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Abstract: Patellofemoral instability (PFI) encompasses symptomatic patellar instability, patella
subluxations, and frank dislocations. Previous studies have estimated the incidence of acute patellar
dislocation at 43 per 100,000 children younger than age 16 years. The medial patellofemoral ligament
(MPFL) complex is a static soft tissue constraint that stabilizes the patellofemoral joint serving as a
checkrein to prevent lateral displacement. The causes of PFI are multifactorial and not attributed
solely to anatomic features within the knee joint proper. Specific anatomic features to consider
include patella alta, increased tibial tubercle–trochlear groove distance, genu valgum, external tibial
torsion, femoral anteversion, and ligamentous laxity. The purpose of this paper is to provide a
review of the evaluation of PFI in the pediatric and adolescent patient with a specific focus on the
contributions of coronal and transverse plane deformities. Moreover, a framework will be provided
for the incorporation of bony procedures to address these issues.

Keywords: pediatric patellar instability; coronal malalignment; genu valgum; rotational malalignment;
femoral anteversion; tibial torsion

1. Introduction

Patellofemoral instability (PFI) encompasses symptomatic patellar instability, patella
subluxations, and frank dislocations. Dislocations are almost always to the lateral side of
the femoral trochlea. Patellar subluxation occurs when the patella partially dislocates but
does not fully dislocate out of the trochlear groove [1]. In order to standardize terminology,
Parikh and Lykissas provided a comprehensive 4-part classification for lateral PFI that
includes first-time dislocators (type I), recurrent patellar dislocation (type II), dislocatable
patella (type III), and dislocated patella (type IV) which have further sub-classifications for
each type [2]. Frosch and Schmeling have published a classification scheme with similar
considerations [3].

The incidence of acute patellar dislocation has been estimated at 43 per 100,000 children
younger than age 16 years [4]. In a pediatric population, greater than 60% of those with
a first-time dislocation may go on to recurrence, which is reported more commonly in
females (~70%) than males [5,6]. A history of recurrent instability (two or more episodes)
is predictive of future instability [7]. Younger children (<14 years of age) and those with
trochlear dysplasia are more likely to experience recurrent dislocations [8,9]. Hevesi et al.
developed a scoring system known as the recurrent instability of the patella score that
focuses on four factors, including age <25 years (2 points), skeletal immaturity (1 pt),
trochlear dysplasia (1 pt), and the tibial tubercle–trochlear groove to patellar length ratio
(TT–TG/PL) (1 pt). Patients were stratified into three groups of low- (0–1), intermediate-
(2–3), and high-risk (4–5) groups based on these factors. Instability-free survival was
provided at 1, 2, 5 and 10 years; for the high-risk group, this was 84.4% at 1 year, 62.5% at
2 years, 34.4% at 5 years, and 20.8% at 10 years [10].
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The medial patellofemoral ligament (MPFL) complex is a static soft tissue constraint
that stabilizes the patellofemoral joint serving as a checkrein to prevent lateral displace-
ment. Other static osseous constraints include trochlear and patellar morphology and
skeletal alignment, which should be evaluated in both the coronal (angular) and transverse
(rotational) planes with regard to PFI [11]. Specific anatomic features to consider include
patella alta, increased tibial tubercle–trochlear groove distance, genu valgum, external
tibial torsion, femoral anteversion, and ligamentous laxity [5,12,13]. The combination of
excessive femoral anteversion, patella alta, an increased Q-angle, and excessive external
tibial torsion is known as “miserable malignment” which has historically been associated
with recurrent PFI [14,15].

As highlighted above, the causes of PFI are multifactorial and not attributed solely to
anatomic features within the knee joint proper. Rarely, medial patellofemoral instability
can occur and typically associated with an iatrogenic etiology (i.e., prior lateral release).
Thus, the current manuscript will exclusively focus on lateral patellofemoral instability
when referencing PFI. The purpose of this paper is to provide a review of the evaluation
of PFI in the pediatric and adolescent patient with a specific focus on the contributions of
coronal and transverse plane deformities. Moreover, a framework will be provided for the
incorporation of bony procedures to address these issues.

1.1. Patient History

Depending on the type of PFI, the patient may describe the symptoms in many
different manners. Some may merely describe frequent falling, while many endorse fear of a
‘knee cap’ problem with no true dislocation. In the acute, traumatic patellar dislocation, the
patient may describe hearing or feeling a pop at the time of injury with observation of a knee
deformity and swelling when the patella dislocates laterally. Specific points of the patient’s
history to elicit should include the patient’s level of activity, mechanism of the event, history
of previous dislocations, total number of dislocations, how the dislocation reduced, and the
timing and severity of effusion following the event. Dislocations commonly spontaneously
reduce or reduce with extension of the knee, but a minority may require assisted reduction
with sedation. Acutely following instability events, the physician should carefully assess
the patient for mechanical symptoms which may suggest the presence of a loose body
from an osteochondral injury. An understanding of the patient’s activity level can also be
valuable at the onset as this can help guide treatment decision making.

Emphasis is also placed on obtaining a thorough family history of PFI, as well as
ligamentous laxity and associated conditions (e.g., generalized ligamentous laxity, Ehlers–
Danlos syndrome, Marfan Syndome, Down syndrome, Ellis–van Creveld syndrome, nail-
patella syndrome, Rubenstein–Taybi syndrome, Kabuki syndrome, hypotonic cerebral
palsy, and hypoplastic patella syndromes), which is critical to evaluate [1].

1.2. Physical Exam

A standard physical examination of PFI should begin with evaluating the patient’s
standing limb alignment including an assessment of genu valgum and varum. Subtle
deformity may be difficult to grossly visualize if not suspected. Significant genu valgum
deformity can be assessed during an evaluation of gait or by having the patient stand
upright. Genu valgum can be quantified by the intermalleolar distance. If significant
femoral anteversion is present, one will appreciate the “squinting/kissing patella” where
the patient’s feet are facing forward and the patella is facing towards the midline as if to
‘kiss’ the contralateral patella (Figure 1) [16]. With special attention to rotational profile,
upon gait assessment the examiner must document the patient’s foot progression angle
(mean 10◦ external; range 3◦ internal to 20◦ external) [17]. The amount of generalized
hyperlaxity may be an important consideration in evaluation of a patient with PFI. The
Beighton hypermobility score is helpful in assessing ligamentous laxity (Table 1) [18,19]. A
score of five or greater is indicative of a hypermobile condition and may warrant further
evaluation and consideration in treatment.
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the patellar tracking and determine the presence of a J-sign. The patient sits on the edge 
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to flex, the examiner releases enough support to stimulate the patient to contract the quad-
riceps. In the patient with a J-sign, the lateralized patella shifts medially just as the knee 
begins to flex. [1,20]. The J-sign can be classified as not present, mild, or severe. Several 
anatomic factors are contributory to the development of a J-sign; including rotational 
malalignment, patella alta and trochlear dysplasia. 

Next, with the patient laying in a supine position with the quadriceps relaxed, patel-
lar glide is quantified by placing a medial translation force followed by a lateral one, using 
the width of the patella divided into quadrants as reference based on percentage of the 
patella translated (25%, 50%, 75%, 100% [dislocates]); in addition to this, the patellar end-
point, whether firm or soft, is recorded. The Fairbank patellar apprehension sign is eval-
uated by placing a laterally directed force on the patella with the knee in 30° of flexion 

Figure 1. ((left) image) Clinical appearance of excessive femoral version in a girl. With the knees in
full extension and the feet aligned (pointing straight forward), the patellae face inward. ((right) image)
Another patient demonstrates significant outward tibial angulation with the patella facing forward,
indicating significant clinical genu valgum.

Table 1. Beighton hypermobility score.

Physical Exam Finding Points (1 Point for Each Side, 9 Total)

Knee hyperextension (>10 degrees) 2
Elbow hyperextension (>10 degrees) 2

Metacarpophalangeal joint extension >90◦ 2
Ability to flex thumb to forearm 2

Place palms flat on floor on forward bend 1

With the patient sitting, active knee flexion and extension are examined to evaluate the
patellar tracking and determine the presence of a J-sign. The patient sits on the edge of the
table and the knee is allowed to flex from full extension. The examiner can hold the limb
in terminal extension to allow for the quadriceps to relax in order to visualize the resting
position of the patella before the patient begins to actively flex. As the knee begins to flex,
the examiner releases enough support to stimulate the patient to contract the quadriceps.
In the patient with a J-sign, the lateralized patella shifts medially just as the knee begins to
flex. [1,20]. The J-sign can be classified as not present, mild, or severe. Several anatomic
factors are contributory to the development of a J-sign; including rotational malalignment,
patella alta and trochlear dysplasia.

Next, with the patient laying in a supine position with the quadriceps relaxed, patellar
glide is quantified by placing a medial translation force followed by a lateral one, using the
width of the patella divided into quadrants as reference based on percentage of the patella
translated (25%, 50%, 75%, 100% [dislocates]); in addition to this, the patellar endpoint,
whether firm or soft, is recorded. The Fairbank patellar apprehension sign is evaluated
by placing a laterally directed force on the patella with the knee in 30◦ of flexion and
is positive if the patient indicates discomfort or apprehension [21]. The patellar tilt is
evaluated with the knee fully extended and the quadriceps relaxed. The examiner attempts
to lift the lateral border of a tilted patella which should correct to at least neutral; if not, this
suggest tightness of the lateral structures. [22]. Historically, the Q-angle—measured with
the patient in the supine position as the angle between the ASIS and patella and patella
and tibial tubercle—has been shown to be increased in patients with PFI [23,24]. Reference
range values are dependent upon the patient’s sex as well as positioning: supine male
8–16◦, supine female 15–19◦, prone male 11–20◦ and prone female 15–23◦ [25].
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Femoral and tibial rotation are evaluated in the prone position with the hip extended
as it best simulates the patient’s hip position during gait and stabilizes the pelvis [16,26]
(Figure 2). While in this position with the knees flexed, both hip external and internal
rotation are quantified. Staheli et al. reviewed 500 lower-extremity rotational profiles and
provided reference values: hip internal rotation for males 50◦ (25–65◦) and for females
40◦ (15–60◦); hip external rotation 45◦ (25–65◦) [17].
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Figure 2. Both hip external (left) and internal (middle) rotation are assessed with the patient prone, and the knee flexed to
90◦. A vertical line is utilized for reference as demonstrated (right) for determination of the internal rotation angle.

The Craig’s test can be used to quantify the patient’s femoral anteversion by utilizing
the greater trochanter as a reference landmark. The patient is placed prone with the
knee flexed to 90, the greater trochanter is palpated and the hip rotated until the greater
trochanter is felt to be parallel to the examination table, the angle the leg makes with a
vertical orthogonal line from the table in this position is the patient’s anteversion [27,28].
The accuracy of this test has been debated when compared to imaging [29,30]. Normative
values for femoral anteversion range from 7◦ to 20◦ [31]. The thigh foot angle is an
assessment of tibial torsion. It is measured in the prone position with the knees flexed
90 degrees and is angle between the long axis of the thigh and the long axis of the ipsilateral
foot. Alternatively, the transmalleolar angle is measured with the patient supine with the
patella pointing straight up. The transmalleolar angle is the angle formed between the
transmalleolar axis (line drawn between the lateral and medial malleoli) and the plane of
the floor. The average thigh foot axis measures 10◦ external rotation (range 5◦ internal to
30◦ external) and the transmalleolar angle is 20◦ external (range 0◦ to 45◦ external) [17]
(Figure 3). Tamari et al. have acknowledged the limitations in clinical evaluation when
compared to imaging techniques [32].
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thigh–foot axis to estimate tibial torsion.
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2. Imaging

In the setting of an acute injury, preliminary radiographic evaluation should include
at least three views of the affected knee (anterior-posterior, lateral, and patellar views).
Various types of patellar views have been described, but bilateral Merchant or Laurin
(20–30◦ knee flexion) views have the most value in the evaluation of PFI [33,34]. The
utility of patellar radiographs in these lesser degrees of flexion is to visualize the patella
in the position in which it engages with the trochlear groove. For a patient presenting
with chronic complaints of instability, routine imaging in our practice includes an anterior
posterior (AP) view of the affected knee as well as a true lateral view with the knee flexed
at 30◦ (to allow for assessment of trochlear dysplasia and patellar height), a merchant view
(with the quadriceps muscle relaxed to allow for assessment of passive patellofemoral
alignment), and an AP bilateral lower-extremity standing alignment film with the patella
forward when coronal malalignment is suspected or in a skeletally immature patient.

Patella height can be measured using the Caton–Dechamps index—measured on a
lateral knee radiograph as the distance from the inferior aspect of the patellar articular
surface to the anterior aspect of the tibial plateau divided by the length of the patellar artic-
ular surface—which has been shown to be a more reliable method for skeletally immature
patients [35,36]. The lateral radiograph is used to qualify the patient’s trochlear dysplasia
utilizing the Dejour classification [37]. This classification is composed of 4 categories de-
scribing the increased severity of trochlear dysplasia (Table 2). A recent study questioned
the reproducibility of the Dejour classification and offered that a revised MRI classification
may be more reliable [38]. The MRI Dejour classification utilizes axial MRI imaging to eval-
uate trochlear dysplasia and retains the original classification groups (A-shallow trochlea
>145◦, B-flat trochlea, C-lateral convexity medial hypoplasia, and D-cliff).

Table 2. Lateral imaging findings characteristic of the Dejour classification.

Dejour Type Lateral Radiograph Findings Significance

Type A Crossing sign Shallow trochlea; trochlear groove lies in same
plane as anterior border of lateral condyle

Type B Crossing sign,
supratrochlear spur

Flat/convex trochlea; spurring about proximal
aspect of trochlea

Type C Crossing sign, double contour

Trochlear facet asymmetry (convex lateral
facet, hypoplastic medial facet); anterior
border of lateral condyle lies anterior to

anterior border of medial condyle

Type D Crossing sign, double contour,
supratrochlear spur

All 3 findings present with characteristic “cliff”
pattern (lateral trochlear vertical sloping)

The presence of open physes and the patient’s estimated growth remaining based
on bone age are important factors when considering medial patellofemoral ligament
reconstruction or guided growth to correct limb malalignment. In order to make this
determination, a left AP hand film can be utilized to determine a bone age [39]. Traditionally,
coronal plane alignment has been evaluated with an orthoroentgenogram (3-foot standing
AP lower-extremity alignment radiograph) or a teleoroentgenogram (a single-exposure
weightbearing study) versus obtaining three separate standing AP images that were then
stitched together. More recently, these modalities have been supplanted by using low-dose
radiation biplanar fluoroscopy in order to minimize radiation exposure (EOS Imaging,
Paris) [40]. Another advantage of biplanar fluoroscopy is the ability to measure absolute
leg lengths as there is no magnification error, though it is important to note that patient
movement during the capture may create measurement inaccuracies.

Using the standing radiograph, the mechanical axis of the lower extremity is deter-
mined by drawing a line from the center of the femoral head to the center of the tibio-talus
mortise. The knee is divided into zones based upon the distal femur as follows: intercondy-
lar is neutral, a line bisecting the condyle denotes zone 1 and 2, and zone 3 is defined as
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falling outside the margin of the femoral epicondyle, indicating increasing genu valgum
and negative values worsening genu varum (Figure 4). The mechanical axis deviation is
another measurement to quantify coronal plane alignment and is the distance between
the center of the knee (intercondylar femoral notch) and the patient’s mechanical axis
line [41,42]. Additional measurement considerations are the mechanical lateral distal
femoral (mLDFA) and mechanical medial proximal tibial (mMPTA) angles, which reference
the mechanical axis of each bone segment. The mLDFA is the lateral angle formed by the
line from the center of the femoral head to the femoral notch and the tangential line of
the femoral condyles. The mMPTA is the medial angle formed by the tangential line of
the tibial plateau and the long axis of the tibia. These angles are measured in order to
determine whether the distal femur, proximal tibia, or a combination thereof is contributing
to the patient’s coronal plane deformity. The standard values mLDFA and mMPTA are
both 87◦ (85–90◦) [41–43]. It is critical that the standing film is performed with the knees in
full extension and the patella forward, as knee flexion or rotation for any reason will result
in inaccurate measurements [44].
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Figure 4. (A) AP standing alignment films demonstrates the patient’s mechanical axis is lateral to the center of the knee
indicating genu valgum. (B) The knee is divided into zones based upon the distal femur as follows: intercondylar is
neutral, a line bisecting the condyle denotes zone 1 and 2, and zone 3 is defined as falling outside the margin of the femoral
epicondyle, indicating increasing genu valgum and negative values worsening genu varum (C).

Routine use of magnetic resonance imaging (MRI) is surgeon or institution dependent.
An MRI of the knee without contrast may be indicated for an isolated traumatic patellar
dislocation with a large effusion to evaluate for an osteochondral or chondral injury,
recurrent PFI with mechanical symptoms, or to aide with treatment recommendation. The
MRI can also provide a rotational assessment including femoral version or tibial torsion as
described below and should be considered when obtaining an MRI of the knee.

CT has become an increasingly popular technique for assessing rotational profile given
its reliability and reproducibility. It should be noted, however, measurements are technique
dependent and increased radiation exposure is a consideration especially in the pediatric
population [40,45–49]. Kaiser et al. compared several techniques of measuring femoral
and tibial torsion (Waidelich, Murphy, Yohshioka, Hernandez, and Jarrett techniques).
They demonstrated comparable mean values to previously published values for each
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technique but showed that a measurement by the Hernandez technique could represent
a pathologic torsion value while being within anatomic reference when utilizing the
Waidelich technique [50–52]. A subsequent study by Schmarazner et al. used CT scan to
compare five measurement techniques which evaluated the location of the femoral neck
axis in a proximal to distal fashion and found the most pronounced difference between
the Lee (most proximal) and the Murphy (most distal) techniques; all techniques had
excellent agreement for intraobserver (ICC, 0.905–0.973) and interobserver reliability (ICC
0.938–0.969) [53]. Thus, it is paramount to familiarize with the technique at one’s institution
and the respective reference values for that specific technique. Consistency within an
institution or a practice is paramount as these techniques do have variation especially in
patients with significant dysplasia.

At our institution, we utilize the Jarrett method for CT scans given the accuracy of
this technique as well as its anatomic basis. An axial oblique image is necessary for this
technique. A line is drawn on a single axial oblique image that runs from the center of the
femoral head through the center of the femoral neck (Figure 5) [54]. The angle is measured
with a tangential line through the distal femoral condyles.
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Figure 5. The Jarrett methods for measuring femoral version is demonstrated in the CT scan. As compared to other methods,
the Jarrett method uses the axial oblique down the femoral neck to measure the proximal aspect of the femur. (A) Axial
oblique as defined by the images in the bottom right corner to measure the angle perpendicular to the patient lying flat on
the table with the line created down the femoral neck. This value is then added to angle measured in (B) in which the angle
created by the femoral condyles is measured.

Alternatively, Rosskopf et al. demonstrated that low-dose biplanar radiographs are
reliable when compared to CT, and subsequently MRI, when obtaining a lower-extremity
rotational profile [55,56]. Limb-alignment MRI protocols have been developed which have
decreased exam time requirements, though the relative cost of an MRI remains a significant
consideration in the US healthcare system [46,57]. Sung et al. developed and validated
a mobile application that can reliably measure femoral anteversion from AP and lateral
femur radiographs [58]. In an MRI study comparing a population of patients with recurrent
patellar dislocations and controls, Maine et al. quantified the rotational alignment of the
extensor mechanism, known as the quadriceps torsion angle (QTA). This measurement was
shown to be reliable and reproducible and in the setting of increased femoral anteversion
was an additive risk factor for recurrent patellar dislocation [59].

Tibial torsion is defined as the physiologic rotation of the tibia from the proximal to
the distal articular axis of the tibia in the transverse plane and historical attempts have
been made to measure this angle using both radiographic and later CT imaging [49,60]. An
earlier method proposed by Jend et al. used a CT scan and measured the posterior tibial
condylar axis just above the fibular head proximally and the tibial pilon angle just above the
talocrural space distally. This is the method that is utilized at our institution (Figure 6) [61].
A recent study by Liodakis et al. evaluated the Ulm, Jend and bimalleolar methods for tibial
torsion and all three methods demonstrated excellent ICC scores (Ulm 0.918, Jend 0.916,



J. Clin. Med. 2021, 10, 3035 8 of 19

bimalleolar axis 0.92). Notably, on average both the Ulm and Jend methods underestimated
the bimalleolar axis measurements by 4.8◦ and 13◦, whereas the Jend overestimated the Ulm
by 8◦ [62]. Again, as discussed previously, these findings lend support to institution-wide
standardization given the variability among measurement techniques.
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A lateralized patellar tendon insertion has been implicated as a risk factor for lateral
PFI and has been quantified by measuring the distance between the midline insertion of
the patellar tendon onto tibial tubercle and the center of the trochlear groove measured
on the superior-most axial cut exhibiting full cartilage coverage of the posterior femoral
condyles (Figure 7) [63,64]. Bernhold et al. found that the TT–TG could be measured in 82%
of their radiographic patellofemoral view study cohort and that this measured 5–8 mm
smaller than MRI TT–TG. Studies have noted consistently smaller TT–TG values by MRI
(approximately 4 mm) compared with CT [65–68]. Dickens et al. determined the mean
value for TT–TG in a pediatric population using 3-T MRI to be 8.6 mm in the control group
and 12.2 mm for the comparison group with PFI [69].

Seitlinger et al. proposed an alternative method for quantifying a lateralized patellar
tendon insertion utilizing the tibial tubercle-posterior cruciate ligament distance, which is
measured from the midpoint of the insertion of the patellar tendon to the medial border of
the posterior cruciate ligament (Figure 8) [70]. The distal tibial condylar line (dTCL) is a
tangential line of the proximal tibia that is distal to the articular surface and proximal to the
fibular head. The proposed advantages of this measurement is it overcomes the difficulty
in measuring the deepest point of a dysplastic trochlea, does not vary as a function of knee
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flexion, and isolates the location of dysplasia. In contrast, the more commonly utilized
TT–TG does not provide specificity regarding the relative contributions of tibial tubercle
lateralization, medialization of the trochlear groove, and/or soft tissue malrotation through
the knee joint.
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Figure 8. TT-PCL measurement quantifies the distance from the midpoint of the insertion of the patellar tendon to the
medial border of the posterior cruciate ligament (A). The distal tibial condylar line (dTCL) is a tangential line of the proximal
tibia that is distal to the articular surface and proximal to the fibular head that provides a linear reference line to measure
the distance between perpendicular lines of the references points listed above. A sagittal figure (B) is used to demonstrate
the location of the axial plane in which the medial aspect of the PCL should be used for this measurement.

More recently, increased tibial tubercle torsion has been highlighted as a risk factor
for PFI. This rotational angle is measured from the posterior femoral condyles to the
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center of the tibial tubercle in a craniocaudal axis. Tibial tubercle torsion was significantly
increased in the patient group with PFI (17.9◦ +/− 7.0◦) when compared to a control group
(5.8◦ +/− 3.6◦) and correlated with the TT–TG measurement (r = 0.87) [71].

3. Treatment

Recognition and treatment of PFI have undergone considerable evolution in recent
years, with more than 100 different surgical techniques reported in the literature [72–76].
In patients with a first-time dislocation without significant risk factors for recurrence and
no osteochondral fracture, non-operative management is recommended [9]. In our prac-
tice, this consists of a short period of brace immobilization in full extension (3 weeks)
and physical therapy as early mobilization (<3 weeks) has shown to increase the repeat
dislocation rate three-fold [77]. Following early immobilization, physical therapy with
a lateral buttress brace is used. Several recent surgical algorithms have been developed
which generally focus on the patient’s skeletal maturity, TT–TG, trochlear dysplasia, coro-
nal and rotational malalignment, and the presence of chondral lesions [78–81]. Medial
patellofemoral ligament reconstruction has become the preferred method to address PFI
and has demonstrated excellent results [82–88]. However, when coronal or transverse
plane malalignment is present, consideration for correction of malalignment should be
considered prior to MPFL reconstruction.

3.1. Coronal Plane Malalignment

Once coronal plane malalignment has been identified, several treatment options are
available. Two primary factors for determining the appropriate corrective procedure in-
clude growth remaining determined by bone age and the deformity location. In patients
with open physes, growth modulation is a treatment option with a relatively low morbidity
and low complication rates for addressing PFI in patients with genu valgum [89]. Tension
band plates about the physis are one treatment option. An important consideration is me-
dial plates may necessitate staged treatment to avoid plate/graft impingement; while screw
hemiepiphysiodesis may merit further study as an option that may be employed concurrent
with MPFL [90,91]. No matter the technique, patient should be cautioned with the concepts
of overcorrection and rebound which had been reported in both techniques. [92,93].

In skeletally mature patients, both opening and closing wedge osteotomies about
the distal femur are reliable treatment options for coronal plane malalignment. In a
retrospective cohort study of 18 patients (20 knees) with genu valgum and PFI, Frings
et al. demonstrated that the utilization of a closing wedge distal femoral osteotomy in
combination with MPFL reconstruction and tibial tubercle osteotomy (TTO) eliminated
recurrence of re-dislocation with median follow up of 16 (12–64) months [94]. In a skeletally
mature adolescent population with PFI and genu valgum (≥zone II) mechanical axis,
Wilson et al. demonstrated that 80% of patients had no further episodes of instability
following an isolated open wedge distal femoral osteotomy with mean correction of 10.4◦

(7◦ to 12◦) at mean follow up of 4.25 years (range 3.2 to 6) [95]. Thus, when faced with
PFI with genu valgum, coronal plane correction can add benefit even without a soft tissue
procedure. For Zone II values or mLDFA <83 degrees, we recommend guided growth with
transphyseal screw placement if skeletally immature with >9 months of estimate growth
or a distal femoral open wedge varus producing osteotomy in the mature patient (see
Figure 9). Addressing coronal plane malalignment has more benefit than just preventing
recurrence of PFI as a central mechanical axis about the knee is optimal for long term joint
preservation. Thus, when faced with genu valgum and PFI, we address genu valgum as the
first stage of treatment for PFI without an MPFL. A staged MPFL is often times considered
based on patient symptoms, athletic activity, and risk factors (Figures 9–11).
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Figure 10. Case example of growth modulation. A 14-year-old male with right patellar instability
who underwent bilateral guided growth (hemiepiphyseodesis) for genu valgum using a plate and
screw construct over the medial distal femoral epiphysis. (A) A standing alignment radiographic
preoperatively with Grade III bilateral genu valgum. (B) A 6 month postoperative standing alignment
demonstrating correction of coronal plane malalignment.
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Figure 11. Case example of distal femoral osteotomy. A 16-year-old female with left genu valgum
and recurrent patellar instability. (A) Preoperative standing alignment radiographs with asymmetric
left valgus. (B) Postoperative images following a varus producing distal femoral osteotomy.

3.2. Transverse Plane Malalignment

Transverse plane deformities have been recognized by previous studies as a potential
driver of PFI and anterior knee pain with historical interest in femoral torsion as a potential
driver of developmental dysplasia and osteoarthritis of the hip [15,16,96–102]. There are
several methods for correcting excessive femoral anteversion with good clinical results and
patient satisfaction, though it is important to be aware of the advantages and disadvantages
of each method and its appropriate application to individual patient pathology [103].
Osteotomies can be placed about the intertrochanteric, subtrochanteric, diaphyseal, or
distal metaphyseal regions and fixed with a plate, an intramedullary nail, external fixator,
or a combination thereof [43,104,105]. The literature has described corrective osteotomy in
patients with radiographic femoral anteversion >20◦ to 25◦ [106–109]

The effect of transverse plane correction on other planes is an important considera-
tion [110,111]. Using computer modeling from CT data of a femur, Nelitz et al. demon-
strated that proximal femoral osteotomies created varus alignment and distal osteotomies
created valgus alignment [112]. In a cadaveric model, Kaiser et al. demonstrated that
femoral derotational osteotomy has a significant impact on patellar tilt and axial plane
engagement with a modest change in the TT–TG distance [113]. Several studies have
evaluated the use of 3D-printed cutting guides both in cadaveric specimens and in vivo
with promising results which may serve to provide precise and reproducible osteotomy cor-
rection in multiple planes with less radiation exposure to patients [114–119]. Our preferred
technique is a midshaft femoral derotational osteotomy over an antegrade intramedullary
nail. Though historical literature has reported the occurrence of fat embolism syndrome
in the pediatric patient and deformity correction, in our practice, by utilizing the previ-
ously reported technique of femoral venting prior to reaming, we have not experienced
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this complication (see Figure 12) [120–127]. Another advantage of this intramedullary
technique is that the reamings serve as bone graft at the osteotomy site. In the setting
of a 1 cm incision over the osteotomy site and a low-energy transverse corticotomy, the
limited disruption of the soft tissue envelope minimizes periosteal disruption. Thus, it is
expected that the non-union rate would be exceedingly low in a healthy adolescent patient
with a load sharing device and the added benefit of early weight bearing. However, Teitge
has reported complications in the adult population with intramedullary nailing which
ranging from iatrogenic fracture, increased postoperative pain and blood loss, delayed
union and death from fat embolism, and as such, has transitioned to using a proximal
femoral osteotomy stabilized by a 95-degree condylar blade plate [120].
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Figure 12. Authors’ preferred treatment algorithm for transverse plane malalignment with PFI. * The authors recommend
the consideration of a medial patellofemoral ligament reconstruction for these cases.

Krengel and Staheli reported the results of 52 tibial rotational osteotomies (39 prox-
imal, 13 distal tibia) and reported five (13%) serious complications with proximal tibial
osteotomies including compartment syndrome, peroneal nerve palsy and deep infection
while there were no significant complications in the distal osteotomy group [128]. Del-
gado et al. reported the results of 13 rotational osteotomies for femoral anteversion, tibial
torsion, or both that all healed without complication with clinical and radiographic im-
provement [129]. In a study using various correction techniques in a patient population
with miserable malignment syndrome, Bruce and Stephens did not find a significant differ-
ence in results with regard to the level at which the tibial osteotomy was performed. The
authors also mention that a concomitant fibular osteotomy was not performed unless tibial
rotational correction was greater than 35◦ [15]. As peroneal nerve palsy and compartment
syndrome are known complications of proximal tibial osteotomies, some authors have
recommended prophylactic peroneal nerve decompression and anterior compartment
fasciotomy. Some authors advocate a prophylactic peroneal nerve decompression when
acute correction greater than 5◦ of varus or valgus or greater than 45◦ of rotational correc-
tion is performed [44,130–133]. However, in the authors’ experience, this is not usually
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considered until there is greater than 10◦ of coronal plane correction and there is certain
discretion given to the location of the osteotomy. In a study of tibial torsion in an adult
population, Turner demonstrated a correlation of PFI in patients with increased external
tibial torsion [134] Staheli indicated surgical intervention for patients older than 8 years of
age with tibial torsion greater than 30◦ [135].

The author’s preferred technique is the utilization of distal tibia and fibula osteotomy
with gradual correction using a circular external fixator with surgeon discretion with regard
to implementing acute correction at the time of surgery. Intraoperative neuromonitoring is
used at our institution which we have found allows for safe acute intraoperative correction.
Additional benefits of gradual correction include early weight bearing, no residual implants
and the ability for shared decision making with the patient and family to determine final
rotational alignment. Although the authors consider rotational malalignment when treating
recurrent patellofemoral instability, a medial patellofemoral ligament reconstruction is
often times first-line treatment even with significant rotational malalignment. Rotational
osteotomies are considered in combination with a MPFL reconstruction in a revision PFI
with severe deformity (femoral version >40 degrees, tibial external torsion >35 degrees,
severe J-sign/lateral tracking, and/or high-grade trochlear dysplasia) (Figure 12).

4. Conclusions

The importance of limb alignment and rotational profile considerations in the treat-
ment of PFI cannot be overstated. Eckhoff wisely surmised, “The static and dynamic rela-
tionships of the underlying tibia and femur determine the patellar tracking pattern.” [98].
Thus, a comprehensive clinical evaluation and appropriate consistent imaging modalities
are indicated to appropriately identify and address a patient’s underlying pathology. Sev-
eral options exist for correction and stabilization of coronal and transverse plane deformi-
ties, and it is essential that the surgeon be familiar with the advantages and disadvantages
of each technique. In doing so, they may employ the optimal technique for patient’s unique
deformity in order to maximize the patient’s outcome.
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