that NTF are important to stimulating neurite outgrowth but also to blocking inhibitory
signaling [154]. Indeed, the effect of the EGFR inhibitors on regeneration is abrogated by Trk blockade
indicating that NTF release by glia is required for axonal regeneration [152].

Furthermore, another study showed EGFR overexpression in cultured rat neurons increase neuron
protein β-tubulin and neurofilament and axon protein tau [155], while other studies showed that EGFR
inhibition stimulates axonal regeneration. The opposite results could be due to the different targeted
cell types since the former study focused on the effect of EGFR on neurons itself while in the others an
off-target effect on glia can occur. Xu and coworkers showed that EGFR overexpression in cultured rat
neurons activates mammalian target of rapamycin (mTOR) which leads to the production of factors
that contribute to axonal regeneration [155]. In adults mTOR is inactivated by phosphatase and tensin
homolog (PTEN) and an emerging hypothesis proposes that the CNS does not regenerate in adults
because of mTOR inactivation [156].

Altogether these data indicate that EGFR is a negative regulator of regeneration since EGFR
inhibition ameliorates astrogliosis, stimulates astrocytes to produce NTF and limits the release
of inhibitory molecules, having a secondary effect on neurons stimulating axonal regeneration.
On the contrary, EGFR overexpression in oligodendrocyte lineage stimulates remyelination after
demyelinating lesion in the corpus callosum suggesting that the effects of EGFR are cell-type dependent.
Considering that EGFR expression levels are high during development and then they reduce after
birth, EGFR hyperactivation in the adult seems to have negative effects as demonstrated by astrocyte
activation following injury, which inhibits neuronal regeneration.

6. EGFR in Nervous System Diseases

Since EGFR is heavily involved in signaling and in the regulation of proliferation, it has been
found mutated or overexpressed in a number of tumors and it now represents the target for several
therapeutic strategies against cancer [157]. As EGFR is also involved in the development and in the
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maintenance of the nervous system, alteration in its signaling is associated with the onset of several
neurological diseases, such as, for instance, Parkinson’s disease, Alzheimer’s disease and amyotrophic
lateral sclerosis.

6.1. Parkinson’s Disease

Patients suffering from Parkinson’s disease (PD) show motor dysfunctions with progressive
neurodegeneration involving dopaminergic neurons of the midbrain [158]. Interestingly, postmortem
brains of patients display diminished levels of both EGF and EGFR compared to control subjects [159].
The EGF reduction was confirmed in rat PD models produced through cytotoxic lesion of the substantia
nigra dopaminergic neurons, demonstrating that dopaminergic lesions reduce EGF content and limit
EGFR activation [159]. Considering the important neurotrophic functions of EGF, the progression of
the dopaminergic degeneration in PD patients could be due to reduced EGFR signaling.

Furthermore parkin, which is mutated in an autosomal recessive form of PD, normally prevents
EGFR internalization and degradation, sustaining EGFR signaling [160]. In cultured fibroblasts derived
from parkin knockout mice, used as a PD model since pathogenic parkin mutations are related to a
loss of the protein functions, EGFR internalization and degradation are higher compared to wild-type
fibroblasts [161]. Moreover, this is associated with decreased EGF-induced Akt activation while loss of
parkin has no influence on Erk phosphorylation. The reduced Akt signaling observed in parkin null
fibroblast has been confirmed in parkin null synaptosomes indicating that parkin specifically regulates
Akt signaling in synaptosomes and suggesting that the loss of parkin may lead to dopaminergic
neurons degeneration because of the inefficient Akt signaling due to increased EGFR degradation
(Figure 7A) [161]. Another gene mutated in an autosomal recessive form of PD is DJ-1 and interestingly,
it has been demonstrated that reduced levels of DJ-1 protein are associated with impaired PI3K/Akt
signaling in Drosophila and this is accompanied by increased ROS production and degeneration of
dopaminergic and photoreceptor neurons [162], strengthening the hypothesis that PI3K/Akt signaling
impairment could be a common molecular event for PD pathogenesis.

In some familial and sporadic forms of PD the gene encoding for leucine-rich repeat kinase 2
(LRRK2) was found to be mutated [163,164]. Notably, pathogenic LRRK2G2019S variant causes a delay
in EGFR degradation but also a defect in EGFR recycling [165]. LRRK2G2019S inactivates RAB8A and
this is associated with RAB7A reduced activity and with the appearance of RAB7A-positive tubular
structures in cells expressing pathogenic LRRK2 and in fibroblasts derived from patients carrying the
LRRK2G2019S mutation [166].

These results suggest that the alterations of EGFR endolysosomal trafficking and consequently
of its signaling, following loss of function of proteins important for EGFR intracellular trafficking,
could be detrimental for dopaminergic neurons and therefore relevant for the onset and progression of
Parkinson’s disease [165]. However, the EGFR diminished levels observed in postmortem brains of
PD patients could also be a secondary effect of the loss of dopaminergic neurons due to mutations
in genes identified as causative of this pathology or to environmental factors that seem to be related
to the onset of PD. Therefore, alterations in EGFR expression and signaling could only contribute
to neurodegeneration and not be the leading cause of the onset of PD although further studies are
necessary to clarify this issue. In any case, it would be important to establish if increasing EGFR levels
could be beneficial in order to revert, even partially, the pathogenic phenotype.
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Figure 7. EGFR is associated with neurodegenerative diseases. (A) Postmortem brains of patients
with Parkinson’s disease show reduced expression of EGF and EGFR. Wild-type parkin sustains EGFR
signaling while parkin’s mutations, which are associated with a recessive form of Parkinson’s disease,
lead to increased EGFR degradation. (B) Aged APP/PS1 double transgenic mice that show plaque
formation and memory loss, the hallmarks of Alzheimer’s disease, have reduced EGFR expression
that can contribute to neurodegeneration. (C) EGFR mRNA is overexpressed in the spinal cord of
amyotrophic lateral sclerosis (ALS) patients.

6.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is a multiple-factor disease characterized by progressive cognitive
impairment and represents the most common cause of dementia [167]. An early-onset familial form of
Alzheimer’s disease is due to mutations in genes encoding presenilin proteins [168]. The mechanisms
by which mutations in presenilin 1 (PS1) are responsible for the pathogenesis of AD is still unclear.
Two hypotheses have been formulated attempting to clarify this issue: the amyloid hypothesis and
the presenilin hypothesis. According to the amyloid hypothesis, the production of Aβ42 is increased
because of PS1 mutation that leads to enhanced APP processing and excessive production of Aβ42
(gain of function hypothesis) [169]. On the contrary, the presenilin hypothesis is based on the fact
that Aβ42 overproduction alone is not sufficient to initiate neurodegeneration in mice [170–172]
while neurodegeneration is produced by conditional inactivation of presenilins in adult mice brains,
increasing the Aβ42/Aβ40 ratio [173–175]. Moreover, PS1 is important for memory, learning and
neuronal survival so the latter hypothesis based on a loss of PS1 function in AD could better explain
AD pathogenesis [176,177]. Interestingly, a correlation exists between PS1 and EGFR, as PS1-null
primary cortical neurons from mice show a strong decrease of EGFR abundance and this effect is
neuron specific, indicating that neuronal EGFR is transcriptionally regulated by PS1 [178]. The same
study shows that ERK and Akt activation followed by EGF treatment is reduced in PS1-null cortical
neurons. As EGF exerts neuroprotection through Akt and Erk activation [179,180], to evaluate if PS1
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loss affects EGF-dependent neuroprotection, neuronal cultures were treated with glutamate to evaluate
excitotoxicity (toxicity due to excessive activation). Indeed, glutamate receptors are important for
neuronal functions, but their excessive activation is responsible for neuronal cell death and this occurs
also in AD [181]. EGF treatment in wild-type neurons is able to decrease glutamate-induced cell death
while in PS1-null neurons administration of EGF is ineffective to increase cell viability, indicating that
PS1 is necessary to EGF-induced neuroprotection against excitotoxicity [178]. Importantly, the ability
of EGF to activate EGFR, and therefore Akt and Erk, increasing neuroprotection from excitotoxicity
following glutamate administration, is restored by expression of exogenous EGFR in PS1-null cortical
neurons indicating that PS1 regulates EGFR expression in EGF neuroprotection [178]. PS1 has
γ-secretase dependent and independent functions [182,183] and following treatment of primary cortical
neurons with a γ-secretase inhibitor, it was demonstrated that γ-secretase does not influence neuronal
EGFR [178]. Moreover, a hallmark of this neurodegenerative disease is memory loss induced by
amyloid-β (Aβ) oligomers’ accumulation (plaques) [184], which are produced from membrane protein
APP cleaved by β and γ-secretases [185]. EGFR is present in the cerebral cortex and hippocampal
plaques of patients affected by Alzheimer’s disease [186]. A treatment for Alzheimer’s disease could be
based on the possibility to reduce Aβ-oligomers production. Aβ42-expressing Drosophila melanogaster
is a useful animal model to study Alzheimer‘s disease [187]. In these animals, the treatment with
two EGFR inhibitors, erlotinib and gefinitib, ameliorates Aβ42 induced-memory loss but it does
not rescue neuronal loss [188]. The fact that EGFR inhibitors could be helpful in the treatment of
AD seems to be in contrast with the role of this receptor in neurodegenerative disease since in PD
and in other studies regarding AD, EGFR-altered signaling could contribute to neurodegeneration.
However, another paper of the same authors shows that EGFR levels are increased in young flies
expressing human pan-Aβ42 and showing early stages of AD phenotypes while in aged flies showing
late stages of AD phenotype, EGFR levels are strongly reduced and this leads to neuronal degeneration,
corroborating the importance of the role of EGFR in sustaining neurons [189].

Moreover, it was demonstrated that APP/PS1 double transgenic mice, which show plaque
formation and Aβ-induced memory loss, recover memory following gefinitib treatment [188].
Furthermore in hippocampal tissues of mice, later, the same group demonstrated that EGFR levels
decreased with age [189] (Figure 7B). The authors also demonstrated the direct binding of Aβ-oligomers
to EGFR since Aβ42 peptides were pulled down with EGFR in COS-7 cells [188]. Even though the
demonstration of the interaction between Aβ-oligomers and EGFR is intriguing, further studies are
necessary to clarify its involvement in AD. Indeed, it must be considered that, because of the use of
non-neuronal systems, data may not reflect what really happens in the nervous system. For example,
Bruban and coworkers demonstrated that PS1-null primary cortical neurons of mice have reduced
EGFR expression while distinct immortalized mouse embryonic fibroblast cell lines show a great
variability in EGFR levels regardless of the PS1 genotype [178]. Furthermore, while memory defects
characterize early stages of AD, neurodegeneration appears in the late stages. Consistently, while in
the early stages of the disease oligomers activate EGFR inducing memory loss, in the late stages of AD
EGFR levels are reduced leading to neurodegeneration [189]. This bidirectional regulation of EGFR by
Aβ42 oligomers could be considered for therapeutic strategies against AD.

Another EGFR inhibitor, afatinib, acts inhibiting EGFR tyrosine kinase activity [190]. Recently,
it was demonstrated that this drug is able to reduce neuroinflammation and prevents activation of
cultured astrocytes [191]. Astrocytes overexpress EGFR in Alzheimer’s disease [192]. Therefore,
blocking EGFR activation in astrocytes could be beneficial for the treatment of neuroinflammation,
which characterizes CNS neurodegenerative diseases including Alzheimer’s disease although this has
still to be proved.

6.3. Amyotrophic Lateral Sclerosis (ALS)

ALS is a neurodegenerative disorder affecting motoneurons associated with a rapid progressive
paralysis, and patients’ death comes 2–5 years after diagnosis in the 80% of the cases [193]. It has been
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demonstrated that EGFR mRNA is overexpressed in the spinal cord of ALS patients (Figure 7C) [194].
For this reason, it was hypothesized that EGFR inhibition could be helpful in the treatment of this
pathology. A mouse model of ALS with the SOD1G93A mutation, treated with EGFR inhibitor erlotinib,
showed a delay in symptom progression but their lifespan was not extended and this drug does not
seem to be effective in protecting motor synapses [195]. Erlotinib’s effect not on motoneurons but on
other cell types such as glia could explain this result, but other studies are necessary to clarify this
issue. Moreover, it must be considered that EGFR mRNA is overexpressed in ALS patients but data
on EGFR protein abundance are not yet available and thus the inefficacy of the treatment with EGFR
inhibitors could be due to protein levels not reflecting mRNA levels. A possibility could be represented
by increased EGFR protein degradation which could correlate with the low EGFR signaling already
seen in AD and PD and that could lead to neurodegeneration.

7. Conclusions

In this review, we discussed the main roles of EGFR in the nervous system. Notably, EGFR is
important for neural stem cells’ pool maintenance, for astrocytes’ maturation and functions,
for oligodendrogenesis and neurite outgrowth in the CNS. In the PNS, the functions of EGFR
are less-understood at the molecular level although its importance in PNS development is clear.

Several reports indicate that EGFR inhibition ameliorates astrogliosis following injuries while it
has a protective role towards oligodendrocytes, stimulating remyelination. In fact, EGFR inhibition in
astrocytes limits the release of inhibitory molecules and stimulates the production of neurotrophic
factors, having, as a secondary effect on neurons, the simulation of axonal growth. However,
axonal growth is also stimulated in neurons directly by EGFR overexpression. Therefore, the apparently
contradictory results on the role of EGFR in axonal regeneration depend mainly on the targeted cell
type. In any case, EGFR seems to have a strong impact on axonal regeneration although its role should
be also evaluated together with other neurotrophic factors that act on the nervous system to have a
more clear scenario of the role of EGFR compared to other growth factors.

Importantly, alterations of EGFR trafficking and signaling are associated with the onset and
progression of several neurodegenerative diseases suggesting that modulation of EGFR expression or
signaling could be useful to stimulate regeneration or counteract neurodegeneration.
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