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Nonunion with bone defects, a common complication after long bone fracture, is a major challenge for orthopaedic surgeons
worldwide because of the high incidence rate and difficulties in achieving successful treatment. Bone defects are the main
complications of nonunion. The conventional biological treatments for nonunion with bone defects involve the use of autologous
bone grafts or bone graft substitutes and cell-based therapy. Traditional nonunion treatments have always been associated with
safety issues and various other complications. Bone grafts have limited autologous cancellous bone and there is a risk of infection.
Additionally, problems with bone graft substitutes, including rejection and stimulation of bone formation, have been noted, and the
health of the stem cell niche is a major consideration in cell-based therapy. In recent years, researchers have found that exosomes
can be used to deliver functional RNA and mediate cell-to-cell communication, suggesting that exosomes may repair bone defects
by regulating cells and cytokines involved in bone metabolism. In this review, we highlight the possible relationships between risk

factors for nonunion and exosomes. Additionally, we discuss the roles of exosomes in bone metabolism and bone regeneration.

1. Introduction

Traumatic and life-threatening fractures of the long bones
have increased dramatically as the demand for motor trans-
port continues to increase in developing countries [1].
Nonunion is the most common complication after long
bone fracture, and the rate of nonunion is estimated to be
between 5% and 10% [2, 3]. In addition, the higher incidence
rates of obesity and musculoskeletal diseases and reduced
rates of bone regeneration [4] have increased the occurrence
of nonunion [5]. Nonunion is not limited to developing
countries but is experienced worldwide. According to the
Food and Drug Administration, nonunion is considered if the
fracture is not healed after a minimum of 9 months and there
are no obvious progressive signs of healing for 3 consecutive
months [6]. Patients with bone nonunion often require two
or more surgeries, resulting in severe psychological and
economic pressure [7, 8] and seriously affecting quality of life
[5, 9]. Therefore, an in-depth understanding of the fracture
healing process and related mechanisms and the provision

of appropriate interventions to accelerate bone regeneration
are essential to avoid adverse consequences. Thus, given the
burden of nonunion on patients and society, new treatments
for nonunion intervention are urgently needed.
Extracellular vesicles are a class of heterogeneous mem-
brane vesicles including three major subpopulations (exo-
somes, microvesicles, and apoptotic bodies), which has a
great diversity of biophysical properties and functions. The
International Society for Extracellular Vesicles updated their
guidelines in 2018 (Table 1) [10]. Exosomes contain lipids,
nucleic acids, proteins, and signalling molecules (Figure 1)
[11]. Exosomes were first discovered and described as exfo-
liated membrane vesicles in 1981 [12]. Firstly, endosomes
are produced by plasma membrane internalization of donor
cells, and then the proteins and RNAs (including IncRNAs,
circRNAs, mRNAs, and miRNAs) are selectively crated into
the multivesicular bodies, via endosomal sorting complex
required for transport- (ESCRT-) dependent or ESCRT-
independent mechanisms. Subsequently, the multivesicular
bodies are either fused to the lysosome for degradation
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FIGURE 1: The constitute of exosomes.
TaBLE 1: Types of extracellular vesicles. 2. Fracture Healing
Vesicles Size (nm) Origin Bone can heal without scarring and return to its origi-
Exosomes 50 - 100 Endosomes nal state, unlike other tissues [25], through the concerted
Microvesicles 100 - 1,000 Plasma membrane activities of thousands of genes, cytokines, growth factors,
Apoptotic bodies 1,000 - 5,000 Plasma membrane chemokines, and other molecules [26]. The newly healed

or released into the extracellular space by fusion with the
plasma membrane to produce exosomes. Microvesicles are
produced directly on the plasma membrane {Tao, 2018 #264}.
Today, exosomes are defined as cellular organelles that are
released by various tissues and cells and can be internalized
by receptor cells through endocytosis [13]. Exosomes are
widely distributed and can be separated from almost all
types of biological fluids, particularly semen [14], breast milk
[15], saliva [16], synovial fluid [17], and urine [18]. Recent
studies have demonstrated that exosomes possess the ability
to stimulate the regeneration and repair of tissue and organs
[19], including the heart [20], skin [21], and liver [22]. In the
past two decades, exosomes have been shown to have various
applications as naturally derived nanoparticles. Endocytosis
of exosomes can facilitate the absorption of proteins, mRNAs,
and microRNAs, thereby affecting target cells [23]. Moreover,
these functional RNAs enable intercellular signal communi-
cation through exosomes [24].

In this review, we discuss the applications of exosome
treatment in nonunion with bone defects, highlighting the
physiological mechanisms of fracture, risk factors that may
cause nonunion, classifications of nonunion, and treatment
intervention using exosomes.

bone is similar in structure and mechanical properties to the
original bone [27-29]. Fracture healing involves an initial
anabolic stage in which tissue volume increases in relation
to newly generated and differentiated stem cells, which form
bone and vascular tissue (Figure 2) [30]. First, the injured
bone forms a hematoma, which is a fibrin clot caused by
periosteal blood vessel haemorrhage beneath the periosteum
and the medullary canal [31] as a result of coagulation [32].
Although the mechanical properties are poor, the fibrin
clot provides the first step for fracture connection [33].
Simultaneously, macrophages, degranulating platelets, and
other inflammatory cells [34] reach the fracture site to clean
up the wound [35]. Gradually, endothelial cells and fibroblasts
infiltrate, forming new capillaries and collagen matrix, which
results in the formation of granulation tissue [32, 36] to
fill the fracture gap [37]. Initial granulation tissue is then
gradually replaced by fibrous tissue, to form a soft callus
[38]. Close to the hypoxic fracture line, as chondrocytes
become hypertrophic and begin to undergo apoptosis, the
soft callus exhibits endochondral ossification [26]. In the
periphery of the new cartilage tissue toward the fracture
location, periosteum swelling and bone formation occur
through intramembranous ossification [39]. Additionally,
following exposure to vascular endothelial growth factor
secreted from endothelial cells, the surrounding matrix is
digested by chondrocytes and then infiltrated by blood vessels
and osteoblasts [40]. The next phase involves the formation of
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FIGURE 2: Cells involved in the process of bone healing.

the primary bone [34], which is characterized by replacement
of mineralized bone and high levels of osteoblast activity [41],
concurrent with cartilage tissue development.

2.1. Indirect (Secondary) Fracture Healing. Indirect heal-
ing with callus formation is an orderly process of bone
recombination [42]. In general, using fixation with steel
plates and screws, the fracture ends are better restored
and compressively fixed. Micromotion and weight-bearing
enhance indirect fracture healing. However, delayed union
and nonunion can also appear when there is too much motion
[43].

2.2. Direct Fracture Healing. Direct fracture healing can
occur by lamellar bone remodelling when the fracture end
is very stable with no gap formation. However, when natural
healing of the fracture does not occur, this type of healing
usually requires open reduction and internal fixation [42].

3. Contribution of Risk factors to
Fracture Nonunion

The relationships between various risk factors affecting
fracture healing and nonunion have been confirmed in



recent studies [44]. Risk factors identified as contributing
to the development of fracture nonunion include patient-
dependent factors, such as age [45] (age-related changes can
affect many biological processes during fracture healing), sex
[46] (high oestrogen levels in postmenopausal women play
important roles in promoting bone formation), nutritional
state [47, 48] (during the bone regeneration process, there
is an increase in metabolic requirements), diabetes [49]
(diabetes is a metabolic disorder that interferes with bone
formation and damages fracture healing), osteoporosis [50]
(osteoporosis impairs bone regeneration and the ability to
restore biomechanical properties), alcohol abuse [51] (alcohol
reduces bone repair, repaired tissue stiffness, and ash density),
smoking [52] (nicotine inhibits osteoblast proliferation and
is a vasoconstrictor, leading to tissue ischemia and hypoxia),
and nonsteroidal anti-inflammatories (NSAIDs) [53] (long-
term, high-dose treatment with NSAIDs reduces osteoblast
numbers and inhibits the formation of prostaglandin).
Patient-independent factors include fracture gap [54] (the
fracture process is poor when the fracture gap is greater
than 2 cm), fracture site [55] (compared with bone fracture
of the diaphysis, the incidence of healing defects in the
metaphyseal fracture is lower and the healing time is shorter),
type of fracture [55, 56] (compared with stable and simple
fractures, the more ruptured and unstable the fracture ends,
the higher the risk of debris ischemia and necrosis), and
infection [57, 58] (infection reduces the strength of the
callus and creates conditions for sequestrum and osteolysis).
All strategies that help shorten healing time and restore
work and activity faster not only improve patient outcomes
but also help reduce the financial burden of fracture and
nonunion.

4. Classification of Nonunion

The most common classification of nonunions is the Weber
and Cech classification [59]. Nonunions include hyper-
trophic nonunion and atrophic nonunion. Hypertrophic
nonunion, also called mechanical nonunion, involves a
large number of nonbridged calluses containing cartilage
and is characterized by excessive bone formation and poor
mechanical fixation. Atrophic nonunion, also called bio-
logical nonunion, is characterized by minimal callus or
cartilage owing to lack of blood supply or cells. In atrophic
nonunion, the fracture end may be hardened or osteoporotic
[60].

5. Treatment Intervention

Long bone nonunion is often accompanied with bone defects.
For management of nonunion, the main strategies include
removal of necrotic bone and tissue, filling most of the bone
defect, promoting the recruitment of osteoblasts, increasing
the concentrations of osteoinductive substances, and provid-
ing a stable mechanical environment [61]. The distribution of
blood vessels at the site of nonunion has also been shown to
be an important factor in fracture healing [62]. In this section,
we summarize various types of reconstruction treatments to
achieve bone healing and maintain limb length.
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5.1. Surgical Intervention. In order to regenerate hard and soft
tissue defects, mechanical stability can be promoted through
surgical intervention [61].

Nail dynamization: After treatment of long bone fractures
with intramedullary nails, dynamization of intramedullary
nails may help increase axial compression and micromotion
to stimulate healing [63, 64]. This method may cause axial
shortening of the femur via dynamization [65].

Exchange nailing with augmentation plating: Exchange
nailing provides biological effects by increasing subperiosteal
blood circulation and stimulating osteogenesis [66], growth
factor activation [67, 68], and inflammatory responses [69].
As the length of the medullary stenosis and diameter of
the intramedullary nail increase, the effective contact area
between the intramedullary nail and the medullary cavity
is significantly increased, thereby enhancing mechanical
stability [70, 71].

Augmentation plating: Rotational instability is also a risk
factor in diaphyseal long bone nonunion, which can be solved
by augmentation plating [72, 73].

External fixation: External fixation to treat nonunion
provides tension and support at the long bone nonunion sites
for bone binding [74, 75]. The procedure can improve early
weight bearing while increasing the stability of bone healing
[76]. The disadvantages of this procedure are that it takes a
long time to heal and that the wound is at risk of infection
[77].

However, surgical intervention can only overcome factors
affecting instability and is not sufficient to cure nonunion.
Treatment of nonunion involves not just providing a stable
mechanical environment for nonunion but also increasing
osteogenic activity to address biological nonunion.

5.2. Autograft and Other Bone Graft Substitutes. Autologous
bone grafts are the “gold standard” for the treatment of
nonunion because of complete histocompatibility and strong
osteoconduction, osteoinduction, and osteogenic activities
[78]. However, autograft bone grafts may result in increased
blood loss, pain, and possible infection at the donor site [79].
Although allogeneic bone has no osteogenic potential, it can
be used as a scaffold to provide osteoconductive material
[80]. Demineralized bone matrix is composed of collagen,
noncollagenous proteins, bone morphogenic proteins, and
growth factors [81], conferring the bone with osteoinductive
and some oeteoconductive properties [82]. Ceramics, such as
calcium phosphate [83], tricalcium phosphate [84], hydrox-
yapatite [85], and calcium sulphate [86], have been widely
used as osteoinductive carriers and transplant substitutes.
Among them, calcium phosphate is chemically similar to
human bone minerals and also have bioconductive [87].
Le Nihouannen D [88] proved that microporous bipha-
sic calcium phosphate containing hydroxyapatite and beta-
tricalcium phosphate implants into sheep muscle can pro-
mote bone formation. Le Nihouannen D et al. [89] also
used calcium phosphate ceramics as scaffold combined with
fibrin glue based composites to verify osteoinduction (new
bone formation) and osteoconduction (bone healing capac-
ity). However, allogeneic bone and bone graft substitutes
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may be associated with infection [90] and graft-versus-host
disease [91]. Moreover, bone graft substitutes have no cellular
components, and their effects are not as good as autologous
bone.

5.3. Cell Therapy. Cell-based therapies, which apply a stem
cell self-sufficient biological environment and heterogeneity
to restore and improve tissue function, have been extensively
investigated. Friendstein et al. found that, after hematopoietic
necrosis, osteoblast-like bone marrow cells formed new bone
in vitro, and mesenchymal stem cells (MSCs) were first
isolated in this context [92]. Bruder et al. demonstrated for
the first time that MSCs isolated from human bone marrow
could regenerate normal bone in critical tibial defects of
immunocompromised rats [93]. Additionally, MSCs were
found to be ideal cells for bone tissue regeneration, not only
because of their therapeutic potential and ability to self-renew
but also because of their availability from many different
tissues [94-96].

Bone marrow-derived stem cells (BMSCs): BMSCs are the
most abundant cells in the bone marrow. BMSCs play roles
in regulating hematopoietic stem cells and progenitor cells
through different signalling pathways, as demonstrated in
various studies [97]. When treating nonunion, Connolly et al.
reported that 18 of 20 patients with ununited tibial fractures
were successfully cured by autologous marrow injection into
the nonunion site [98]. Additionally, Quarto et al. [99] and
Marcacci et al. [100] have achieved healing results with bone
graft substitutes loaded with BMSCs. Similar treatments such
as BMSCs and biphasic calcium phosphate biomaterials have
been transplanted in nonunion to achieve effective fracture
healing and bone growth in clinical trials [101]. This work
was supported by European Union’s Seventh Framework
Programme (FP7/FP7-HEALTH-2009).

Induced pluripotent stem cells (iPSCs): Human iPSCs are
similar to embryonic stem cells in multilineage differentiation
potential and proliferation ability [102]. Teramura et al. [103]
demonstrated that mouse iPSCs could be induced into MSC-
like cells and then differentiated into osteoblasts. Although
the study of iPSCs is still relatively new, iPSCs may have
promising applications in the healing of bone defects.

Other stem cells also have shown excellent osteogenesis
capacity. For example, endothelial progenitor cells can form
ectopic vascular bone for the treatment of critical size bone
defects [104]. In animal studies hydroxyapatite-tricalcium
phosphate containing allogeneic MCSs were effective in
enhancing the repair of critical-sized defect in the canine
femur [105, 106]. Although the treatment outcomes of these
novel methods are promising, the molecular mechanisms
of MSC repair in vivo are still unclear. Increasing evidence
suggests that the therapeutic effects of MSCs are related to
exosome-mediated paracrine induction [107, 108].

5.4. Cell-Free Therapy. Many studies have supported the
roles of exosomes in intercellular communication through
paracrine signalling in various tissue repair processes and
diseases (Figure 3) [109]. These natural mechanisms can be
applied as intercellular signalling pathways to stimulate bone

regeneration [109]. Therefore, cell-free therapies that increase
the formation of osteoblasts and the interactions between
cells may have potential applications in the treatment of
nonunion.

As an important component of exosomes, microRNAs
have attracted much attention in the study of exosome
function owing to their important regulatory roles. Li et
al. reported that osteoclast-derived exosomal miR-214-3p
inhibits osteogenic activity and reduces bone formation;
additionally, inhibition of miR-214-3p in osteoclasts may have
applications in the treatment of nonunion [110]. Qin and
colleagues found that muscle-secreting myostatin inhibits
osteoblastic differentiation by blocking osteocyte-derived
exosomal miR-218, suggesting the presence of a potential
communication mechanism between muscle and bone [111].
Weilner et al. reported that miR-31 from vascular endothelial
cell-derived exosomes may be a biomarker and potential
therapeutic target for osteoporosis [112].

Proteins in exosomes in cell-to-cell communication
also play important roles. Ge et al. reported that highly
expressed proteins in MC3T3 cell-derived exosomes are rich
in osteogenic-related pathways [113]. Moreover, Huynh et al.
reported that receptor activator of nuclear factor-«B ligand
(RANK), which is highly enriched in exosomes derived from
osteoclasts, is a paracrine regulator of osteoclastogenesis
[114].

Many recent studies have evaluated the application of
stem cell-derived exosomes for bone repair. Qin et al. demon-
strated that BMSC-derived exosomes regulate osteoblast
expression by miR-196a in vitro and improve bone regen-
eration ability in a Sprague-Dawley rat model of calvarial
defects [115]. Additionally, angiogenesis has been shown to
be an essential factor in bone regeneration. Ashoo et al.
demonstrated that BMSC-derived exosomes are capable of
increasing endothelial cell viability in vitro and stimulating
angiogenesis in vivo [116]. Lu et al. also reported that adipose
stem cell-derived exosomes promote the proliferation and
differentiation of human primary osteoblastic cells [117].
Exosomes released from adipose stem cells (ASCs) have also
been shown to promote ASCs-induced angiogenesis [118].

Proteins and RNAs contained in osteoblasts-derived
exosomes played an important role in intercellular
communication within bone tissue. Ge et al. demonstrated
that osteoblast-derived exosomes activate eukaryotic
factor 2 to promote osteoblastic differentiation in wvitro
[113]. Weilner et al. demonstrated that galectin-3 levels in
osteoblasts-derived exosomes were positively correlated with
osteogenesis potential [119]. A proteomic study of exosomes
derived from MC3T3 cells (mouse osteoblasts) revealed some
osteogenesis-related pathways, including integrin signalling,
mammalian target of rapamycin (mTOR) signalling,
and eukaryotic initiation factor 2 (EIF2) signalling [113].
Moreover, Cui et al. reported that mineralizing osteoblast-
derived exosomes promoted bone marrow stromal cell
differentiation into osteoblasts by activating Wnt signalling
(120].

Exosomes have been widely reported in the field of
regeneration. Qi et al. found that exosomes secreted by MSCs
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FIGURE 3: Exosomes are likely to be the way cells communicate with each other in the process of bone healing.

derived from human induced pluripotent stem cells (hiPSC-
MSC-Exos) could significantly promote osteogenesis and
angiogenesis in rats with osteoporosis [121]. Liu et al. found
that, in a model of steroid-induced osteonecrosis in rats,
hiPSC-MSC-Exos could prevent femoral head necrosis by
activating PI3K/Akt signaling pathways in endothelial cells to
promote angiogenesis [122]. In another study, compared with
exosomes secreted by synovial membrane MSCs (SMMSC-
Exos), exosomes secreted by induced pluripotent stem cell-
derived MSCs (iMSC-Exos) had superior therapeutic effect
on osteoarthritis (OA) due to the ability to promote chon-
drocyte migration and proliferation [123]. Du et al. reported
that hiPSC-MSC-Exos could alleviate hepatic ischemia-
reperfusion (I/R) injury and promote cell proliferation in a
rat model of hepatic I/R injury [124].

6. Discussion and Conclusion

Nonunion has major implications for patients and families
and can also affect society. Surgical intervention can only
solve mechanical nonunion, and interventions for biological

bone nonhealing often involve autologous bone or bone graft
substitutes, stem cell therapy, and other methods. Nonviable
vesicles, such as exosomes, are associated with a lower
risk of complications than cell-based treatment. Importantly,
exosomes can be stored at —20°C for 6 months without loss
of efficacy [125]. Thus, it is particularly important to grasp
the relationship between exosome and nonunion healing
mechanisms and to solve the problem of nonunion.
Osteoblasts, osteoclasts, proangiogenic factors, and
blood platelets play important roles in fracture healing.
As described above, osteoblasts release exosomes in a
positive feedback loop to promote bone growth [113]. Inder
and colleagues reported that prostate cancer cell-derived
exosomes can attenuate osteoclast formation and stimulate
osteoblast proliferation [126]. In addition to osteoclast-
derived exosomes, which can affect osteoclast differentiation,
Raimondi et al. reported that multiple myeloma-derived
exosomes increase C-X-C motif chemokine receptor 4
expression and activation, thus promoting osteoclast
maturation [127]. Additionally, Solberg et al. showed that
lysosomal membrane protein 1-positive exosomes contain
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RANK ligand, osteoprotegerin, and tartrate-resistant acid
phosphatase isolated from rat osteoblasts and osteocytes
[128]. Osteoclast formation can be stimulated by RANKL-
rich osteoblast-derived exosomes, as shown by Deng
et al. [129]. In promoting angiogenesis, exosomes can
stimulate endothelial cell migration and angiogenesis
through exosomal miR-129 and miR-136 [116]. Torreggiani
et al. reported that BMSCs treated with platelet-derived
exosomes containing proteins and noncoding RNAs showed
a significant increase in osteogenesis [130]. Understanding
the processes and secreted components of cells involved
in fracture healing may guide the development of new
treatments for nonunion.

There are some factors that can explain the nonunion
of fractures, and treatment of nonunion with these factors
can be achieved through the use of exosomes. Xu et al.
found that miR-31a-5p in rat bone marrow stromal cell-
derived exosomes prevents age-related bone loss and reduces
osteoclast activity in rats. Thus, they proposed that miR-
3la-5p may be an age-related potential therapeutic target
[131]. Notably, women have a higher probability of developing
arthritis than men, and women who are postmenopausal
are at increased risk [132]; Kolhe et al. noted that differ-
ences in miRNA expression were greater in women with
osteoarthritis than in men with osteoarthritis [133], sug-
gesting that some differences in miRNA contents may be
related to sex. Additionally, Saha et al. analysed plasma-
derived exosomes from alcoholic individuals and reported
that alcohol increases exosome production in monocytes;
they also found that exosomes containing miR-27a released
from monocytes promoted naive monocyte differentiation
into M2 macrophages [134]. Goerzl et al. demonstrated that
aspirin significantly reduces the levels of plasma platelet-
derived exosomes without changing the total number of
exosomes [135].

Exosomes have great potential for applications in the
treatment of nonunion with bone defects and can be used to
adjust the immune microenvironment and promote vascular-
ization, proliferation, differentiation, and mineralization of
osteoblasts. Exosomes are eliminated from the blood stream
in short time and aggregate in the liver [136, 137]. Thus,
future studies are needed to further assess the application and
efficiency of exosome-based targeted drug delivery.
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