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Abstract
NAD+—dependent histone deacetylases (sirtuins 1–7) have been shown to be involved in various pathophysiological condi-
tions including their involvement in cardiovascular, cancerous, neurodegenerative, immune dysregulation and inflammatory 
conditions. This study investigates the inflammomodulatory potential of resveratrol (RES), a sirtuin activator and sirtinol 
(SIR), a sirtuin inhibitor in lipopolysaccharide (LPS)-induced model of sickness behaviour in mice. Male Swiss albino mice 
were divided into five groups (n = 6) consisting of saline (SAL), LPS, RES, SIR, and fluoxetine (FLU) respectively, each 
group except LPS was prepared by intraperitoneally (i.p.) administration of SAL (10 mL/kg), RES (50 mg/kg), SIR (2 mg/kg) 
and FLU (10 mg/kg). Thirty minutes after the treatments, all the groups, except SAL were administered LPS (2 mg/kg, i.p.). 
The behavioural assays including, open field test, forced swim test, and tail suspension tests were conducted 1 h after LPS 
challenge. LPS administration significantly reduced the locomotor activity along with inducing a state of high immobility 
and that was prevented by pretreatment with RES and SIR. Further, various proinflammatory cytokines (TNF-α, IL-6, and 
IL-1β), and oxidative stress markers (MDA and GSH) were found to be significantly elevated in the brain homogenates after 
LPS treatment. SIR pretreatment abrogated the LPS-induced neuroinflammatory and oxidative stress changes, whereas RES 
was only effective in reducing the oxidative stress and TNF-α levels. The results of this study speculate that the role of SIRT 
modulators in neuroinflammatory conditions could vary with their dose, regimen and chemical properties. Further studies 
with detailed molecular and pharmacokinetic profiling will be needed to explore their therapeutic potentials.
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Introduction

Neuroinflammation is one major underlying cause of several 
CNS-related diseases (DiSabato et al. 2016). Lipopolysac-
charide (LPS), an endotoxin that acts as a Pathogen-Associ-
ated Molecular Pattern (PAMPs) and binds to the Toll-like 
Receptors (TLRs) and triggers neuroinflammatory response. 

In animal models of neuroinflammation, LPS is administered 
peripherally, and it leads to an acute sickness behaviour fol-
lowed by depressive-like state in a biphasic manner (Basu 
Mallik et al. 2016; 2021; Moraes et al. 2017). Acute sick-
ness triggered by proinflammatory cytokines (IL-1, IL-6 and 
TNF-α) in response to PAMPs, is therefore an organized 
strategy to counteract infecting pathogens (Dantzer 2009). 
Thus, a phenomenological overlap is seen between sickness 
behaviour and early stages of clinical depression due to the 
circulatory cytokines (Maes et al. 2012).

Amongst the mammalian histone deacetylases (HDACs), 
HDAC1-11 are classified as classical zinc-dependent, 
and HDAC1-7 as nicotinamide adenine dinucleotide 
 (NAD+)-dependent sirtuins (SIRT) (Lugrin et al. 2013). 
HDACs are further sub-grouped into various classes, and 
they catalyse the cleavage of acetyl groups from lysine resi-
dues (Lugrin et al. 2013). Deacetylation of histones causes 
gene repression, and modulates various non-histone proteins 
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(PPARγ, PGC-1α, p53, NF-κB, p38 MAPK, FOXO1 and 
FOXO3). It also affects various biological and pathologi-
cal processes involved in neurodegenerative, auto-immune, 
cardiovascular and oncologic conditions (Shakespear et al. 
2011; Lugrin et al. 2013; Paraíso et al. 2013; Jęśko et al. 
2017). Along with the known clinical anticancer properties, 
classical HDAC inhibitors have also been shown to possess 
anti-inflammatory and immunomodulatory activities (Shake-
spear et al. 2011; Jenke et al. 2021).

In vitro data suggests that SIRT1 activation by resveratrol 
(RES) reduces neuroinflammation by decreasing the levels 
of IL-1β, IL-6, matrix metalloprotein-9 and iNOS along with 
decreased acetylated p53 and cleaved caspase 3 (Zhang et al. 
2020). Furthermore, chronic RES treatment reversed chronic 
unpredictable mild stress (CUMS)-induced protein changes 
leading to increased expression of SIRT1, p-CREB, CREB, 
and BDNF while reduced miR-134 levels (Shen et al. 2018). 
Moreover, being a polyphenolic compound RES has been 
well documented to reduce oxidative and nitrosative stress 
markers ((Palsamy and Subramanian 2011; Jing et al. 2013; 
Gordish and Beierwaltes 2014; Park and Pezzuto 2015).

On the other hand, silencing of SIRT2 in microglia 
reduced the LPS-induced microglial activation thereby low-
ering the TNF-α and IL-6 levels (Chen et al. 2015). Simi-
larly, LPS-induced ROS generation and NF-κB activation 
was shown to be significantly reduced in SIRT2 knockout 
mice (Lee et al. 2014). Moreover, the CONVERGE con-
sortium (CONVERGE consortium 2015) has linked the 
SIRT1 gene with major depressive disorder. Further studies 
substantiate that after chronic social defeat stress, SIRT1 
expression increases. and administration of RES directly into 
the nucleus accumbens also activates SIRT1 and produces a 
phenotype with increased anxiety and depression-like behav-
iour (Kim et al. 2016).

Interestingly, both sirtinol (SIR), and RES are polyphe-
nolic in structure and can act on multiple cellular targets 
including steroid-hormone mediated pathways and xeno-
biotic metabolisms (Wang et al. 2013). The polyphenolic 
structural similarities between these two compounds could 
be responsible for an overlap in their biological activities. 
Based on this background we chose to compare the effects 
of both RES and SIR on LPS-induced psychopharmacologi-
cal parameters and brain cytokines which are involved in 
neuroinflammatory conditions.

Materials and methods

Animals

Male Swiss albino mice, (8–10 weeks old, 20–30 g) were 
used in this study and were procured from the inbred strains 
of Central Animal research Facility (CARF), Manipal 

Academy of Higher Education (MAHE), Manipal for the 
study. All the experimental procedures were approved by the 
Institutional Animal Ethics Committee (IAEC) of Manipal 
Academy of Higher Education (IAEC/KMC/25/2020 dated 
22/02/2020) and were performed in accordance with the 
guidelines set out in compliance with the National Institutes 
of Health Guide for Care and Use of Laboratory Animals 
(Publication No. 85–23, revised 1985). Animals were housed 
in groups of 6 under controlled laboratory conditions, main-
tained at 12 h day and night cycle with free access to food 
and water.

Chemicals and Reagents

Lipopolysaccharide (LPS) (Escherichia coli serotype 
O111:B4), fluoxetine hydrochloride, 2-thiobarbituric acid 
(TBA), sodium dihydrogen phosphate anhydrous, disodium 
hydrogen phosphate anhydrous and trichloroacetic acid were 
purchased from Sigma-Aldrich (Sigma-Aldrich Co. LLC (St 
Louis, MO, USA). Resveratrol and sirtinol were procured 
from Abcam (Abcam plc, Cambridge, UK). All other chemi-
cals used in this study were of analytical grade.

Drug treatments

Animals were randomised based on the body weights 
and we allocated into five groups (n = 6). Group 1 served 
as control (SAL); group 2 as LPS (SAL + LPS); group 3 
as resveratrol treatment (RES + LPS), group 4 as sirtinol 
treatment (SIR + LPS), and group 5 as fluoxetine treatment 
(FLU + LPS). All the treatments were administered by intra-
peritoneal (i.p.) route. SAL and LPS groups were adminis-
tered normal saline at a dose of 10 mL/kg. RES, SIR and 
FLU groups were treated with RES (50 mg/kg), SIR (2 mg/
kg) and FLU (10 mg/kg) respectively. All animals (except 
SAL group) received a single injection of LPS (2 mg/kg) 
30 min after the treatment. Behavioural assays were per-
formed within 1–2 h of LPS administration and were video 
recorded. Animals were euthanised at 3 h post LPS injec-
tions and brain samples were isolated and stored at -80 °C 
till further analysis. Tissue samples were homogenised using 
chilled phosphate buffer (0.1 M, pH 7.4) for antioxidant and 
cytokine level estimations.

Behavioural assays

A series of behavioural assays were performed, including 
open field test (OFT) to measure the spontaneous activity, 
forced swimming test (FST) and tail suspension test (TST), 
for the measurement of immobility state. All the assays 
followed the procedures as described earlier (Wang et al. 
2013; Basu Mallik et al. 2016; Mudgal et al. 2019). OFT 
was measured as the number of line crossings and rearing 
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in a plexiglass chamber (30 cm × 30 cm × 90 cm), where 
the chamber was divided into 9 equal virtual quadrants of 
10 cm × 10 cm. FST was assessed by calculating the total 
time spent by the animal in an immobile state over the 5 min 
of observational period in a transparent plexiglass cylindri-
cal tank (30 × 20 cm), whereas TST was recorded as the 
immobility time with the animals individually hung for a 
period of 5 min at 15 cm away from the nearest surface.

Estimation of brain cytokine and lipid peroxidation 
levels

Cytokines, namely, IL-6, TNF-α and IL-1β were estimated 
using commercially available kits (Invitrogen, California, 
USA). Lipid peroxidation (LPO) and reduced glutathione 
(GSH) were performed as detailed in earlier (Sahu et al. 
2019; Mudgal et al. 2019). Brain homogenates were incu-
bated with equal volumes of TBA at 90 °C for 10 min. 
Malondialdehyde (MDA) formed was measured spectro-
photometrically at 532 nm. Similarly, GSH was estimated 
by the absorbance of GSH and DTNB complex at 412 nM. 
Total protein estimation was carried out using Pierce™ BCA 

Protein Assay Kit (ThermoFisher Scientific, USA), as per 
the manufacturer’s instructions.

Statistical analysis

All data sets were analysed for statistical significance utilis-
ing GraphPad Prism 9.0.0 (Graph Pad Software Inc., San 
Diego, CA, USA). Values are expressed as means ± S.E.M. 
Experimental groups were compared against the control 
groups using one-way analysis of variance (ANOVA) fol-
lowed by Dunnett’s multiple comparison test. A “p” value 
of < 0.05 was considered to be statistically significant.

Results

Effect of RES and SIR on behavioural parameters

Administration of LPS produced a significant reduction in 
the locomotor activity (LMA) as assessed by the number 
of crossings (12.67 ± 3.89 vs 97.00 ± 12.53 of SAL treated 
group; Fig. 1A), and number of rearing (3.33 ± 1.02 vs 

Fig. 1  Effect of saline (SAL), resveratrol (RES; 50  mg/kg), sirtinol 
(SIR; 2  mg/kg) and fluoxetine (FLU; 10  mg/kg) on LPS-induced 
behavioural changes. Number of crossings (1A); number of rearing 

(1B); immobility time (s) (FST) (1C); immobility time (s) (TST) 
(1D). *p < 0.05 as compared to SAL group; #p < 0.05 as compared 
with LPS group
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34.33 ± 5.59 of SAL treated group; Fig. 1B). Pretreatment 
of the animals with RES, SIR and FLU (70.50 ± 12.30; 
59.33 ± 15.94 and 57.83 ± 6.83 respectively, F [4, 25] = 7.46, 
p < 0.05, Fig. 1A) significantly reduced the LPS-induced 
effect on LMA and rearing (23.67 ± 5.98; 24.50 ± 7.22; 
22.17 ± 2.75 respectively, F [4, 25] = 4.98, p < 0.05, Fig. 1B).

In FST, LPS administration led to a significantly 
increased immobile state in all the animals (214.30 ± 15.42 s, 
vs 128.00 ± 9.02 s of SAL treated group) (Fig. 1C). Interest-
ingly, all the pretreatments, including RES, SIR and FLU 
(114.30 ± 15.40; 97.67 ± 16.90; 122.00 ± 15.11 respectively, 
F [4, 25] = 9.73, p < 0.05) significantly improved this LPS-
induced increase in the immobility time.

Similarly, the immobility time in tail suspension test 
(TST) was also significantly increased by LPS treatment 
(185.70 ± 17.68  s) as compared to SAL treated group 
(106.80 ± 14.94 s) (Fig. 1D). Pretreatment of the animals 
with RES, SIR and FLU was found to produce significant 
protection against the impact of LPS on TST immobility 
time (109.70 ± 14.13 s, 94.83 ± 10.12 s and 117.50 ± 9.49 s 
respectively, F [4, 25] = 6.99, p < 0.05).

Effect of RES and SIR on oxidative stress markers

Oxidative stress markers of MDA and GSH were quanti-
fied in the brain tissue homogenates of all treatment groups. 
LPS administration caused a significant increase in lipid 
peroxidation as quantified by MDA levels (nmol/mg of 
protein) (496.70 ± 24.38 vs 175.80 ± 33.32 of SAL treated 
group; Fig. 2A), and it also led to a considerable decrease 
in total GSH levels (μmol/mg of protein) (13.27 ± 0.26 vs 
49.25 ± 1.65 of SAL treated group; Fig. 2B). Pretreatment of 
the animals with RES (102.20 ± 4.06), SIR (142.20 ± 16.34), 
and FLU (121.20 ± 11.89, F = [4, 25] = 63.07, p < 0.05, 
Fig. 2A) offered significant protection against LPS-induced 
lipid peroxidation. Similarly, the GSH levels were also 
preserved by pretreatment with RES (45.64 ± 0.62), SIR 
(47.55 ± 0.99), and FLU (44.80 ± 1.30, F [4, 25] = 194.10, 
p < 0.05, Fig. 2B).

Effect of RES and SIR on brain inflammatory markers

Acute administration of LPS significantly increased the 
levels of proinflammatory cytokines including, TNF-α 
(50.23 ± 7.60 vs 3.14 ± 0.18 pg/mg protein of SAL), IL-6 
(111.50 ± 11.47 vs 51.23 ± 2.49 pg/mg protein of SAL), 
and IL-1β (47.46 ± 4.93 vs 4.62 ± 0.23 pg/mg protein of 
SAL, Fig. 2A and 2B). Pretreatment of the animals with 
RES (15.27 ± 2.08 pg/mg protein) significantly reduced 
the TNF-α levels, however, both IL-6 (207.20 ± 14.07 pg/
mg protein) and IL-1β (47.86 ± 4.81 pg/mg protein) stayed 
significantly elevated with RES pretreatment. On the 
other hand, pretreatment with SIR and FLU significantly 

reduced TNF-α (30.34 ± 5.61 and 22.78 ± 4.35  pg/mg 
protein respectively, F [4, 20] = 18.60, p < 0.05, Fig. 2C), 
IL-6 (48.02 ± 2.02 and 27.21 ± 4.51 pg/mg protein respec-
tively, F [4, 21] = 103.8, p < 0.05, Fig.  2D), and IL-1β 
(15.26 ± 0.94 and 20.48 ± 2.99 pg/mg protein respectively, 
F [4, 20] = 46.68, p < 0.05, Fig. 2E).

Discussion

Peripheral administration of bacterial endotoxin (LPS), in 
animals leads to a biphasic response in both behavioural 
and biochemical parameters. The acute phase of “sickness 
behaviour” peaks within 3–4 h of LPS administration and 
is expressed by a group of symptoms, including anhedonia, 
slowness in initiation of movement, decreased mobility, 
exploration and grooming, hunched posture, and hyperal-
gesia (Painsipp et al. 2011; Berk et al. 2013). In our study, a 
single administration of LPS in animals led to a significant 
reduction in both horizontal and vertical activities, as indi-
cated by the significantly reduced number of line crossings 
and rearing in the open field arena. Furthermore, the immo-
bile state was considerably increased in both FST and TST. 
Both RES and SIR significantly improved the spontaneous 
locomotion in LPS treated animals, as the number of line 
crossings and rearing were significantly increased. Moreo-
ver, both pretreatments significantly reduced the immobility 
time in both FST and TST. These behavioural changes cor-
related with the neuronal pro-inflammatory cytokines (TNF-
α, IL-6 and IL-1β), and oxidative stress markers (MDA and 
GSH) changes.

LPS acts as a ligand for toll-like receptors (TLR 2 and 
4), and it causes the translocation of nuclear factor (NF-κB) 
by dissociation of inhibitory protein κB (IκB). This initiates 
a cascade of events leading to activation of immune and 
inflammatory systems, including expression of cytokines 
and chemokines, cell proliferation and migration (Yang 
et al. 1998; Kim et al. 2012; Salt and Palmer 2012; Búfalo 
et al. 2013). Intraperitoneal injection of LPS compromises 
the integrity of the blood brain barrier (BBB) by interfering 
with the physical barriers through damage to endothelial 
junctions and glycocalyx damage (Wiesinger et al. 2013; 
Varatharaj and Galea 2017). In our study, LPS produced a 
significant increase of tested brain cytokines, namely TNF-
α, IL-6 and IL-1β. These results correspond with our earlier 
studies (Mudgal et al. 2019, 2020) where we have shown that 
the levels of both TNF-α and IL-6 peak rapidly in the plasma 
and producing a neuroinflammatory state in the brain.

RES has been shown to activate SIRT1 and thereby reduc-
ing NF-κB activation by deacetylating p65 subunit (Moon 
et al. 2013; Jiao and Gong 2020). The most interesting find-
ing of our study was that at the employed doses and sched-
ule, RES reduced the oxidative stress markers and TNF-α in 
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a potent manner, however, there was no noticeable effect of 
RES on LPS-induced increase in IL-6 and IL-1β. In coher-
ence with these results, it has been shown that in LPS-acti-
vated peripheral blood leucocytes, RES produces an overall 
inhibitory effect on cytokines and chemokines production 
only during un-stimulated conditions. Where, these pro-
inflammatory mediators are secreted in low concentrations 

as compared to those produced by LPS-stimulated condi-
tions (Richard et al. 2005; Schwager et al. 2017). Further 
to this, more evidence supports that the production of IL-6 
and IL-1β is enhanced by RES in a concentration dependent 
manner (Schwager et al. 2017). Ex vivo RES treated periph-
eral blood mononuclear cells from osteoarthritis patients 
produced higher IL-6 levels in a dose-dependent manner. 

Fig. 2  Effect of saline (SAL), resveratrol (RES; 50  mg/kg), sirtinol 
(SIR; 2  mg/kg) and fluoxetine (FLU; 10  mg/kg) on LPS-induced 
changes in brain homogenates. MDA levels (nmoles/mg protein) 

(2A); GSH (µmoles/mg protein) (2B); TNF-α (pg/mg protein) (2C), 
IL-6 (pg/mg protein) (2D), and IL-1β (pg/mg protein) (2E). *p < 0.05 
as compared to SAL group; #p < 0.05 as compared with LPS group
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These results indicate that IL-6 expression might be particu-
larly controlled by SIRT1 (Wendling et al. 2013). Similarly, 
activation of SIRT1 causes elevation of IL-6 and TNF-α 
and marginally altering the immune responses in vitro, how-
ever, the impact of SIRT1 inhibition or activation on the 
function of other immune cells remains unclear (Mourits 
et al. 2021). It is noteworthy that this study involved an acute 
dosing of RES. Furthermore, IL-1β and IL-6 contribute to 
Th-lymphocyte differentiation and function, and high lev-
els of these cytokines would prime for adaptive immune 
response (Mauer et al. 2014). Therefore, chronic treatment 
with RES is essential before any conclusive statements can 
be delivered.

Another important finding of this study was that SIR, a 
nonselective SIRT inhibitor was able to ameliorate LPS-
induced upregulation of pro-inflammatory cytokines. Our 
findings are not exactly in coherence with some of the exist-
ing studies where SIRT1 inhibition is involved as a con-
tributing factor for various pathological conditions (Orec-
chia et al. 2011). We here propose that the effect of SIRT 
inhibition is dose and regimen dependent, where low and 
acute dosing of SIR reduces the neuroinflammatory impact 
of LPS administration. Interestingly, Lugrin et al. (2013) 
have shown that both SIR and its structural analogue, 
cambinol impaired the production of IL-6, and TNF-α from 
macrophages stimulated with LPS. It was suggested that 
selective SIRT1 and/or SIRT 2 inhibition alone was not 
effective in reducing the production of these pro-inflamma-
tory cytokines, and SIR could be exhibiting these proper-
ties by targeting more than just SIRT1 and SIRT2 (Lugrin 
et al. 2013). Furthermore, acute pretreatment with SIR at 
the comparable doses (2.5 and 5 mg/kg, i.p.) has shown to 
significantly reduce neutrophil elastase induced paw edema 
and LPS-induced acute lung injury (Tsai et al. 2015). SIR 
also possess anti-inflammatory properties by affecting the 
chemokine and adhesion molecule expression (Orecchia 
et al. 2011) and produces antiproliferative effects in NF-κB 
p65-independent manner (Fong et al. 2014).

We included FLU as a standard selective serotonin reup-
take inhibitor (SSRI) for this study. Apart from its clinically 
established antidepressant activity FLU has been shown to 
be effective against LPS-induced inflammation and micro-
glial activation. Moreover, it also reduces inflammatory 
markers, and oxidative stress along with improvement in 
the behavioural parameters of FST and TST (Ghosh et al. 
2020). Our results are coherent with the existing reports, as 
FLU significantly reduced the LPS-induced neuroinflamma-
tory and oxidative stress markers, along with normalising 
the behavioural changes.

This study compared the effects of both SIRT inhibitor 
(SIR) and activator (RES) is an acute neuroinflammation 
model of LPS-induced sickness behaviour. We found that 
the acute effects of SIRT inhibition were more pronounced 

in reducing the inflammation-induced sickness behaviour in 
mice. We have substantiated our findings with the existing 
literature reports. However, it is noteworthy that these SIRT 
modulators act by various pleiotropic mechanisms, and the 
effects could further be dependent on the dose, route, sched-
ule of administration and the chemical nature of molecules. 
Further investigations utilising chronic dosing regimens of 
these compounds along with their pharmacokinetic profiling 
would be required to supplement these findings. Moreover, 
additional studies utilising models of neuroinflammation 
with multiple injections of endotoxins would be more spe-
cific to understand this neuroinflammation-induced neuro-
degenerative changes.
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