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Abstract: In this study, the mucilage polysaccharide (MP) from Amanita hemibapha subspecies
javanica was prepared by hot water extraction and ethanol precipitation and then fractionated
using anion-exchange chromatography equipped with a DEAE Sepharose fast flow column. The
most immune-enhancing polysaccharide fraction 2 (MPF2) was subjected to a structural modification
such as hydrolysis or over-sulphation. The sulphate and molecular weight (Mw) of over-sulphated
(OS1-3) and hydrolysed (HS1-3) derivatives of MPF2 differed between 9.85% and 14.2% and 32.8 and
88.1 × 103 g/mol, respectively. Further, the immune-enhancing properties of MPF2 and its deriva-
tives were tested on RAW264.7 and NK cells through various in vitro assays. Interestingly, a low
molecular weight of HS1-3 significantly increased the nitric oxide (NO) production (p < 0.05) more
than MPF2, indicating that Mw is a major factor in RAW264.7 cell stimulation. In addition, RAW264.7
cells produced various cytokines by up-regulating mRNA expression levels and the activation of
nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. On the
other hand, OS1-3-treated natural killer (NK) cells induced cytotoxicity in HepG2 cells through the
expression of IFN-γ, Grandzyme-B, perforin, NKp30, and FasL. These results demonstrated that
sulphate derivatives play an important role in NK cell activation. Further, this study also explores
how polysaccharide binds to RAW264.7 and NK cells. MPF2 and HS3 may activate RAW264.7 cells
via binding to TLR4 receptors, and OS2 could be activated through the CR3 signalling pathways.

Keywords: mucilage polysaccharide; mushroom; Amanita hemibapha subspecies javanica (Corner and
Bas); immunomodulatory; sulphation; hydrolysis

1. Introduction

Amanita hemibapha subspecies javanica (Corner and Bas), an edible wild mushroom, is
naturally found in northern and north-eastern Thailand. It belongs to the genus Amanita
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in the subspecies of Amanita hemibapha. Being one of the most popular wild mushrooms,
native Thai people traditionally consume it. Generally, edible mushrooms are an excellent
source of nutritional protein, carbohydrates, fat, vitamins, fibre, and minerals, and have
been termed “food of the gods” [1–4]. It has a distinct flavour and a special sense of
taste, making it a very popular food. It is widely consumed as a food in many countries
such as Japan, China, and South Korea due to its nutritional value and medicinal use.
It contains extraordinary medicinal benefits including the prevention of heart diseases
and different types of cancers, the improvement of blood circulation and lowering of
blood cholesterol level, anti-ageing properties, immunomodulatory functions, and im-
provement of renal function [5–9]. Several linear/branched glucans and heteroglycans
isolated from edible mushrooms demonstrated antimicrobial, hypotensive, antifungal,
anti-inflammatory, antiviral, antibacterial, hepatoprotective, anti-diabetic, hypolipidemic,
anticancer, immunological, antithrombotics, and antioxidant properties [7,10–22].

Macrophages are commonly employed to assess the immunomodulatory effects of
bioactive substances because they serve critical roles in immunosurveillance against malig-
nant cells and pathogens, as well as antigen presentation [23–25]. Aside from pathogenicity
and infections, macrophages may detect several natural molecules, such as proteins, gly-
cosides, and polysaccharides, as stimuli to induce immunological responses through the
secretion of several cytokines, such as interleukin 1 beta (IL-1β), tumour necrosis factor
alpha (TNF-α), nitric oxide (NO), and chemokines [26]. After macrophages are stimu-
lated by pathogens and microorganisms, they induce nitric oxide synthase (iNOS) to
produce NO in terms of pathogen killing [27,28]. For example, macrophages are treated
with fungal polysaccharides from a variety of sources, including Amauroderma rude [29],
Russula griseocarnosa [30], Schizophyllum commune [31], Dictyophora indusiate [25], and others,
to determine their immunomodulatory activity. In the human body, natural killer (NK)
cells are important immune cells derived from myeloid lymphoid stem cells. NK cells are
large granule lymphocytes and serve as the first line to protect the immune system. They
act as an imperative connection between innate and adaptive immunity and play an impor-
tant role in anti-inflammatory responses, tumour surveillance and autoimmune disorder
regulation [32]. They contain antitumour, antiviral, and anti-inflammatory properties and
the ability to detect and destroy targeting cells. Simultaneously, NK cells can secrete a
variety of cytokines and chemokines to regulate the function of other immune cells [33,34].
Additionally, they influence the magnitude and direction of the adaptive immune response
against tumours. Thus, the key roles of NK cells are cytotoxicity and the ability to produce
different cytokines [35].

Early research demonstrated that the physiological function and biological activities
of a polysaccharide depend upon its molecular weight (Mw), structure, and functional
groups [36]. These included the sugar unit, glycosidic bond to the main chain, and type
of polymerization degree of branching [37]. Additionally, the increase in bioactivities is
proportionate to the degree of sulphation [38]. An over-sulphated glucan possesses higher
inhibitory activity against H-22 tumour cells [39]. Moreover, sulphated polysaccharides
with different degrees of substitution are involved in antitumor proliferation [40]. The
over-sulphation of polysaccharides was found to be more effective antioxidant agents as
they improved the superoxide free radical scavenging activity more than native polysac-
charides [41]. It showed that the sulphated polysaccharides could promote the production
of cytokines and the release of NO, therefore significantly increasing the splenic lympho-
cyte activation [42]. A recent investigation uncovered that the Mw of polysaccharides
directly relates to its immune activity. Researchers found that glucuronoxylo-rhamnans
with low molecular weight from 17.3 × 103 to 33.3 × 103 g/mol, indicated the most po-
tent immunostimulant activities [43]. Polysaccharides with an Mw of 38.5 × 103 g/mol
are potent, natural, innate immunomodulators with a broad spectrum of bioactivities
and immunosuppressive properties, exposing the relationship between its Mw and im-
munomodulatory activities [44]. Consequently, a polysaccharide’s biological activities and
pharmacological activities are linked intimately to its molecular structures [45]. However,
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the bioactivities need to be improved because some natural or crude polysaccharides
exhibited low bioactivity.

Our prior study examined how the mucilage polysaccharide fraction 2 (MPF2) isolated
from Amanita hemibapha subspecies javanica significantly activated RAW264.7 cells to release
NO and different cytokines, as well as being strong immunostimulant agents [46]. In this
present study, we evaluated the effector activity of MPF2 polysaccharides, and further
investigated molecular structure and the immunomodulatory relationships. The immune-
enhancing activity using RAW264.7 cells and NK cells was performed after the sulphate
contents and molecular weight modification.

2. Materials and Methods
2.1. Reagents and Chemicals

The media and other materials required for culturing cells were purchased from Lonza
Inc. (Walkersville, MD, USA). Griess reagent and lipopolysaccharide (LPS: E. coli, serotype
O111:B4; L2630) were purchased from Sigma–Aldrich (St. Louis, MO, USA). The WST-1
assay kit was obtained from Daeillab Service Co., Korea. Anti-Toll-like receptor 2 antibody
(anti-TLR2), anti-complement receptor 3 antibody (anti-CR3), and anti-Toll-like receptor 4
antibody (anti-TLR4), were obtained from Abcam (Cambridge, MA, USA). Phospho-NF-κB
antibody, phospho-p38 (MAPK) antibody, phospho-ERK (MAPK) antibody, and phospho-
JNK antibody were purchased from Cell Signalling Technology (Danvers, MA, USA). All
chemicals and reagents used in this work were of analytical grade.

2.2. Cell Lines

Macrophage RAW264.7 cells, natural killer cells (NK-92 cells), and hepatocellular
carcinoma cell lines (HepG2) were obtained from the American Type of Culture Collection
(ATCC, Rockville, MD, USA).

2.3. Extraction and Fractionation of Polysaccharide

The extraction and fractionation of A. hemibapha polysaccharide were carried out
using the methods described in our previous study [46]. The dried powder sample of
A. hemibapha’s fruiting body was extracted twice with distilled water at 60 ◦C for 1 h.
The crude polysaccharide was recovered by precipitation with 99% (v/v) ethanol and
then subjected to filtration. The crude sample was fractionated using an ion-exchange
chromatography equipped with a DEAE Sepharose fast flow column (17-0709-01; GE
Healthcare Bio-Science AB, Uppsala, Sweden). The chromatography yielded two fractions
(MPF1 and MPF2), while the most immunostimulant fraction (MPF2) was selected to study
the structure–bioactivity relationships (Figure 1).

2.4. Preparation of MPF2 Derivatives

The derivatives from MPF2 that comprised three different levels of average molecular
weight and sulphates were prepared under the different experimental conditions. The
over-sulphated derivatives were prepared by treating MPF2 with a mixture of dimethylfor-
mamide and a sulphur trioxide-trimethylamine complex. The reaction was carried out at
80 ◦C for 2, 4, and 6 h and then cooled down. Afterwards, the reaction was mixed with a
saturated solution of sodium acetate in ethanol and poured into cold ethanol. The mixture
was then centrifuged, and the collected sulphated polysaccharides were re-dissolved in
distilled water, dialyzed, and lyophilized. The degree of substitution (DS) was calculated
from the sulphur content based on Schöniger’s formula [47].

DS =
1.62× S%

32− (1.02× S%)
(1)

The functional groups were identified by FT-IR spectral analysis using a Tensor 27
spectrophotometer (Bruker, Karlsruhe, Germany).
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Figure 1. Extraction of polysaccharide (MP) and MPF2 modification process.

Next, the hydrolysis derivatives were prepared by mixing the sample with 0.07 M HCl,
and the reaction was set to react for 5, 10, and 15 min to obtain three different molecular
weights. Once the reaction mixture was cooled, the sample was neutralized using 0.07 M
NaOH, dialyzed using a cellulose membrane (molecular weight cut off 3,500 Da), and
then lyophilized.

2.5. Analytical Methods

The sulphate content of polysaccharides was estimated by the BaCl2 gelatine method [48],
respectively. The average Mw of the polysaccharides was calculated using a high-performance
size exclusion chromatography column coupled to UV, multi-angle laser light scatter-
ing, and refractive index detection (HPSEC-UV-MALLS-RI) according to the method of
Cao et al. [49].

2.6. Macrophage Proliferation and Nitric Oxide Production Assay

In this study, cells proliferation was accessed by WST-1 calorimetric assay. RAW264.7
cells were plated in the 96-well microplates at a cell density of 1 × 106 cells/well in a
volume of 100 µL. After, the cells were treated with 100 µL of sample solution for 24 h.
Over the incubation period, 100 µL of WST-1 solution was introduced into the well and
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extended the incubation for an additional hour. The absorbance was measured at 450 nm
using a microplate reader (EL-800; BioTek Instruments, Winooski, VT, USA).

Cell proli f eration (%) =
Absorbance o f the experimental group

Absorbance o f the control group
(2)

Similarly, the level of NO production was measured using the Griess reaction [50].
The release of NO content in the RAW264.7 cell culture media was calculated using the
standard curve obtained with NaNO2 (1–200 µM in culture medium).

2.7. NK Cell Activity Assay

Likewise, the NK cell proliferation was examined by WST-1 colorimetric assay. The
cells were incubated with MPF2 and its derivatives (200 µg/mL) for 24 h at 37 ◦C. After,
the cells were treated with 110 µL of 10% WST-1 solution and then read the absorbance
at 450 nm. In the cytotoxicity assay, HepG2 cells were used as the target cells. The
stimulated NK cells (7.5 × 105 cells/well) were allowed to co-culture with HepG2 cells at
an effector/target ratio of 30:1. This experiment was conducted in triplicate. The plate was
incubated at 37 ◦C in a 5% CO2 atmosphere for 4 h. The cytotoxic activity was assessed by
WST-1 assay. The percentage of cytotoxicity was calculated using the following formula:

Cytotoxicity (%) =

(
1− Abst

Absc

)
× 100 (3)

Where Abst represents the average OD450 of NK cells test, Absc represents the average
OD450 of NK cells control.

2.8. Gene Expression by RT-PCR

RAW264.7 and NK cells were seeded in a 24-well plate at a density of 1× 106 cells/well
and incubated with samples. After 24 h, the total RNA from the cells was extracted using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The concentration of RNA was measured
with a spectrophotometer before constructing cDNA with an oligo-(dT) 20 primer and
Superscript III RT (Invitrogen). The resulting cDNA was amplified by PCR using GoTaq
Flexi DNA Polymerase (Promega, Madison, WI, USA). The PCR product gels were viewed
under UV transillumination. The nucleotide sequences of the primers are shown in Table 1.

2.9. Western Blot Analysis

Western blotting was performed according to standard procedure. RAW264.7 cells
were seeded at 1 × 106 cells/well in a 6-well plate, and then treated with LPS or samples
for 6 h. The RAW264.7 cells were lysed in RIPA buffer (Tech, and Innovation, Chuncheon,
Gangwon, South Korea) containing Inhibitor Cocktail (HaltTM protease, and phosphatase).
Cell lysates were separated through 10% SDS-PAGE and transferred onto PVDF membranes.
The membranes were subsequently blocked in 5% (w/v) non-fat skimmed milk (prepared in
Tris-buffered saline containing Tween-20, TBST) at room temperature for 1 h and incubated
with primary antibodies including tubulin (1:1000), anti-phospho-NF-κB (1:1000), anti-
phospho-ERK (1:1000), anti-phospho-p38, and anti-phospho-JNK (1:1000) at 4 ◦C overnight.
The membranes were washed with TBST and incubated with HRP-conjugated anti-rabbit
antibody for 1 h at room temperature. Protein was detected using the Pierce®ECL Plus
Western Blotting Substrate (Thermo Scientific, Waltham, MA, USA) in accordance with
the manufacturer’s instructions (Table S1). The bands were visualized using Image Lab
software under a ChemiDocTM imaging system.
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Table 1. The sequences of primers used for RT-PCR.

Primer Sequences (5′→3′)

iNOS
Forward CTGCAGCACTTGGATCAGGAACCTG
Reverse GGGAGTAGC CTGTGTGCACCTGGAA

IL-1β
Forward ATGGCAACTATTCCAGAACTCAACT
Reverse CAGGACAGGTATAGATTCTTTCCTTT

TNF-α
Forward AGGTTCTGTCCCTTTCACTCACTG
Reverse AGAAGACCTGGGAGTCAAGGTA

IL-6
Forward TTCCTCTCTGCAAGAGACT
Reverse TGTATCTCTCTGAAGGACT

IL-10
Forward TACCTGGTAGAAGTGATGCC
Reverse CATCATGTATGCTTCTATGC

β-actin
Forward ATGTGCAAAAAGCTGGCTTTG
Reverse ATTTGTGGTGGATGATGGAGG

IFN-γ
Forward GATGCTCTTCGACCTCGAAACAGCAT
Reverse ATGAAATATACAAGTTATAATCTTGGCTTT

Granzyme-B Forward AGATCGAAAGTGCGAATCTGA
Reverse TTCGTCCATAGGAGACAATGC

Perforin
Forward AGTCCTCCACCTCGTTGTCCGTGA
Reverse AAAGTCAGCTCCACTGAAGCTGTG

NKp30 Forward TCTATTACCAGGGCAAATGTGAAGT
Reverse GTCACTGGGGTCTAGAATCACTCAT

FasL
Forward CCAGAGAGAGCTCAGATACGTTGAC
Reverse ATGTTTCAGCTCTTCCACCTACAGA

β-actin Forward CATCTCTTGCTCGAAGTCCA
Reverse ATCATGTTTGAGACCTTCAACA

2.10. Cell Binding Receptor

The mechanism for the NK and RAW264.7 cells activation process was investigated
by blocking cell surface receptors, such as TLR2, TLR4, and CR3. The cells were pre-
incubated with or without the presence of antibodies such as anti-TLR2, anti-TLR4, anti-
CR3 (25 µg/mL) for 2 h separately before the polysaccharide treatment. The experiment
was performed the same as the level of NO from the RAW264.7 cells, and cytotoxicity assay
from NK cells described prior.

2.11. Statistical Analysis

The statistical analysis was performed using SAS software (SAS Institute, Cary, NC,
USA). All the experiments were performed in triplicate (n = 3) and data were recorded
as the mean value with standard deviation (SD). Statistical differences were tested using
one-way analysis of variance (ANOVA). Further, multiple comparisons used the LSD test
to evaluate the significant difference between groups. Statistical significance was defined
as p < 0.05.

3. Results and Discussion
3.1. Preparation of MPF2 Derivatives

The crude polysaccharide was extracted from A. hemibapha and subsequently frac-
tionated by ion-exchange chromatography, which yielded two fractions, MPF1 and MPF2,
containing different ionic strengths. Between the two fractions, MPF2 showed higher NO
production and cytokine-releasing capacity in RAW264.7 cells, implying that it has potent
immunostimulant properties. MPF2 mainly consisted of carbohydrates (83.5%), along
with considerable amounts of protein (7.2%) and sulphate (9.3%). The monosaccharide
compositions of MPF2 were glucose (98.4%), galactose (0.2%), mannose (0.3%), arabinose
(0.3%), and rhamnose (0.8%) [46]. Glycosidic linkage analysis showed that MPF2 was
mainly composed of a backbone of α-D-(1→6)-glucopyranoside.

Tables 2 and 3 show the proximate composition of MPF2 as being a combination of
over-sulphated polysaccharide (OS1-3) and hydrolysed polysaccharide (HS1-3). As shown
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in Table 2, the sulphate content was markedly elevated from 9.30% to 9.85% after 2 h of
over-sulphation, and further significantly increased to 11.3% and 14.2% after 4 and 6 h,
respectively. The calculated DS values of OS1-3 also significantly increased with reaction
times from 0.72 to 0.89 and 1.31, respectively. These results are similar to the data reported
by Han et al. [51] and Gunasekaran et al. [52]. The increase in sulphation levels was also
shown in the FT-IR spectrum (Figure 2). Compared to MPF2, two characteristic absorption
bands at 1240 cm−1 and 820 cm−1 in the OS1, 2, 3 spectra successively increased in parallel
with sulphation time. These results indicated that the sulphate esters were successfully
substituted to MPF2 by over-sulphation. However, the over-sulphated reaction led to a
slight decrease in the Mw of MPF2 from 104× 103 g/mol to 98.1, 95.5 and 92.1× 103 g/mol
after 2, 4 and 6 h of reaction time. The molecular degradation seemed inevitable due to
the heat treatment during the reaction [53]. Therefore, to investigate the effect of Mw on
the bioactivity, the lower polysaccharides (HS1, 2, and 3) were obtained by acid hydrolysis
of MPF2 using 0.07 M HCl for 5–15 min. The significant changes in the Mw of MPF2
are shown in HPSEC chromatograms (Figure 3), in which MPF2 was eluted from the
SEC columns between 32 and 51 min. After 5 min of hydrolysis, the elution time of the
major peak slightly increased to 35–51 min. However, when treated with acid for 10 and
15 min, the elution peaks significantly shifted to 43–51 min and 47–51 min, showing marked
degradation of polysaccharides. Table 3 also showed that the chemical gradation by acid
hydrolysis treatment significantly decreased the Mw of MPF2 from 104 × 103 g/mol to
88.1 × 103, 50.7 × 103, and 32.8 × 103 g/mol for HS1, 2, 3, respectively. The degradation of
polysaccharides was consistent with the result of Table 3, also shown by Xu et al. [54]. These
results revealed that it was possible to obtain MPF2 derivatives with different amounts of
sulphates as well as different Mw. Therefore, the MPF2 derivatives enabled us to investigate
the immunostimulatory effects of various sulphates and Mw of MPF2 on RAW264.7 and
NK cells.

Table 2. Preparation conditions for over-sulphation (OS1, OS2, and OS3) and sulphate content of
MPF2 and its derivatives from A. hemibapha.

Sample Temperature (◦C) Reaction Time (h) DS Sulphate Content (%)

MPF2 - - - 9.30 ± 0.20 d

OS1 80 2 0.72 9.85 ± 0.05 c

OS2 80 4 0.89 11.3 ± 0.21 b

OS3 80 6 1.31 14.2 ± 0.21 a

Different letters indicate significant differences (p < 0.05) among the MPF2 and its derivatives.

Table 3. Preparation conditions for acid hydrolysis (HS1, HS2, and HS3) and molecular weight of
MPF2 and its derivatives from A. hemibapha.

Sample Temperature (◦C) Reaction Time (min) Yield (%) Mw (×103 g/mol)

MPF2 - - - 104.0 ± 13.1 a

HS1 100 5 80 88.1 ± 3.52 b

HS2 100 10 81 50.7 ± 5.20 c

HS3 100 15 77 32.8 ± 3.87 d

Different letters indicate significant differences (p < 0.05) among MPF2 and its derivatives.
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(HS1), 10 min (HS2) and 15 min (HS3).

3.2. Effects of MPF2 Derivatives on RAW264.7 Cell Activation

RAW264.7 cells, a murine macrophage cell line, release immune-related chemokines
and cytokines such as NO, prostaglandin E2 (PGE2), and interleukins (IL) when they are
activated by LPS [55]. This system has been used to investigate the immunostimulatory
activities of compounds by determining the level of released chemokines and cytokines.
In this study, the immunostimulant of MPF2 derivatives (HS1, 2, 3 and OS1, 2, 3) was
investigated using RAW264.7 cells by determining the NO production. Figure 4a shows the
effect of MPF2 and its derivatives (200 µg/mL) on the proliferation of RAW264.7 cells. The
cell proliferation did not occur after treatment with MPF2 and its derivatives (HS1, 2, 3 and
OS1, 2, 3). This indicates that samples were not toxic to the cells at the tested concentration.
Further, the NO-releasing capacities of MPF2 and its derivatives were tested on RAW264.7
cells at the concentration of 200 µg/mL. LPS (1 µg/mL) was used as a positive control. As
shown in Figure 4b, the NO content released from RAW264.7 cells by MPF2 was found to
be 22 µM; however, the considerably higher levels of NO release by HS1, 2, 3 were 24, 30,
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and 33 µM. This indicates that the NO production of H3 was comparable to the amount of
NO produced by LPS (positive control). Conversely, no increase in NO production was
observed by OS1, 2, 3 compared to MPF2. The percentage of enhanced activity shows the
increase in NO production related to MPF2. As for the percentage of improvement, the
low molecular weight of MPF2 such as HS1, 2, and 3 increased biological activity by 10.8%,
21.1%, and 33.6%, respectively, but shows a very low percentage of improvement on OS1,
2, 3 (Figure 4c).
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However, this trend was not observed in this study which suggests that the sulphate
groups in MPF2 were not an important factor for stimulating RAW264.7 cells. Instead, the
Mw of MPF2 was found to be related to the NO-releasing capacity of RAW264.7 cells. The
HS activated RAW264.7 cells, resulting in the NO induction, which was significantly higher
than that of MPF2 (p < 0.05). Among the HS1, 2, and 3, the -HS3 group exhibited the highest
NO production. This suggests that the optimum range of Mw may exist for the stimulation
of RAW264.7 cells. In a study of exopolysaccharide Mw values, ≤70 × 103 g/mol exhibited
the most potent macrophage stimulation, in which the plausible optimum Mw was also
suggested for the macrophage activation [56]. In addition, low molecular weights exhibiting
rigid conformations and high molecular weights exhibiting compact conformations might
be the reason why the low molecular weight affected this research [57]. It was reported
by Liu et al. [43] that the polysaccharide extracted from Enteromorpha prolifera with the
Mw of 33.3 × 103 g/mol exhibited significant improvement of the immune system and
cyclophosphamide-induced immunosuppression in mouse models. In addition, the results
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also reported that the crude polysaccharide with Mw less than 200 × 103 g/mol are
good immunogens and demonstrate immunostimulation by producing cytokines from
macrophages [58]. The low Mw polysaccharides are considerably facilitated with binding
affinity of the vascular endothelial growth factor 165 (VEGF165) to its receptor, possibly due
to the formation of various bridge types. This suggested that lower Mw polysaccharides
might readily possess conformations to enhance their binding capacity [52,59]. It was
therefore suggested that HP with a lower Mw have a better binding ability to the cell
receptors than high Mw MPF2.

To determine whether the increased levels of NO production by MPF2 and its deriva-
tives were interconnected to the mRNA expression of inducible nitric oxide synthetase
(iNOS), RAW264.7 cells were treated with MPF2 and its derivatives (HS3 and OS3) at a
concentration of 200 µg/mL. The levels of iNOS mRNA expression were then examined
by an agarose gel analysis of the RT-PCR products. As shown in Figure 4d,e, stronger
bands were observed in the HS3 treatment than MPF2, and OS3. These findings indicated
that HS3 does stimulate iNOS expression. From these results, it can be concluded that the
significant increase in NO production is due to the up-regulated iNOS mRNA expression in
RAW264.7 cells after stimulation by partially hydrolysed MPF2. The mRNA expression of
other cytokines was also examined by agarose gel electrophoresis of the RT-PCR products.
A similar trend was observed for the mRNA expression of IL-1β, TNF-α, IL-6, and IL-10
(Figure 4d,e). Overall, HS3 significantly stimulates RAW264.7 cells through the production
of cytokines rather than MPF2, proving that hydrolysis of MPF2 is a better method for
enhancing bioactivity.

An additional experiment was carried out to investigate how MPF2 and its derivatives
(HS3 and OS3) induced inflammatory mediators. As revealed in Figure 5a,b, the p65
expression was strongly observed upon the treatment of HS3. This indicates that the
derivative, HS3, induced the phosphorylation of the p65 subunit from the cytosol to the
nucleus. Therefore, it was likely that the phosphorylation of p65 might lead to the activation
of nuclear factor kappa-B (NF-κB), which results in the stimulation of the RAW264.7cells.
Macrophages are known to be activated not only by the transcriptional activation of
NF-κB, but also by the phosphorylation of mitogen-activated protein kinases (MAPK)
family members such as ERK, JNK, and p38. Figure 5a,b showed that the treatment of
the HS3 derivatives induced the phosphorylation of ERK, JNK, and p38. Overall, these
results demonstrate that HS3 stimulates RAW264.7 cells by activating the NF-κB and
MAPK pathways.

The involvement of antibodies (anti-TLR2, anti-TLR4, and anti-CR3) in the activation
of RAW264.7 cells by HS3 treatment was also studied. The RAW264.7 cells were pre-
incubated separately with the respective antibodies, followed by treatments with either
MPF2 or its derivatives (HS3 and OS3). This assay was carried out by quantifying the
NO released from the RAW264.7 cells. The control sample revealed 41.3% of NO release;
however, after pre-incubation with the anti-TLR4, NO released from RAW264.7 cells treated
with HS3 was found to be reduced (Figure 5c). Conversely, this trend was not observed with
other antibody treatments (anti-TLR2 and anti-CR3). Therefore, these results demonstrate
that HS3 derivatives may promote RAW264.7 cells activity via a TLR4 mediated signalling
pathway (Figure 6).
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3.3. Effects of MPF2 Derivatives on NK Cell Activities

NK cells are important cells in the innate immune system by directly eliminating
cancer cells and pathogen-infected cells when they are activated by target cell recognition
and through signal integration from both activating and inhibitory receptors [32]. Polysac-
charides from plants and fungi specifically promote the activation and cytotoxicity of NK
cells by enhancing interferon-alpha/beta (IFN-α/γ), granzyme-B, and perforin secretion,
and increase the expression of the activating receptor, NKp30 [60]. In this study, the effect
of MPF2 and its derivatives on NK cell activation and cytotoxicity was investigated by
cytotoxicity assay and the gene expressions of IFN-γ, granzyme-B and perforin, NKp30,
and FasL.

The effect of MPF2 and its derivatives (HS1, 2, 3 and OS1, 2, 3) on the proliferation of
NK cells after 24 h of treatment is shown in Figure 7a. The level of NK cells proliferation
was minimally influenced by the treatment of MPF2 and its derivatives, indicating that
these samples were non-toxic to the NK cells at the tested concentration. The effect of
MPF2 and its derivatives on NK cell cytotoxicity was tested against HepG2 cells at the
effector with a target ratio of 30:1 (Figure 7b). As for the medium, NK cells showed 30.3%
cytotoxicity against HepG2 cells, implying that NK cells themselves exhibited some direct
cytotoxicity on the target cancer cells. When cells were treated with OS1, 2, and 3, the
cytotoxicity of NK cells markedly increased to 50.8%, 54.7%, and 47.2%. This indicated
that the OS1, 2, and 3 treatments effectively improved NK cell cytotoxicity. However, NK
cell cytotoxicity observed by the HS1, 2, and 3 treatments were the same as MPF2. In
contrast, cytotoxicity increased from 50.8% to 54.7% in OS1 and OS2 treatment. Although
the level of NK cell cytotoxicity was less than 61.2% with OS2 treatment, the cytotoxicity
was comparable to that exhibited by the positive control, 5-Fu (61.2%, 10 µg/mL). A similar
level of NK cell cytotoxicity was reported in our previous study [50,61]. For OS1 and OS2
treatment in this study, there might be ranges of DS optimum on OS1 and OS2 for the
RAW264.7 cell activation. As the percentage of improvement in NK cell activity reviews,
the improvement in NK cell activity is on par with MPF2. The over-sulphation (OS1, 2,
3) showed better activity in the percentages of 10.7%, 19.3%, and 2.78%, but little was
observed in HS1, 2, 3 (Figure 7c).

Similar findings were reported by Zhao et al. that sulphated polysaccharides extracted
from red seaweed, Polysiphonia senticulosa, effectively enhanced immune function by acti-
vating the NK cells [62]. It was reported that grafted polysaccharides by over-sulphation to
polysaccharides with a higher DS had better biological activity. Wang et al. [40] reported
that the sulphated derivatives exhibited excellent antitumor activity when its DS was
within the scope of 0.81–1.29. In addition, sulphated polysaccharides SALP-1 (DS, 0.48) and
SALP-2 (DS, 0.73) extracted from Acanthopanax leucorrhizu significantly increased the DPPH
and OH radical antioxidant activities compared to native polysaccharides (ALP) [63]. This
result suggested that over-sulphation might be beneficial for the improvement of NK-92
cell activation with the optimum range of DS. However, the level of NK cell cytotoxicity
observed with HS1, 2, and 3 treatments did not change. This implied that the low Mw of
MPF2 did not play a critical role in the enhancement of NK-92 cell activation.
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The level of gene expressions such as IFN-γ, Granzyme-B and Perforin, NKp30, and
FasL is shown in Figure 7d,e. The expression of IFN-γ mRNA was increased (up-regulated
2.0-fold compared to the medium) by the treatment of MPF2. Similarly, the mRNA levels
of granzyme-B and perforin were also up-regulated by MPF2, showing a 2.5- and 1.3-fold
enhancement. The mRNA expression of the surface-activating receptor, NKp30, exhibited
significant up-regulation (3.0-fold) after the treatment of MPF2. In addition, the mRNA
expression of apoptosis-inducing ligand FasL was notably up-regulated (1.7-fold) by the
MPF2 treatment as well. Revealed by the level of NK cell cytotoxicity (Figure 7b), the gene
expression was more significant from the OS2 treatment than MPF2, indicating that OS2
may possess a better capacity to activate NK cells. This compares to RAW264.7 cell activa-
tion, in which the Mw of the polysaccharides were important factors (Figure 4b). NK cell
activation seemed tightly related to the sulphate content of the polysaccharides; therefore,
when MPF2 possess sulphates, its NK cell signalling capacity is considerably increased.
This could potentially be due to the increased interaction between OS2 and the NK cell
surface receptors, which are different from those of RAW264.7 cells. Wang et al. [64] also
reported the presence of negative charges of sulphated groups on the structure of polysac-
charides, which can increase the binding capacity of immune cells through the electrostatic
interaction and various chemical bonding resulting in improved bioactivity [39].

The possible interaction of NK-92 cell activation by MPF2 and its derivatives (HS3 and
OS2) were examined by antibody neutralization. As shown in Figure 5c, the major surface
receptors in RAW264.7 cells bound by polysaccharides are TLR4. However, among the
various pattern recognition molecules (TLR2 and TLR4 and CR3) expressed on the NK cell
surface, the anti-CR3 antibody treatment failed to enhance the cytotoxicity of MPF2 and its
derivatives (Figure 8a,b), suggesting that MPF2 and its derivatives (OS2) may promote NK
cell activity via a CR3-mediated signalling pathway. Huang et al., inferred that the sulphate
content binding to polysaccharides can activate NK cells via the CR3 receptor [65]. Overall
results suggest that the hydrolysed polysaccharides of MPF2 from A. hemibapha may have
a better interaction with the surface receptors on RAW264.7 cells, but the interaction with
those on NK cells could be promoted by the over-sulphation of MPF2. The enhanced
interaction with the surface receptors on RAW264.7 cells and NK cells with polysaccharide
derivatives was also observed, resulting in improved cell cytotoxicity.
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letters indicate significant differences (p < 0.05) between polysaccharide control (OS2), and OS2 +
anti-TLR2 Ab, OS2 + anti-TLR4 Ab, and OS2 + anti-CR3 Ab.

4. Conclusions

In this study, a water-soluble polysaccharide was extracted from the fruiting bodies of
A. hemibapha using the hot water extraction method. MPF2, an immunostimulant fraction,
was sulphated by over-sulphation, and the Mw was lowered by the hydrolysis method. The
effects of Mw and sulphate obtained from A. hemibapha subspecies javanica (Corner and Bas)
on the immunomodulation were systematically investigated through the NO production
in RAW264.7 cells and NK cell cytotoxicity against HepG2 cells. Lower Mw is the main
factor for stimulating the RAW264.7 cells in order to produce pro-inflammatory mediators
including NO, TNF-α, IL-1β, IL-6, and IL-10 through the nuclear factor kappa-B (NF-κB)
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and mitogen-activated protein kinases (MAPK) pathways. Lowering the Mw could be
activated through the TLR4 signalling pathway in the macrophage cell receptors. The
presence of sulphate groups in MPF2 was influential for NK-92 cell activation by inducing
cytotoxicity in HepG2 cells through the expression of IFN-γ, Granzyme-B, NKp30, and
FasL. The sulphated derivatives improved NK cell activation, therefore concluding that the
chemical and structural modifications of the MPF2 from A. hemibapha subspecies javanica
(Corner and Bas) could be used for functional food applications, nutraceuticals, and a
source of development for new drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7100847/s1, Table S1: Enhanced chemiluminescence (ECL) kit, and its instructions.
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