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Membrane cholesterol access into a G-protein-
coupled receptor
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Cholesterol is a key component of cell membranes with a proven modulatory role on the

function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal

structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed

that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role

of this lipid. Here we combine experimental and computational approaches to show that

cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu

using the same portal gate previously suggested for opsin ligands. We confirm the presence

of cholesterol inside the receptor by chemical modification of the A2AR interior in a bioti-

nylation assay. Overall, we show that cholesterol’s impact on A2AR-binding affinity goes

beyond pure allosteric modulation and unveils a new interaction mode between cholesterol

and the A2AR that could potentially apply to other GPCRs.
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G
-protein-coupled receptors (GPCRs) are complex signal-
ling machines that are embedded in the cell membrane.
They are able to respond to extracellular signalling

stimulus by triggering diverse intracellular pathways of high
relevance for human biology. Despite tremendous advances in
characterizing GPCR structure and activation mechanisms,
relatively little is known about the role of the membrane
environment or of specific membrane lipid composition in
receptor function.

Recent work shows that membrane phospholipids can
allosterically modulate the activity1 and oligomerization2 of
GPCRs. In addition, membrane cholesterol significantly
modulates the stability, ligand-binding properties and
function of several GPCRs (reviewed in refs 3–6). Specifically,
the presence of cholesterol in cell membranes can either
enhance7–11 (that is, positively modulate) or decrease12–15

(that is, negative modulation) ligand binding and/or functional
properties of different GPCRs (see Supplementary Table 1 for
a comprehensive summary). A well-known example of
this modulation is observed in rod outer segments for the
prototypical receptor rhodopsin, where higher cholesterol
concentrations in newly formed basal disks are used by these
cells to stabilize the structure of metarhodopsin I (MI), thus
hampering the formation of the active intermediate
metarhodopsin II (MII)16–19.

Whether this modulation is exerted through indirect
effects20,21 (that is, changes in membrane properties),
direct interactions22–25 between cholesterol and GPCRs, or
both, has for long been a matter of intense debate (see ref. 6
for a recent review on this topic). Specific cholesterol-binding
sites have been identified at the surface of different GPCRs26,
suggesting a potential allosteric role of cholesterol in modulating
GPCR function. Intriguingly, other studies postulate that
closely related cholesterol derivatives can even modulate the
function of certain class-A GPCRs from the orthosteric binding
pocket thus acting like conventional class-A GPCR ligands.
For instance, oxysterol is thought to follow this binding
mode at the Epstein–Barr virus-induced G-protein coupled
receptor 2 (GPR183)27 or the chemokine receptor CXCR2
(ref. 28). Similarly, oxysterol derivatives are known allosteric
modulators of the oncoprotein Smoothened29 (SMO), a class F
GPCR. A very recent crystal structure of SMO shows one
cholesterol molecule in the binding site of the extracellular
domain of this receptor30.

The adenosine A2AR receptor (A2AR) is a class-A GPCR that
plays a major role in the heart and brain by regulating oxygen
consumption and blood flow31. In fact, in the central nervous
system (CNS)32, the A2AR constitutes a potential therapeutic
target for the treatment of Alzheimer and Parkinson’s
disease33,34. Cholesterol binding to the A2AR at allosteric
sites has been previously demonstrated by a high-resolution
X-ray crystal structure (PDB ID 3EML)24. Computational work
has further quantified allosteric cholesterol binding to the
receptor surface35,36 and suggested a stabilizing effect on the
apo-form of the A2AR35. However, the ability of cholesterol
to impact ligand-binding properties at the A2AR remains unclear.

For this purpose, in the present study we analysed the influence
of cholesterol depletion on ligand binding and studied the
dynamics of cholesterol–A2AR interaction by extensive long-scale
molecular dynamics (MD) simulations. Our simulation
data reveals an unexpected mechanism of cholesterol action on
ligand binding consisting on the entry of a cholesterol molecule
into the receptor transmembrane bundle. Different lipophilic
ligands that bind to the orthosteric site of class A GPCRs
are suggested to access the protein from the membrane
milieu (reviewed in ref. 6). Interestingly, in recent crystal

structures of rhodopsin37,38, a molecule of a commonly
used detergent (that is, n-octyl b-D-glucopyranoside) replaced
retinal from the ligand-binding pocket. Therefore, as recently
discussed by Gimpl6, it would seem plausible that cholesterol can
access the interior of class A GPCRs like the A2AR. To validate
this mechanism of action, we used a specifically tailored
experimental approach to assess cholesterol impact on chemical
modification of the A2AR interior. Taken together, our combined
long-scale MD simulation and experimental results show
that cholesterol can compete with orthosteric ligands by
entering the receptor interior from the membrane side.

Results
Effect of cholesterol depletion on A2AR ligand binding.
To investigate the effect of membrane cholesterol on
A2AR-binding properties, we removed cholesterol from the
membrane and monitored the specific binding of the radioligand
[3H]ZM241385 (Fig. 1), a selective antagonist of this receptor.
We depleted membrane cholesterol by treating C6 glioma cells
with methyl-b-cyclodextrin (MbCD), a specific cholesterol-
sequestering agent, for time lengths between 0 and 50 min
(Fig. 1). Our data indicate that MbCD is able to deplete around
70–80% of membrane cholesterol after 30 min. To accurately
assess the level of cholesterol depletion, we carried out targeted
lipidomics in plasma membranes. Remarkably, 40 min treatment
with 5 mM MbCD according to the described protocol in the
method section depletes up to 61% of cholesterol from the
membrane (Supplementary Fig. 1). In addition, further
radioligand binding assays using the former membrane
preparations (Supplementary Fig. 2) confirm the effect we
describe in Fig. 1 and Supplementary Fig. 3 using intact cells.

To rule out any cytotoxic effect of MbCD or WSC treatment,
cell viability was determined at 20, 40 and 60 min after MbCD or
WSC treatments using the XTT method (see Methods). As shown
in Supplementary Fig. 4A, neither MbCD nor WSC treatments
affected cell viability. Here it is worth to highlight that
cells remain viable despite the depletion of more than 60% of
their membrane cholesterol using the MbCD treatment
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Figure 1 | A2AR-specific binding and cholesterol content. Time course of

5 mM MbCD addition on [3H]ZM241385-specific binding to A2AR in intact

cells and membrane cholesterol content. This experiment was carried out

using a saturating radioligand concentration of 40 nM. Mean±s.e.m. values

obtained from n¼ 3 separate experiments carried out in triplicate.

*Po0.05, **Po0.01 and ***Po0.001 significantly different from control

value (time 0, n¼ 5) according to a Student’s t-test.
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detailed in the Methods. Likewise, protein content did
not significantly change after 20, 40 and 60 min incubation
with either MbCD or WSC (Supplementary Fig. 4B). Moreover,
cells did not display any significant change in number
(Supplementary Fig. 5a), morphology (Supplementary Fig. 5b
and Supplementary Movie 1), or division processes.

Remarkably, the lack of cholesterol increases the specific
binding of [3H]ZM241385 to the A2AR by more than
100% (30 min) when compared to non-treated cells (0 min)
(Fig. 1 and Supplementary Fig. 3). Longer incubation times
with MbCD (that is, 240 min) did not result in higher levels of
A2AR specific binding (469.7±13.7 fmol per mg protein, n¼ 2),
likely due to a compensatory mechanism to maintain cholesterol
homeostasis in treated cells. Saturation binding experiments
using a wide range of radioligand concentrations confirm
this inhibitory effect (see Fig. 2). To validate the reversibility
of this effect, we replenished membranes with cholesterol
using water-soluble cholesterol (WSC) (Fig. 3).

Adequate cholesterol depletion and insertion into the
membrane was monitored in intact cells and plasma membrane
fractions by filipin fluorescence staining (Supplementary Figs 6
and 7) and targeted lipidomic analysis (Supplementary Fig. 1).
Interestingly, addition of cholesterol significantly decreases
[3H]ZM241385 binding in cell membranes either untreated
(Fig. 3, columns 1, 3 and 4) or previously depleted from
cholesterol using MbCD (Fig. 3, columns 2, 5 and 6). This clearly
suggests that cholesterol has an inhibitory effect on
[3H]ZM241385 binding to the A2AR. This effect was confirmed
in membranes from control cells by competitive binding
experiments in the presence of increasing WSC concentrations
(see Fig. 4 and Supplementary Note 1). To rule out that
the former effect is the result of a higher number of A2ARs

available due to an inhibition of receptor internalization
by MbCD, we performed new binding assays in the presence
of different inhibitors of endocytosis (see details in
Supplementary Note 2). As shown in Supplementary Fig. 8,
inhibiting endocytosis does not significantly modulate A2AR
specific binding, hence demonstrating that receptor internaliza-
tion is not involved in the cholesterol-mediated modulation
of A2AR-specific binding. While cholesteryl hemisuccinate,
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Figure 2 | Effect of MbCD on specific A2AR binding in C6 intact cells.

Control (closed circles) and 5 mM MbCD (40 min) (open circles) treated

cells were incubated with different concentrations of [3H]ZM241385 as

described in the Methods. These results are mean±s.e.m. values obtained

from six separate experiments carried out in duplicate. Kinetic parameters

(Bmax and Kd) of the corresponding saturation binding curves are indicated

at the bottom the figure. **Po0.01 significantly different from control value

according to a Student’s t-test.
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Figure 3 | A2AR-specific binding in intact cells. A2AR [3H]ZM241385

radioligand binding was determined after treatment with 5 mM methyl-b-

cyclodextrin (MbCD), and/or 1 mM water soluble cholesterol (WSC) for

40, 50 or 90 min. Bars 5 and 6 represent a sequential treatment (that is,

first MbCD is added, then a washing step, and finally WSC for 40 or

50 min). These experiments were carried out under saturating radioligand

concentration (that is, 40 nM). Mean±s.e.m. values obtained from n¼ 3

(columns 2, and 4–6), n¼4 (column 3), and n¼ 5 (column 1) separate

experiments carried out in triplicate. *Po0.05, **Po0.01 and ***Po0.001

significantly different from control value &Po0.05 and &&Po0.01

significantly different from MbCD value according to a Student’s t-test.
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Figure 4 | WSC competition binding curve in C6 plasma membranes.

Plasma membranes isolated from control cells were incubated with 20 nM

[3H]ZM241385 and different WSC concentrations (1mM to 3 mM) as

described in the Methods section. These results are mean±s.e.m. values

obtained from three different samples analysed in duplicate.
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a cholesterol derivative, enhances the stability and activity of
detergent-solubilized A2ARs39, our data clearly shows that
naturally occurring cholesterol has an inhibitory effect on
[3H]ZM241385 binding to the A2AR in more physiological
environments (that is, intact cells and cell membrane
preparations). Our findings go along with previous
experimental evidence in several class A GPCRs reporting
a negative cholesterol-mediated modulation of ligand binding
(Supplementary Table 1).

All-atom MD simulations of cholesterol interaction sites.
To shed light on the structural basis of the observed cholesterol
modulation, we carried out a complete set of atomistic
MD simulations of the A2AR (Supplementary Table 2).
As described in the Methods section, we used a comprehensive
set of lipids of different chains, nature and length to model
a native-like lipid bilayer rich in cholesterol (Supplementary
Table 3). The crystal structure of the A2AR40 was embedded in
the former membrane and the system was solvated, neutralized,
adjusted to an ionic strength of 150 mM NaþCl� and
equilibrated following standard protocols (see Methods).
First, we simulated a set of 4� 1 ms replicas to study the
frequency and stability of the interaction between cholesterol and
the A2AR. The analysis of the accumulated 4 ms shows that in
average 12 cholesterol molecules are in contact (below 2.9 Å)
with the A2AR throughout the simulation (Supplementary Fig. 9).
This value is in agreement with the number of cholesterol
molecules required for an ideal conformational stability of
the A2AR experimentally observed in cholesterol-rich micelles39.

While our simulations show several transient cholesterol–A2AR
interactions (light grey bars, Fig. 5 right), certain cholesterol
molecules establish permanent binding interactions to the
receptor over nearly 100% of the simulation time (dark grey
bars, Fig. 5 right). To spot preferred cholesterol interaction sites at
the A2AR surface, we used a 3D volumetric map to depict
the density of cholesterol molecules in the simulation (Fig. 5 left
and Supplementary Fig. 10). In agreement with Lee et al.36

our data show that transmembrane helices 2 and 3 (TM2–3),

TM3-4-5 and TM7-1 are preferred interaction areas of cholesterol
at the A2AR surface. Notably, one of the predicted interaction
sites, namely TM2–3, overlaps with one of the cholesterol
binding sites shown in the experimental high-resolution structure
of A2AR in complex with ZM241385 (ref. 24; Fig. 5 left).
However, as described in ref. 36, cholesterol does not seem
to significantly occupy the upper TM5–6 region, where another
binding site was observed in the crystal structure.

Cholesterol accesses the A2AR interior in MD simulations.
Strikingly, the volumetric analysis also shows high cholesterol
density inside the transmembrane bundle of the A2AR (Fig. 5, left)
indicating that cholesterol entered the A2AR from the membrane
milieu. A visual inspection of the individual trajectories
shows that one cholesterol molecule spontaneously accesses the
interior of the protein from the extracellular leaflet through
helices TM5–6 occupying a key area of the orthosteric binding
pocket (see replica 1 in Fig. 5 and Supplementary Movies 2
and 4). Although cholesterol has been shown to occupy deeply
buried sites in other membrane proteins41, this is the first
dynamic view of membrane cholesterol spontaneously invading
the orthosteric binding pocket of a GPCR.

To exclude simulation artefacts and better explore the
cholesterol entry pathway, we performed new simulations
and studied the tendency of cholesterol to access the A2AR.
First, we selected four representative snapshots from the original
cholesterol entrance trajectory (that is, replica 1) prior to the
complete invasion of the receptor (Fig. 6). Then, each starting
point was used to re-spawn 10 new trajectories of 100 ns each
(that is, 10� 4� 100). To quantify cholesterol progression
towards the interior of the protein, we monitored the distance
between cholesterol and residue E1.39 (Fig. 6). In most of
these short trajectories, cholesterol does not back away from
the receptor but it stays bound or progresses towards the interior
of the receptor. As shown in Fig. 6 and Supplementary Table 4,
cholesterol progression is much faster once cholesterol
slightly tilts down (Fig. 6a,b) adopting a favored position to
enter the receptor. Inclusion of intracellular loop 3 (ICL3) do not
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Figure 5 | Cholesterol volumetric maps and contact frequency. (a) Volumetric maps of cholesterol density around the aligned structure of the A2AR

(white cartoon) for replica 1 (yellow), 2 (green), 3 (red) and 4 (orange). Density maps for individual replicas 1–4 can be also seen in Supplementary Fig. 10.

Experimentally observed cholesterol molecule in the recently published high-resolution structure of Liu et al.24 (PDB:4EIY) is shown in cyan surface. Protein

is viewed from the extracellular side, helices are labelled and loops are not depicted for clarity. (b) Normalized contact frequency (%) (y axis) of cholesterol

molecules (x axis) interacting with the A2AR (that is, below 2.9 Å) during each 1 ms trajectory (replicas 1, 2, 3 and 4). Here we consider cholesterol–A2AR

binding interactions to be stable or transient when the normalized contact frequency is above (dark grey bars) or below (light grey bars) 95%, respectively.
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have a significant effect (Supplementary Fig. 11). These
data clearly suggest that cholesterol can spontaneously access
the A2AR through a portal gate between TM5 and 6.

The nature of the membrane environment could be one
of the driving forces behind the spontaneous cholesterol entrance
into the A2AR. As shown in Supplementary Movie 3, an
unsaturated phospholipid (in yellow) along with a cluster of
four cholesterol molecules seem to influence cholesterol entrance
by preventing it from diffusing back to the membrane bulk.
To study the impact of membrane composition, we substituted
the compact membrane environment used so far by a pure
1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) bilayer
(see Methods) leaving intact both the target cholesterol and
the A2AR (see Methods). Interestingly, in the absence of a more
compact and thicker membrane (Supplementary Fig. 12),
cholesterol progression towards the interior of the protein is
significantly diminished after 100 ns (see Supplementary Fig. 13
and Supplementary Table 4). Therefore, our simulations
suggest that the ability of cholesterol to access the interior of
the A2AR can be modulated by the nature of the membrane
environment.

The sequence of events during cholesterol entrance is depicted
in Fig. 7. Initially, cholesterol is interacting with other membrane
lipids (not shown) and water molecules (Fig. 7a) until it
leaves this preferred position plunging its polar head into the
hydrophobic core of the membrane (Fig. 7a,b). Next, cholesterol
descends along TM5–6 guided by the formation of a hydrogen
bond with the hydroxyl group of Y5.411 side chain (Fig. 7b).
At this point, TM5 and TM6 are tightly packed involving an

aromatic cluster of staggered residues F5.45, F4.44, H6.52 and
W6.48 (red arrows, Fig. 7b). Thereafter, cholesterol tilts 90� and
pushes aside the aromatic side chains of residues F5.45 and
F5.44 (Fig. 7c,d) attracted by water molecules and residue E169 at
the extracellular loop 2 (ECL2) (Fig. 7c). This creates a protein
gateway between TM5 and TM6 that cholesterol uses to make
its way into the A2AR to interact with E169 both directly
and indirectly through contact with water molecules (dashed red
lines in Fig. 7c). Finally, cholesterol completely enters the receptor
attracted by E1.39 at TM1 (Fig. 7d). At this stage, the polar
head engages into a hydrogen bonding network formed
by Y7.36, E1.39 and water molecules. During the entrance of
cholesterol, the communication between protein residues in
the aromatic network is partially disrupted (F5.45–F4.44 and
F4.44–H6.52, see red crosses in Fig. 7c,d), thus likely hampering
the reverse progression of cholesterol towards the membrane
bulk. However, cholesterol intercalation between helices TM5
and 6 does not involve marked protein rearrangements
(Supplementary Movies 2–4).

To better characterize the behaviour of cholesterol inside
the receptor, we extended three of the original 100 ns replicas
(namely replicas 1, 35 and 38 in Fig. 6) up to 10 ms (3� 10 ms).
Once inside the receptor, cholesterol molecules explore the
interior of the protein by establishing transient interactions
rather than adopting a stable binding pose. Interestingly, our
simulations show that cholesterol highly populates a specific area
of the A2AR binding pocket (yellow surface, Fig. 8a and
Supplementary Movie 4) that highly overlaps with the classical
orthosteric binding site and the position of the ZM241385 ligand
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bound to the A2AR crystal structure (PDB:3EML) (red sticks,
Fig. 8a). Consequently, our data indicate that, if cholesterol
reaches the interior of the protein, it will likely hamper
the binding of A2AR ligands such as ZM241385 to the orthosteric
binding site. This finding represents one plausible mechanism
behind the observed increase in [3H]ZM241385 binding
upon cholesterol depletion.

Experimental validation of cholesterol occupying A2AR.
Providing experimental evidence for a native membrane lipid
occupying the interior of a GPCR is a challenging mission.
Cholesterol has been shown to bind the A2AR surface in recent
X-ray data24. However, there is currently no structural hint or
experimental evidence pointing towards cholesterol ability
to occupy the interior of this receptor. In this study, in an
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Figure 8 | Cholesterol behaviour inside A2AR in long-scale MD simulations. (a) Average position of cholesterol in the orthosteric binding site calculated

over the accumulated 3� 10ms (yellow transparent map) superimposed onto the crystallized A2AR in complex with the ZM241385 antagonist (red sticks,

PDB:3EML). A single snapshot of cholesterol position at the end of each 10ms simulation is depicted in yellow sticks. (b) Position of C3.30 in the binding

site crevice with respect to ZM241385 and cholesterol molecules (position at 10ms of three individual MD trajectories). (c) Model of the C3.30 chemically

modified with MTSEA-B in the A2AR binding site crevice.
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attempt to provide experimental evidence supporting our
computational findings, we adapted a biochemical assay
originally used in GPCRs by Javitch et al.42 for scanning
residues exposed to the binding-site crevice in the dopamine
D2 receptor. This assay takes advantage of the fact that thiol
groups of cysteine residues facing the binding-site crevice of
a GPCR will selectively react with hydrophilic and sulfhydryl-
specific reagents such as derivatives of methanethiosulfonate
(MTS) (detailed in Supplementary Note 3). As shown by
the A2AR crystal structure (PDB: 3EML)24 (see Supplementary
Fig. 14 and Supplementary Table 5), water-accessible cysteine
residues with a free sulfhydryl group are only found in the
interior of the receptor. In our experiments, we chemically
modified by biotinylation these water-exposed cysteines
using N-biotinylaminoethyl–methanethiosulfonate (MTSEA-B),
a positively charged MTS derivative similar in size and molecular
weight to the ZM241385 ligand (see Methods). Figure 8c
illustrates that biotinylation of residue C3.30 (green sticks)
results in a modified side chain that occupies a large region of
the orthosteric binding site that overlaps with the preferred
binding site of cholesterol as well as of ZM241385 (yellow and red
sticks, respectively, Fig. 8b). As shown in Supplementary Fig. 15,
chemically modified cysteine residues C5.46 and C6.56 yield
a similar overlap with the ZM241385 ligand. Accordingly,
if cholesterol is able to invade the A2AR-binding pocket as
proposed by our simulations, cysteine biotinylation should
be hindered in cholesterol-rich membranes compared to
cholesterol-depleted membranes.

Based on this conceptual framework, we designed a new set
of radioligand binding experiments using MTSEA-B to covalently
modify cysteine residues in the A2AR interior and MbCD
to deplete membrane cholesterol (Fig. 9). Experiments are

schematically depicted in Fig. 9b. First, we used two
control experiments where we measured [3H]ZM241385 in
untreated (Bar 1) and cholesterol-depleted cells (Bar 2). These
control experiments corroborated that cholesterol depletion by
MbCD favours specific binding of [3H]ZM241385 (Bar 2) by
three fold when compared with untreated conditions (Bar 1).
Then, we assessed if cysteine residues in the A2AR interior are
susceptible to MTSEA-B biotinylation in cholesterol-depleted
conditions, where no competition between cholesterol and
[3H]ZM241385 is expected. We observe that after cholesterol
depletion, biotinylation reduces [3H]ZM241385 binding by
B40% (Bar 3) when compared with treatment with MbCD
alone (Bar 2).

This marked reduction in specific binding strongly indicates
that at least one of the cysteine residue in the A2AR interior
(Supplementary Note 3) is susceptible to biotinylation and
confirms that its chemically modified side chain occupies
the orthosteric-binding site (Fig. 9c). In the next measurement,
we tested the influence of cholesterol binding in cysteine
biotinylation (Bar 4). Remarkably, [3H]ZM241385 binding
increases by about 25% (Fig. 9, Bars 3–4) when receptors are
treated with MTSEA-B prior to cholesterol depletion. This
suggests that cholesterol has a shielding effect by protecting
cysteine residues from biotinylation inside the receptor. Thus, this
observation supports the presence of a cholesterol molecule inside
the A2AR transmembrane bundle with the ability to block access
of MTSEA-B to water-accessible cysteine residues. Finally, we
observe that if the system is biotinylated in the presence of
cholesterol and cholesterol is not removed afterwards (Bar 5),
there is an additive effect of cholesterol and biotinylation
that hampers binding of [3H]ZM241385, yielding less specific
binding than in control conditions (Bar 1).
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Cholesterol entry/exit pathways. Our data strongly suggest
that a cholesterol molecule can penetrate the A2AR from the
membrane side. In fact, membrane access of molecules to class-A
GPCRs has been reported for few other cases such as the lipid
receptor S1P1 (ref. 43), the cannabinoid CB2 receptor44 and the
opsin receptor45. Among them, retinal uptake into the opsin
receptor is probably the best-studied case where two potential
gateways for ligand uptake or release have been described45. The
larger opening (gateway 1) between helices 5 and 6 has initially
been proposed to allow for retinal loading, whereas a smaller gate
between helices 1 and 7 (gateway 2) allows for ligand exit46. In
contrast, more recent studies point to a retinal entrance/exit in
the opposite sense47,48. The complete tunnel pathway for retinal
into the binding pocket of opsin including gateways 1 and 2 can
be detected using the Caver software49 (red surface, Fig. 10a).
In comparison, Caver computation for the simulated A2AR
(150 ns) reveals three gateways 1 to 3 (yellow surface, Fig. 10b).
The last largest gateway 3 is the classical channel for ligand
entrance from the extracellular side into the receptor. The
smallest gateway 2 is directed towards helices 1 and 7 whereas
the intermediate gateway 1 is located between helices 5 and 6
(yellow surface, Fig. 10b). Remarkably, we find that gateway 1 is
flanked by two residues, namely V5.40 and F5.44, which are
conserved between the A2AR and opsin (Fig. 10a,b). Hence, our
data indicate that the opening that cholesterol uses to penetrate
into the A2AR is identical to the opening that retinal takes to
enter/exit the opsin receptor.

Unveiling the putative exit pathway of cholesterol from
the A2AR is currently beyond the reach of all-atom unbiased
simulations. If cholesterol behaved in a similar way to classical
GPCR ligands, this entry/exit pathway could occur via the
extracellular domain, as suggested elsewhere28,50. However,
due to the large hydrophobic moiety of the cholesterol

molecule, it is not likely that cholesterol abandoning the
A2AR-binding pocket via the extracellular aqueous phase is
energetically favoured. To determine the energetic cost of such
exit route, we carried out a set of biased simulations
(see Methods) where we computed the free energy profile
(PMF) of extracting cholesterol from the binding site into
the extracellular water phase. These simulations confirm that
the energetic cost of a complete cholesterol exit from its observed
binding site to the water phase is as high as 120 kJ �mol� 1

(Supplementary Fig. 16). Hence, it is more likely that cholesterol
leaves the A2AR via the transmembrane helices. In this context,
we find that TM2-TM1 or TM7-TM1 could be possible
cholesterol exit ways, as detailed in Supplementary Note 4.
Notably, TM7-TM1 exit is in line with A2AR channels that have
been computed using the Caver software (Fig. 10b) as well as
with the described gateway 2 in the crystallized structure of
opsin (Fig. 10a)47,48.

Discussion
In the present work, we have studied the effect of membrane
cholesterol on the ligand-binding properties of the A2AR.
Our in vitro experiments demonstrate that cholesterol signifi-
cantly decreases the binding of the antagonist [3H]ZM241385 to
the A2AR. Molecular insights obtained in this and other studies
point to numerous allosteric binding sites at the A2AR surface that
could potentially be involved in reducing ZM241385 binding.
However, our work reveals an additional and unexpected mode
of cholesterol action. We have observed that cholesterol
modulates orthosteric ligand binding at the A2AR after entering
from the membrane side. These results have been validated
combining both computational and specifically tailored experi-
mental approaches.
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Our study suggests that the gateway that cholesterol uses
to enter the A2AR is evolutionarily conserved and identical to
the retinal gateway present in the opsin receptor. Since molecules
of a similar size and amphipathic nature have been shown
to access the retinal-binding pocket37, it is reasonable to speculate
that the negative modulation exerted by cholesterol on rhodopsin
function16–19 could be partly mediated by the new mechanism
proposed here. Taken all together, cholesterol is likely to
modulate A2AR ligand-binding properties through a mixed
mode of action, namely both orthosteric- and allosterically.
Nevertheless, further research shall be aimed to unveil the
exact contribution of each mode of cholesterol-mediated
modulation at this or other GPCRs.

All in all, our results provide an important advance in
the understanding of the interplay between cholesterol and the
A2AR. Ultimately, our work highlights the importance of
considering the influence of different levels of membrane
cholesterol in GPCR function and stresses the importance of
accounting for these particular cholesterol effects in the study of
cardiovascular and CNS disorders. From a broader perspective,
our work opens the door to new studies on the effects
of cholesterol and other endogenous lipids in GPCRs modulation.
This knowledge paves new roads for exploring potential
therapeutic uses of membrane sterols or sterol-mimetic molecules
in GPCR drug discovery.

Methods
Cholesterol and MTSEA-B experiments. Materials—[3H]ZM241385
([2-3H](4-(2-[7-amino-2-(2-fury1) [1,2,4] triazolo [2,3-a] [1,3,5] triazin-5-ylami-
no]ethyl)phenol 27.4 Ci mmol� 1) was purchased from ARC (St Louis, MO, USA).
The reagents MbCD, WSC, MTSEA-B and Theophylline were acquired from
Sigma Aldrich (Madrid, Spain). Dynasore (3-Hydroxynaphthalene-2-carboxylic
acid (3,4-dihydroxybenzylidene)hydrazide) and Pitstop 2 (N-[5-(4-bromobenzyli-
dene)-4-oxo-4,5-dihydro-1,3-thiazol-2-yl]naphthalene-1-sulfonamide) were
from Abcam Biochemicals (Cambridge, UK). Liquid scintillation cocktails
were supplied by Perkin Elmer (Boston, MA, USA). Additional reagents were of
analytical grade.

Cell culture. C6 cells from rat glioma were obtained from the American
Type Culture Collection (ATCC). Dulbecco’s modified Eagle’s medium was
supplemented with 2 mM L-glutamine, 10% fetal calf serum, 1% nonessential
amino acids and antibiotics. Cells were maintained at 37 �C in a humidified
atmosphere of 95% air and 5% CO2 (ref. 51).

Plasma membrane isolation. Cells were homogenized on ice-cold isolation buffer
(50 mM Tris-HCl pH 7.4, 10 mM MgCl2-containing protease inhibitors) and
centrifuged at 4 �C for 5 min at 1,000g in a Beckman JA 21 centrifuge. The
supernatant was centrifuged at 4 �C for 20 min at 27,000g and the pellet was
resuspended in isolation buffer51.

Radioligand binding assays. Specific binding to A2AR was assayed in intact
C6 cells in the different conditions analysed. Intact cells grown in 24-well plates
were incubated with 40 nM [3H]ZM241385 (that is, saturating ligand concentra-
tion, based in our previous work52). Adenosine deaminase (ADA, 5 U ml� 1 ) was
used to remove endogenous adenosine. [3H]ZM241385 ranging from 1.25 to 40 nM
was utilized in saturation binding assays, where 5 mM theophylline was used to
obtain non-specific binding. After 2 h at 25 �C, cells were washed with ice-cold
culture medium, lysed with 0.2% SDS, and transferred to vials to count
radioactivity. Two wells from each plate were employed for protein content
measurement. When binding assays were performed in plasma membranes, fifty to
one hundred micrograms of protein were pre-incubated with 5 U ml� 1 ADA for
30 min at 25 �C and maintained for 2 h at 25 �C in the presence of 20 or 40 nM
[3H]ZM241385. Non-specific binding was also obtained with 5 mM theophylline,
as in previous work52. For competition binding experiments, different
(1mM–3 mM) concentrations of WSC were used to displace total binding of
20 nM [3H]ZM241385. Binding to plasma membranes was finished by rapid
filtration through Whatman GF/B filters, which were immediately washed
and counted. Radioactivity measurements in vials or filters were performed in
a Microbeta Trilux liquid scintillation counter (Wallac).

Cholesterol analysis in intact cells. Cholesterol content in intact C6 cells
was measured with a Cholesterol Quantitation kit (MAK043) from Sigma

(Madrid, Spain), following manufacturer’s instructions. Briefly, samples (106 cells)
were extracted with 200 ml of chloroform:isopropanol:IGEPAL CA-630 (7:11:0.1)
in a microhomogenizer. After centrifugation at 13,000g for 10 min to remove
insoluble material, the organic phase of samples (160 ml) was transferred to
a new tube and dried at 50 �C in a SpeedVac for 30 min to remove chloroform.
Dried lipids were then dissolved with 200 ml of the Cholesterol Assay Buffer.
Fifty microlitres of samples and standards (1–5 ng) were added to 50 ml of reaction
mixture and absorbance at 570 nm measured after 60 min incubation at 37 �C.

Filipin fluorescence staining. A cell-based Cholesterol Assay Kit from Abcam
(Cambridge, UK) was performed in intact C6 cells in order to visualize and
measure cholesterol by using Filipin III as a fluorescence probe of cholesterol.
Briefly, after removal of culture medium from wells, cells were fixed for 10 min and
washed (3� 5 min). Filipin III solution was added to each well assayed and
maintained in the dark for 45 min at room temperature. After washing of
cells (2� 5 min) fluorescence images were obtained with a digital camera
(Leica DFC350FX), attached to a Leica DMI6000B (Leica Microsystems, Wetzlar,
Germany) fluorescent microscope using � 20 HCX PL FLUOTAR objective.

Depletion and reloading of cholesterol in living C6 cells. To extract cholesterol,
the cells were incubated with 5 mM MbCD for indicated period of time at 37 �C.
Cholesterol enrichment of the cells was started using 1 mM WSC for indicated
period of time at 37 �C. Finally, chemical modification of the A2AR-binding pocket
by biotinylation was performed with N-biotinylaminoethylmethanethiosulfonate
(MTSEA-B). This compound was dissolved in DMSO, and aliquots of 100 mM
stock solution were thawed just prior to use. When needed, cells were incubated
in 500 mM MTSEA-B for 5 min at 37 �C. In all cases, treatment was performed
in serum-free medium.

Lipidomic analysis. Plasma-membrane preparations were isolated from control
(n¼ 3), 5 mM MbCD 40 min (n¼ 2) and 1 mM WSC 50 min (n¼ 2) treated cells.
Membrane samples containing deuterated cholesterol D7 as internal standard were
mixed with an equal volume (0.1 ml) of methanol and two volumes (0.2 ml) of
chloroform. After each addition tubes were vortexed for 10 s. Chloroform phase
(lower) was transferred to a glass tube after centrifugation for 15 min at 4 �C and at
1,000g. This last step was repeated twice. The chloroform phase was evaporated in a
Speed Vac (Thermo Fisher Scientific, Barcelona, Spain) and resuspended in 50 ml of
methanol:chloroform (3:1)53,54. These lipid extracts (2 ml) were analysed by mean
of mass-spectrometry using a HPLC 1290 series coupled to an ESI-Q-TOF MS/MS
6520 (Agilent Technologies, Barcelona, Spain). LC/MS analysis required an
XBridge BEH C18 shield column (100 mm� 2.1 mm ID� 1.7 mm) from Waters
(Milford, MA, USA) kept at 80 �C. Mobile phases (0.5 ml min� 1) consisted of
20 mM ammonium formate (pH 5) (A) and methanol (B). The gradient profile
was: 50–70% B in 14 min, 70–90% B in 50 min, isocratic separation of 90% B
during 15 min, 90–100% B in 5 min, and maintained so for an additional 5 min55.
This protocol allowed the orthogonal characterization of lipids based on exact mass
(o10 p.p.m.) and on retention time features. Collection of data was achieved in
both positive and negative electrospray ionization time-of-flight modes and
performed in full-scan mode at 100–3,000 m/z in an extended dynamic range
(2 GHz), using N2 (5 l min� 1, 300 �C) as nebulizer gas. The capillary voltage
was 3,500 V (1 scan per s). Data were recorded and analysed by MassHunter
Data/Qualitative analysis software (Agilent Technologies, Barcelona, Spain) to
obtain the molecular features of the samples56.

Inhibition of endocytosis in living C6 cells. To inhibit endocytosis, C6 cells were
incubated with 80mM Dynasore, a cell-permeable dynamin inhibitor, or 25 mM
Pitstop 2, for 20 or 40 min at 37 �C (see Supplementary Note 3 for more details).

Cell viability assay. Cells were seeded (104 cells per well) and grown in
96-well tissue culture plate and incubated with 0.3 mg ml� 1 XTT solution
(sodium 30-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro)
benzene sulfonic acid hydrate) for 30 min at 37 �C in control, MbCD- or
WSC-treated cells. The cleavage of XTT to form an orange formazan dye by viable
cells was monitored by reading absorbance at 475 and 690 nm according to the
manufacturer’s protocol (Cell Proliferation Kit II, Roche, Mannheim, Germany).

Protein determination. Protein concentration was measured by the Lowry
method, using bovine serum albumin as standard.

Statistical analysis. The binding data were analysed using Student’s t-test,
one-way analysis of variance and nonlinear regression fitting to saturation:

Y ¼ BmaxX Kd þXð Þ� 1 ð1Þ

or competition:

Y ¼ 100 1þ 10 LogEC50�Xð ÞHillSlopeð Þ
� �

ð2Þ
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binding curves with the GraphPad Prism 5.0 program (GraphPad Software,
San Diego, CA, USA). Differences between mean values were considered statisti-
cally significant at Po0.05.

Water-accessible cysteine residues in the A2AR. According to high-resolution
crystallography data40, water-accessible cysteine residues with free sulfhydryl
groups are only found in the interior of the receptor as all extracellular
water-accessible cysteines are engaged in disulfide bonds and therefore cannot react
with the biotinylation reagent (see detailed description in Supplementary Note 3).
Among these residues, C3.30 is the closest one to the ZMA ligand and is therefore
used as representative in this manuscript (Fig. 8c).

Classical (non-biased) MD simulations. All non-biased simulations were
performed using the ACEMD simulation package57. The CHARMM36 (ref. 58),
CHARMM36c (ref. 59) and CHARMM27 (ref. 60) force fields were used to
represent lipids, cholesterol and proteins, respectively. A list of all simulations
performed in this work is displayed in Supplementary Table 2.

Set-up. First, a multicomponent lipid bilayer of B100� 100 Å2 (in the
membrane plane) was built using the CHARMM-GUI membrane builder61. The
exact lipid composition is described below. This membrane was equilibrated for
1 ms in the NPT ensemble. Next, the crystal structure of the adenosine A2AR
(PDB:3EML)40 was manually embedded into the equilibrated membrane using
VMD1.9 (ref. 62). The intracellular loop 3 (ICL3) of the A2AR, not resolved in any
of the current GPCR crystal structures, was omitted and all titratable residues were
left in the dominant protonation state at pH 7. Next, an NPT equilibration
phase was performed to accommodate water and lipid molecules to the protein and
to promote further mixing (see below).

Initial production runs. Each of the equilibrated replicas above was simulated
for 1 ms in the NVT ensemble (simulation set 1 in Supplementary Table 2).

Short replicas. Four different snapshots of the specific trajectory where
cholesterol enters the receptor (see Results section) were manually selected (Fig. 6).
Each of these snapshots served as a starting seed for 10 new replicas (4� 10) that
were run for 100 ns in the NVT ensemble (simulation set 2 in Supplementary
Table 2). To rule out an effect of ICL3 omission, we performed a similar set of
simulations where the ICL3 was included (see simulation protocol below and
Supplementary Fig. 11). To validate the membrane effect on cholesterol entrance,
we substituted all membrane lipids by POPC. First, four new structures were
generated by removing all lipid molecules from the starting four seeds used above.
The CHARMM-GUI membrane builder61 was then used to embed each structure
into a pure POPC bilayer of B100� 100 Å2. Systems were then minimized
and equilibrated (see below). Similarly, each seed was used to simulate 100 ns of
4� 10 replicas in the NVT ensemble (simulation set 3 in Supplementary Table 2).
To rule out an effect of ICL3 omission, we performed a similar set of simulations
where the ICL3 was included (see below).

Long replicas. To study the behaviour of cholesterol inside the receptor, we
chose 3 of the 100 ns trajectories where cholesterol seemed to have an effective
progression towards the interior of the receptor (that is, replicas 1, 35 and 38 in
Fig. 6). These simulations were run for 10 ms in the NVT ensemble (simulation set
5 in Supplementary Table 2).

System composition. We aimed to create a membrane environment as
physiologically relevant as possible, by following key general tendencies observed
in specific brain post-mortem studies relevant for the adenosine A2AR receptor
(A2AR) biology63–68. The CHARMM-GUI membrane builder61 was used to
build a multicomponent membrane by using key representative lipids (that is,
polyunsaturated phospholipids, cholesterol or sphingomyelin) while keeping an
adequate balance between all components. Thus, our membrane was made of
cholesterol, saturated phospholipids, mono- and polyunsaturated phospholipids
and sphingomyelin (Supplementary Table 2). As described in the main manuscript,
one A2AR receptor was then embedded into this membrane using VMD 1.9
(ref. 62) and the system was then solvated, neutralized and the ionic strength was
adjusted using the CHARMM-GUI membrane builder61. Thereafter, a VMD script
was used to re-hydrate the membrane patch using B30 water molecules
(TIP3P model) per lipid. The exact composition of the simulation systems is
detailed in Supplementary Table 1. The lipid composition used yielded a protein-
to-lipid ratio of 1:337.

Simulation protocol. As described in the Methods section of the main
manuscript, simulation sets 1 and 2 (Supplementary Table 1) share a common
building phase, whereas the set-up of simulation sets 3 and 4 involved a complete
substitution of the membrane environment or the inclusion of the ICL3,
respectively. At the beginning of the equilibration phase for simulations sets 1
and 2 (Supplementary Table 2), harmonic positional restraints were applied to the
Ca atoms of the protein and the system was simulated for 10 ns. Such constraints
were gradually released from the receptor over 5 ns and the system was further
equilibrated for 100 ns. In simulations set 3 (that is, POPC), harmonic positional
restraints were applied to all atoms of both protein and cholesterol and the system
was equilibrated for 20 ns in the NPT ensemble. In simulation set 4 (that is, ICL3
included), after 10,000 steps of minimization, a gradual release of different applied
harmonic constraints was used during 40 ns phase in the NPT ensemble. Harmonic
restraints were first applied during 10 ns to all atoms of the system except for the
intracellular polar head region of all membrane lipids. Constraints were then

released for all water and ion atoms and the system was simulated for another
10 ns. Subsequently, the ICL3 region was released and the system (that is, only
protein and target cholesterol restrained) was further equilibrated for 20 ns.
NPT simulations were carried out at 310 K and 1 bar using the Berendsen
barostat69 with a relaxation time of 400 and 2 fs integration time step. NVT
simulations were run at 310 K, using the Langevin thermostat70 with a damping
coefficient of 5 ps� 1 and 4 fs integration time step. All along the simulations, van
der Waals and short-range electrostatic interactions were cut off at 9 Å and the
particle mesh Ewald method71 was used to compute the long-range electrostatic
interactions.

Inclusion of ICL3. The ICL3 structure was taken from PDB:3PWH and included
in the A2AR structure using MODELLERv9.10 (ref. 72) and VMD62. The system
was first minimized and the ICL3 subsequently equilibrated and relaxed for
50 ns in the NPT ensemble (see simulation protocol above).

In silico model and conformational analysis for MTSEA-B chemical modification.
In a first step, the side chain of cysteines (C3.30, C5.46 and C6.56) of the A2AR
(PDB:3EML) was chemically modified by attaching MTSEA-B using the builder tool
of the MOE package (version 2016.08). In a second step, the conformational space of
such chemical modification was explored using the LowModeMD method in the
MOE package with: Rejection Limit 100, Iteration Limit 100, RMS Gradient 0.1,
MM Iteration Limit 500, RMSD Limit 0.5, Energy Window 100, Conformation Limit
1000 and applying the Amber10:EHT force field. As a result of this search, we
obtained 98 different conformers for the chemically modified residues C3.30 and
C5.46 and 96 conformers for the chemically modified residue C6.56, as shown in
Supplementary Fig. 15.

Umbrella sampling simulations and free-energy calculations. Biased simula-
tions were used to compute the free energy of cholesterol extraction from the inside
of the A2AR. To this end, we used the simulation engine Gromacs v5 (ref. 73) in
combination with the CHARMM36 force field58. The recommended settings
including the usage of Verlet lists, PME with 1.2 nm cutoff for electrostatics and a
cutoff function for the Van de Waals at 1.2 nm with a force-switch starting at
1.0 nm were used74. The composition of the system is detailed in Supplementary
Table 3. The potential of mean force was computed along the direction
perpendicular to the membrane (that is, z axis). No bias was introduced at the xy
axis, that is, molecules could freely diffuse in the membrane plane (xy). The biased
reaction coordinate was defined as the distance along the z axis between the centre
of mass of the A2AR backbone and the oxygen atom of cholesterol. In total, 35
different windows were probed. Harmonic restraints with a force constant of
2,000 kJ �mol� 1 � nm2 were imposed along the reaction coordinate. To ensure an
adequate overlap between neighbouring windows, each window is separated by
0.1 nm along the reaction coordinate. Based on the quality of the data and the
presence of large energy barriers, each window was simulated within 200–600 ns.
The accumulated simulation exceeds 8 ms. The reaction coordinate was monitored
every 10 fs within each window. The last frame of the 200 ns simulation of the
previous window was used as the starting configuration of the next one. Although
this protocol cannot be used to simulate all windows in parallel, it drastically
improves the equilibration time for each window. The first window corresponds to
the cholesterol deeply buried in the ligand cavity. In the last windows, cholesterol
moves freely in the water solution. We used the g_wham tool distributed with
gromacs v5 (ref. 73) to compute the PMF (Supplementary Fig. 16) disregarding the
first 50 ns of each trajectory to avoid sampling potential non-equilibrium
configurations. Autocorrelation time of the data was used to minimize correlation
effects and to select the appropriated gathering frequency in the PMF curves.
Bootstrapping of 1,000 samples was used to estimate the standard deviation of the
PMF results.

Tunnel pathway calculations. Tunnel pathways were computed using the Caver
software49. The starting point coordinates were set to centre of the binding pocket
of opsin and A2AR. Computations were carried out using a shell radius 3 Å, shell
depth 4 Å, a probe radius of 1.1 Å for the opsin receptor and 1.4 Å for the A2AR.
Obtained results were plotted using the VMD software.

Data availability. The authors declare that all data necessary to support the
findings of this study are available within the paper and its Supplementary
Information Files. Additional data that were omitted from the paper are available
from the corresponding authors upon reasonable request. Crystal structure
coordinates from the Protein Data Bank (3EML, 3PWH, 4EIY) were used in
this study.
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54. Jové, M. et al. Lipidomic and metabolomic analyses reveal potential plasma
biomarkers of early atheromatous plaque formation in hamsters. Cardiovasc.
Res. 97, 642–652 (2013).

55. Sandra, K., Pereira, A. D. S., Vanhoenacker, G., David, F. & Sandra, P.
Comprehensive blood plasma lipidomics by liquid chromatography/
quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1217,
4087–4099 (2010).

56. Sana, T. R., Roark, J. C., Li, X., Waddell, K. & Fischer, S. M. Molecular formula
and METLIN personal metabolite database matching applied to the
identification of compounds generated by LC/TOF-MS. J. Biomol. Tech 19,
258–266 (2008).

57. Harvey, M. J., Giupponi, G. & De Fabritiis, G. ACEMD: accelerating
biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput.
5, 1–9 (2009).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14505 ARTICLE

NATURE COMMUNICATIONS | 8:14505 | DOI: 10.1038/ncomms14505 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


58. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field
for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843
ð2010Þ:

59. Lim, J. B., Rogaski, B. & Klauda, J. B. Update of the cholesterol force field
parameters in CHARMM. J. Phys. Chem. B 116, 203–210 (2012).

60. MacKerell, A. & Bashford, D. All-atom empirical potential for molecular
modeling and dynamics studies of proteins. J. Phys. Chem. B 5647, 3586–3616
(1998).

61. Jo, S., Lim, J. J. B., Klauda, J. J. B. & Im, W. CHARMM-GUI membrane builder
for mixed bilayers and its application to yeast membranes. Biophys. J. 96, 50–58
(2009).

62. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics.
J. Mol. Graph. 14, 33–38 (1996).

63. McNamara, R. K. et al. Selective deficits in the omega-3 fatty acid
docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with
major depressive disorder. Biol. Psychiatry 62, 17–24 (2007).

64. McNamara, R. K. et al. Abnormalities in the fatty acid composition of the
postmortem orbitofrontal cortex of schizophrenic patients: gender differences
and partial normalization with antipsychotic medications. Schizophr. Res. 91,
37–50 (2007).

65. McNamara, R. K. et al. Deficits in docosahexaenoic acid and associated
elevations in the metabolism of arachidonic acid and saturated fatty acids in the
postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry
Res. 160, 285–299 (2008).

66. Martı́n, V. et al. Lipid alterations in lipid rafts from Alzheimer’s disease human
brain cortex. J. Alzheimers Dis. 19, 489–502 (2010).

67. Fabelo, N. et al. Severe alterations in lipid composition of frontal cortex lipid
rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med. 17,
1107 (2011).

68. Taha, A. Y., Cheon, Y., Ma, K., Rapoport, S. I. & Rao, J. S. Altered fatty acid
concentrations in prefrontal cortex of schizophrenic patients. J. Psychiatr. Res.
47, 636–643 (2013).

69. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R.
Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684
(1984).

70. Grest, G. & Kremer, K. Molecular dynamics simulation for polymers in the
presence of a heat bath. Phys. Rev. A 33, 3628–3631 (1986).

71. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N � log(N) method
for Ewald sums in large systems. J. Chem. Phys. 27709, 13–16 (1993).

72. Eswar, N., Eramian, D., Webb, B., Shen, M.-Y. & Sali, A. Protein structure
modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

73. Abraham, M. J. et al. Gromacs: high performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX
1–2, 19–25 (2015).

74. Crowley, M. F., Williamson, M. J. & Walker, R. C. CHAMBER: comprehensive
support for CHARMM force fields within the AMBER software. Int. J. Quant.
Chem. 109, 3767–3772 (2009).

75. Dahl, A. C. E., Chavent, M. & Sansom, M. S. P. Bendix: intuitive helix geometry
analysis and abstraction. Bioinformatics 28, 2193–2194 (2012).

Acknowledgements
J.S. and R.G.-G. acknowledge support from Fundació La Marató de TV3 (091010),
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